Huffman Coding

1. Scan characters to compute frequency counts.

2. Associate each character (tree with a single node) with its frequency or probability.
Repeat
 pick two trees with the smallest frequencies (say A and B, where frequency(A)
 is less than or equal to frequency(B). Create the tree (see below) with
 frequency equal to frequency(A) + frequency(B).
Until one tree remains

LZW_Compress(){
 enter all symbols in the table;
 read(first character from w into string s);
 while(any input left){
 read(character c);
 if(s + c is in the table)
 s = s + c;
 else {
 output codeword(s);

 Enter s + c into the table;

 s = c;
 } // end if/else
 } // end while
 output codeword(s);
}
LZW_Decompress(){ // indentation counts
 enter all symbols into the table;
 read(priorcodeword) and output its corresponding character;

 while(codewords are still left to be input){
 read(codeword);

 if(codeword not in the table) {
 enter string(priorcodeword) + firstChar(string(priorcodeword)) into the table;
 output string(priorcodeword) + firstChar(string(priorcodeword));

 }

 else {
 enter string(priorcodeword) + firstChar(string(codeword)) into the table;
 output codeword;
 }
 priorcodeword = codeword;
 }
}
Suppose the input to LZW is ABABABA

The output from compression would be:

#A#B#AB#ABA

Note that #ABA is not in the table on decompression.

This is the tricky case handled by the first ‘if’ during decompression.
B

A

