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Abstract

We describe a formalization of Kruskal’s tree theorem in a new
proof assistant called Lean. The formalization follows the classical pa-
per proof given by Nash-Williams in which the minimal bad sequence
argument plays a central role in proving the theorem. We formalize
this argument as an independent module so that it can be applied to
later proofs. Along the way, Dickson’s lemma and Higman’s lemma
are formalized in a manner similar to Nash-Williams’ original proof.
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1 Introduction
Kruskal’s tree theorem is a famous theorem in combinatorics. The theorem
says that finite trees are well quasi-oredered under homeomorphic embedding.
A set A is well quasi-ordered by a relation � if � is reflexive and transitive,
and for every infinite sequence f of elements of A, there exist i, j ∈ N such
that i < j and f(i) � f(j). Intuitively, a finite tree T is embeddable into
another finite tree T ′ via a homeomorphism h, if for every node n ∈ T , the
image under h of the successors of n are distinct successors of h(n). In the
term rewriting literature, the tree theorem turns out to be a powerful tool for
proving termination. It implies that if certain orderings defined recursively
on terms satisfy some simplification property, then the well-foundedness of
these orderings can be obtained [14] [12]. These well-founded orderings in
turn establish the termination of systems of rewrite rules and the correctness
of algorithms like Knuth-Bendix completion procedures [7].

From a proof-theoretic perspective, Kruskal’s tree theorem is significant in
that it is a natural statement unprovable in relatively strong logical theories,
though it is a theorem about finite objects. Let T be a formal theory that
contains sufficient arithmetic to make statements about ordinal notations.
The proof-theoretic ordinal of T is the smallest recursive ordinal α such
that the transfinite induction up to α is not provable in T . Let σ be a
mathematical statement. It is clear that if T proves that σ implies the well-
foundedness of some ordinal α, and T does not prove the well-foundedness of
some ordinal α, then σ is not provable in T . It is well-known that the proof-
theoretic ordinal of certain strong systems of second-order arithmetic, such
as the system ATR0, is the Feferman-Schütte ordinal Γ0. On the other hand,
Harvey Friedman [4] shows that the system ACA0 proves that Kruskal’s
theorem implies the well-foundedness of Γ0. Since ACA0 is a subsystem
of ATR0, this means that Kruskal’s theorem is not provable in ATR0. This
result is interesting because ATR0 is already able to formalize a large portion
of ordinary mathematics, including the theory of continuous functions, the
theory of countable fields, the topology of complete separable metric spaces,
the structure theory of separable Banach spaces, Borel sets, analytic sets,
etc. [5], while it fails to figure out the “truth” of a combinatorial statement
about finite objects. More investigations of proof-theoretic consequences of
Kruskal’s tree theorem and its variants can be found in Simpson [13], Okada
and Takeuti [11].

Kruskal’s tree theorem, which is practically useful and theoretically in-
teresting, was conjectured by Andrew Vázsonyi and first proved by Joseph
Kruskal [8]. Nash-Williams gives an elegant and classical proof in [9]. The
proof is classical in the sense that it uses axiom of choice and proof by con-
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tradiction. The minimal bad sequence argument has been established in the
same paper in order to obtain contradictions. The argument assumes the
existence of a “bad” sequence. Then it follows that there is a bad sequence
which is minimal in some sense. Using this minimal bad sequence we can
construct a new bad sequence which is even smaller in the same sense. The
existence of this new bad sequence then contradicts the minimality of the
minimal bad sequence. The minimal bad sequence argument is applied to
the proof of a version of Higman’s lemma [6] given in the same paper, as well
as the proof of the tree theorem itself. In this paper, we formalize a general
abstraction of the argument so that a contradiction can be obtained as long
as suitable instances of the assumptions are constructed.

Formalizations of Kruskal’s tree theorem are not established until very
recently. Previous formalizations of Kruskal’s tree theorem are given by
Sternagel [15] in 2013 and Dominique Larchey-Wendling1 in 2015. The lat-
ter one is a formalization of an intuitionistic proof of the theorem in Coq [3],
so it cannot really be compared to our formalization since it adopts a differ-
ent proof strategy. The former one is a formalization of the classical proof
in Isabelle/HOL [10]. According to [15], this one appears to be the first
formalization of the theorem and contains about 2000 lines of code. Our for-
malization in Lean [2] uses a simpler inductive definition of finite trees and
formalizes a more general abstraction of the minimal bad sequence argument.
The argument is more general so that there is no need to repeat the construc-
tions of the contradicting bad sequence in the proof. Besides, we formalize
Higman’s lemma in a form as it is in Nash-Williams’ original proof, i.e., in
terms of finite subsets, so as to distinguish the formalization from the above
two where they have formalized its list version2. The resulting formalization
is about 1000 lines.

1https://members.loria.fr/DLarchey/files/Kruskal/index.html
2However, the strategy for proving both versions are almost the same once we have

established the minimal bad sequence argument, and the last step for the list version is
even simpler.
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2 Background
We begin by describing the basics of the Lean theorem prover and the WQO
theory, focusing on the parts relevant to our work.

2.1 The Lean Theorem Prover

The Lean theorem prover is an open source interactive theorem prover de-
veloped by Microsoft Research. The latest version of Lean supports both
constructive and classical reasoning in the calculus of inductive constructions
(CIC) — a powerful variant of Martin-Löf type theory in terms of expressive-
ness. What makes the theory powerful is the existence of dependent types
and inductive types. Dependent types, denoted as Πx : A,B, can be consid-
ered as the type of an indexed family of sets. An element of Πx : A,B is a
function f which, for each a in A, returns an element f a of B a. If x occurs
in B, then Πx : A,B represents a family of types indexed by the elements
in A. If x does not occur in B, then Πx : A,B represents the function type
A→ B. In this sense, Π generalizes the usual→. The typing rules for Π are
given as follows.

Γ ` A : Type Γ, x : A ` B : Type∗ Π-formation
Γ ` Π(x : A), B : Type∗

Γ, x : A ` y : B
Π-abstraction

Γ ` (λx : A, y) : Πx : A,B

Γ ` f : Πx : A,B Γ ` y : A
Π-application

Γ ` fy : B[y/x]

Lean supports defining types and functions by inductive definitions. This
mechanism will be used intensively in our formalization. An inductive type
is built up from a specified list of constructors. The syntax for defining an
inductive type is as follows:

inductive foo : Type
| constructor_1 : ... → foo
| constructor_2 : ... → foo
...
| constructor_3 : ... → foo

4



Inductive types come with recursors, which are defined at the same time
as the inductive types and their constructors are defined. Recursors allow
users to define functions by recursion on the structure of objects whose types
are inductively defined. They also provide a principle of induction as a special
case where the target type is an element of Prop. Examples of inductively
defined types and functions include:

−− a non−recursive inductive type
inductive bool : Type
| ff : bool
| tt : bool
−− a recursive inductive type
inductive nat
| zero : nat
| succ : nat → nat
−− an inductively defined dependent type
inductive list (T : Type u)
| nil {} : list
| cons : T → list → list
−− boolean negation
def bnot : bool → bool
| tt := ff
| ff := tt
−− addition on natural numbers
def add : nat → nat → nat
| a zero := a
| a (succ b) := succ (add a b)
−− concatenation on lists
def concat : list α → α → list α
| [] a := [a]
| (b::l) a := b :: concat l a

A non-recursive inductive type that contains only one constructor is called
a structure. The constructor of a structure simply packs the list of arguments
into a single piece of data. The structure command simultaneously introduces
the inductive type, its constructor and recursors, as well as the projections
to each of their fields. If we do not name the constructor, mk is used as a
default. The syntax for declaring a structure is as follows:

structure <name> <parameters> <parent−structures> : Type :=
<constructor> :: <fields>

Two useful inductive types we will use extensively in our formalization
are prod and subtype. prod is the type of ordered pairs, representing the
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cartesian product of two objects. subtype is intended to model the subset
relation in set theory. Intuitively, subtype (λ x : A, P) denotes the collection
of elements of A that have property P.

−− abbreviated as A × B
structure prod (α : Type u) (β : Type v) :=
(fst : α) (snd : β)

/− Remark: subtype must take a Sort instead of Type because of the axiom
strong_indefinite_description. −/

structure subtype {α : Sort u} (p : α → Prop) :=
(val : α) (property : p val)

Given an object α : A × B, the function prod.fst : A × B → A returns the data
contained in the first field of α. The application of prod.fst can be abbrevi-
ated as α.fst. We can also access the data by referring to the positions of
the field. For example, α.1 works in the same way α.fst does. Similarly, if α
is an object of a subtype, then both α.val and α.1 returns the data contained
in the val field of α. We will use the latter one when the names of the fields
are clear from the context.

Structures can inherit fields from other structures. In other words, we
can extend existing structures by adding new fields:

class has_mul (α : Type u) := (mul : α → α → α)
−− semigroups
structure [class] semigroup (α : Type u) extends has_mul α :=
(mul_assoc : ∀ a b c : α, a * b * c = a * (b * c))
−− commutative semigroups
structure [class] comm_semigroup (α : Type u) extends semigroup α :=
(mul_comm : ∀ a b : α, a * b = b * a)

We see that these structures are marked by [class]. This annotation tells
Lean that an object of this type can be figured out implicitly by type class
inference. If Lean sees an argument marked by square brackets like [x : A]
in a definition and the definition of A is marked by [class], then it searches
the context for an instance of type A to instantiate x. On the other hand,
curly braces {x : A} tells lean to infer the argument from other sources such
as the expected result type. This process is also known as elaboration [1].
Both two kinds of implicit argument can be provided explicitly by using the
@ notation.

#check @list.nil

Under the Curry-Howard isomorphism, theorem proving in Lean is noth-
ing more than constructing objects of correct types. Logical connectives are
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defined as inductive types living in the lowest type universe Prop.

inductive true : Prop
| intro : true

inductive false : Prop

inductive and (a b : Prop) : Prop
| intro : a → b → and

inductive or (a b : Prop) : Prop
| inl {} : a → or
| inr {} : b → or

A proof of a proposition p : Prop is simply an object H : p. To show that
p holds, what we need to do is to concretely construct H from the objects in
the context. For example,

theorem my_thm {p q : Prop} (Hp : p) (Hq : q) : p ∧ q := and.intro Hp Hq

If a type has only one constructor, then we can construct objects of that
type using the 〈〉 notation, without referring to the name of its constructor.
The above theorem can be proved in an alternative way as follows.

theorem my_thm {p q : Prop} (Hp : p) (Hq : q) : p ∧ q := 〈Hp, Hq〉

Note that from a type-theoretic perspective, a mathematical assumption
p : Prop is no more special than any other mathematical object, say a natural
number n : N, in the sense that all these objects are data, except that Prop
is impredicative and proof-irrelevant. A function can take a natural number
n, as well as a mathematical assumption H : p. The only two properties that
make Prop distinct are (1) impredicativity: if B is of type Prop, then so is
Πx : A, B; and (2) proof-irrelevance: if we have H1 : p and H2 : p where p is of
type Prop, then H1 and H2 are definitionally equal. We will make heavy use
of the fact that functions can be applied to mathematical statements in our
formalization. For example, see the construction of mbs-helper in section
3.2.2.

In order to make proofs reusable, the formalization will be structured us-
ing Lean’s section mechanism. Theorems proved in a section are relativized
to a set of hypothetical constants which specify the local context including
variables and assumptions. As long as the hypothetical constants get instan-
tiated properly, valid instances of the theorems proved in a section can be
obtained.

section
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parameters {p q : Prop}
parameters (Hp : p) (Hq : q)

theorem my_thm : p ∧ q := 〈Hp, Hq〉
end

#check @my_thm −− my_thm : ∀ {p q : Prop}, p → q → p ∧ q

2.2 WQO Theory

In this section, we introduce basic concepts needed to understand the proof
of Kruskal’s theorem. Both mathematical representations of these concepts
and their encoding in Lean are given.

2.2.1 Well-quasi-orderings

Definition 2.1. Let A be a set and ≤ a binary relation over A. A is quasi-
ordered by ≤ (≤A is a quasi order) if ≤ is reflexive and transitive.

In our type-theoretic encoding, a quasi-ordered set is treated as a type A
: Type equipped with an object le : A → A → Prop such that reflexivity refl :
∀ a : A, le a a and transitivity trans : ∀ {a b c : A}, le a b → le b c → le a c
are satisfied. We can use the structure command in Lean to define quasi-
ordered sets as follows:

structure [class] quasiorder (A : Type) extends has_le A :=
(refl : ∀ a, le a a)
(trans : ∀ {a b c}, le a b → le b c → le a c)

Definition 2.2. Given a quasi-order ≤ over a set A, an infinite sequence
(ai)i∈N of elements of A is called good if there exist natural numbers i, j
such that i < j and ai ≤ aj. A sequence is called bad if it is not good. A
quasi-ordered set A is well quasi-ordered, abbreviated as wqo, if every infinite
sequence of elements of A is good.

According to the definition, every well quasi-ordered set is a quasi-ordered
set with an additional property saying that every infinite sequence over A is
good. Just like quasi-ordered sets extend sets with a single binary relation,
well quasi-ordered sets extend quasi-orderd sets. In Lean, this is represented
by the following:

structure [class] wqo (A : Type) extends quasiorder A :=
(is_good : ∀ f : N → A, ∃ i j, i < j ∧ le (f i) (f j))
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Definition 2.3. Let (A,≤A) and (B,≤B) be two quasi-ordered sets. The
product order ≤prod over A × B is defined such that (a1, b1) ≤prod (a2, b2) if
and only if a1 ≤A a2 and b1 ≤B b2.

def prod_order {A B : Type} (o1 : A → A → Prop) (o2 : B → B → Prop)
(s : A × B) (t : A × B) := o1 (s.1) (t.1) ∧ o2 (s.2) (t.2)

It can be easily seen that if both (A,≤A) and (B,≤B) are quasi-ordered
sets, then A×B is quasi-ordered by ≤prod.

instance qo_prod {A B: Type} [o1 : quasiorder A] [o2 : quasiorder B] :
quasiorder (A × B) :=

let op : A × B → A × B → Prop := prod_order o1.le o2.le in
have refl : ∀ p : A × B, op p p, by intro; apply and.intro; repeat {apply

quasiorder.refl},
have trans : ∀ a b c, op a b → op b c → op a c, from λ x y z h1 h2,
〈(quasiorder.trans h1.left h2.left), quasiorder.trans h1.right h2.right〉,
show _, from quasiorder.mk (has_le.mk op) refl trans

Definition 2.4. Let Q be a set and ≤Q a binary relation over Q. Let
A and B be subsets of Q. A mapping f : A → B is non-descending if
a ≤Q f(a) for every a ∈ A. The class of finite subsets of Q is denoted as Q∗.
Given A,B ∈ Q∗, A ≤∗ B if and only if there is an injective non-descending
mapping from A to B.

def finite_subsets (Q : Type) : Type := {x : set Q // finite x}

def inj_from_to {A B: Type} (f : A → B) (S1 : set A) (S2 : set B) :=
maps_to f S1 S2 ∧ inj_on f S1

def non_descending {Q : Type} (A B : finite_subsets Q) (o : Q → Q → Prop)
(f : Q → Q) := ∀ a : Q, a ∈ A.1 → o a (f a) ∧ f a ∈ B.1

def star {Q : Type} (o : Q → Q → Prop) (A B : finite_subsets Q) :=
∃ f, inj_from_to f A.1 B.1 ∧ non_descending A B o f

The auxiliary definition inj_from_to says that f is (1) a function from S1

to S2, and (2) f is an injection on S1. This definition is needed because
injectivity defined on types is not expressive enough to talk about domains
as sets.
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2.2.2 Finite Trees

Definition 2.5. (Finite trees) Finite trees are sequences defined recursively
as follows.

(T1) If t1, ..., tn are finite trees, then T = 〈t1, ..., tn〉 is a finite tree. A pair
(ti, i) where 1 ≤ i ≤ n is called a branch of T . We denote the set of branches
of T by B(T ).

(T2) Only objects obtained by (T1) are finite trees.

In our formalization, we use functions of type fin n → finite-tree to
represent sequences of finite trees. Think of fin n as the finite set of natural
numbers less than n. This encoding allows us to extract concrete information
of the branches of a finite tree by applying the function to some i : fin n.

structure fin (n : nat) := (val : nat) (is_lt : val < n)

inductive finite_tree : Type
| cons : Π {n : N}, (fin n → finite_tree) → finite_tree
−− to handle trees of complicated forms, e.g., (f n) where f : N → finite_tree
theorem finite_tree_destruct {t : finite_tree} :
∃ n (ss : fin n → finite_tree), t = cons ss :=
finite_tree.cases_on t (λ n a, 〈n,a,rfl〉)

def branches_aux {n : N} (ts : fin n → finite_tree) : set (finite_tree×N)
:= {x : finite_tree × N | ∃ a : fin n, ts a = x.1 ∧ val a = x.2}
−− returns the set of branches of a finite tree
def branches : finite_tree → set (finite_tree × N)
| (@cons n ts) := branches_aux ts

Note that no information can be extracted from f : fin 0→ finite-tree
because the type fin 0 is empty. Therefore, cons f behaves just like the
empty sequence. Think of cons f as a single node. It is provable that the
set of branches of a node is empty.

def node {ts : fin 0 → finite_tree} : finite_tree := @cons 0 ts
−− if we have an object of type fin 0, then we can prove everything
def {u} fin_zero_absurd {α : Sort u} (i : fin 0) : α :=
absurd i.2 (not_lt_zero i.1)
−− the set of branches of a node is empty
theorem empty_branches (ts : fin 0 → finite_tree) : branches_aux ts = ∅
:= have ∀ x, x /∈ branches_aux ts,

from λ x h, let 〈a,ha〉 := h in fin_zero_absurd a,
show _, from set.eq_empty_of_forall_not_mem this
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Definition 2.6. (Homeomorphic embedding) A finite tree T is homeomor-
phically embeddable to a finite tree T ′, written T �emb T

′, if and only if
(E1) there exists a branch R of T ′ such that T �emb π1(R), or
(E2) there exists an injection H such that for every branch R of T , H(R)

is a branch of T ′ and π1(R) �emb π1 ◦H(R).

def embeds : finite_tree → finite_tree → Prop
| (@cons _ ts) (@cons _ us) := (∃ j, embeds (cons ts) (us j)) ∨

(∃ f, injective f ∧ ∀ i, embeds (ts i) (us (f i)))

Theorem 2.1. �emb is reflexive and transitive.

Proof. Reflexivity: trivial by induction on finite trees. The identity function
id is a witness of (E2).

Transitivity: Let T1, T2, T3 be finite trees. Suppose T1 �emb T2 and
T2 �emb T3. We prove by induction on T3. If T2 �emb T3 via (E1), then
T1 �emb T3 via (E1) by inductive hypothesis. Suppose that T2 �emb T3 via
(E2). Let H be the witness. If T1 �emb T2 via (E1), then T1 �emb π1(R)
for some R ∈ B(T2). Hence T1 �emb π1 ◦ H(R) by inductive hypothesis. If
T1 �emb T2 via (E2), then let H ′ be the witness. Then H ◦H ′ witnesses that
T1 �emb T3 via (E2) by inductive hypothesis.

theorem node_embeds {ts : fin 0 → finite_tree} (t : finite_tree) :
@cons 0 ts 4 t :=
begin
induction t with n a ih,
dsimp [embeds],
pose f : fin 0 → fin n := λ i : fin 0, fin_zero_absurd i,
apply or.inr,
existsi f,
split,
intros i j hij, exact fin_zero_absurd i,

intro i, exact fin_zero_absurd i
end
−− reflexivity of homeomorphic embedding
theorem embeds_refl (t : finite_tree) : t 4 t :=
begin
induction t with n a ih,
cases n, apply node_embeds,
apply cons_embeds_cons_right,
apply injective_id, exact ih
end
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−− transitivity of homeomorphic embedding
theorem embeds_trans_aux : ∀ {u s t}, t 4 u → s 4 t → s 4 u :=
begin
intro u,
induction u with ul us ihu,
intros s t, cases s with sl ss,
cases t with tl ts,

intro H1, dsimp [embeds] at H1, cases H1 with H11 H12,
cases H11 with i H11, intro H2,
apply cons_embeds_cons_left (ihu _ H11 H2),
cases H12 with f Hf, cases Hf with injf Hf,

intro H2, dsimp [embeds] at H2, cases H2 with H21 H22,
cases H21 with j H21,
apply cons_embeds_cons_left (ihu _ (Hf j) H21),
cases H22 with g Hg, cases Hg with injg Hg,
apply cons_embeds_cons_right,
apply injective_comp injf injg,
intro i, apply ihu _ (Hf (g i)) (Hg i)

end

theorem embeds_trans {s t u : finite_tree} (H1 : s 4 t) (H2 : t 4 u) : s 4 u
:= embeds_trans_aux H2 H1

Theorem 2.2. Let T be a finite tree. If R ∈ B(T ), then π1(R) �emb T .

Proof. Trivial by (E1) and reflexivity. However, to prove it formally in Lean,
we have to construct the proof term concretely by induction on the structure
of finite trees.

theorem embeds_of_branches {t : finite_tree × N} {T : finite_tree} : t ∈ (
branches T) → t.1 4 T :=

begin
cases T with n ts,
intro H, cases H with a h,
cases t.1 with t1a t1s,
dsimp [embeds], apply or.inl,
fapply exists.intro,
exact a, rw h.left, apply embeds_refl

end

Definition 2.7. Let T be a finite tree. The size of T is defined to be

size(T ) = 1 + ΣR∈B(T )size(π1(R))
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Note that size is well-defined because each π1(R) is structurally smaller
than T . It is essentially a definition by recursion on finite trees.

def upto (n : N) : list (fin n) :=
dmap (λ i, i < n) fin.mk (list.upto n)
−− summation over lists
def Suml (f : A → N) : list A → N
| [] := 0
| (a :: ls) := f a + Suml ls
−− cardinality of finite trees
def size : finite_tree → N
| (@cons n ts) := Suml (λ i, size (ts i)) (fin.upto n) + 1

The function fin.upto takes an n : N and returns a list of elements of the
type fin n. The function Suml takes a function f and a list l, applies f to
each of the elements in l, and returns the summation.

Theorem 2.3. If R is a branch of T , then size(π1(R)) < size(T ).

Proof. Trivial by definition.

Theorem 2.3 is mathematically trivial since we know the properties of
summation. However, to prove the theorem formally, we have to show that
the summation Suml over lists does have the desired properties.

theorem le_of_mem_Suml {f : A → N} {a : A} {l : list A} :
a ∈ l → f a ≤ Suml f l :=
begin
induction l with b ls ih, intro h, exact absurd h (not_mem_nil _),
dsimp [Suml], intro h, assert h’ : a = b ∨ a ∈ ls, exact h,
cases h’ with l r, rw l, apply le_add_right,
rw add_comm,apply le_add_of_le, exact ih r

end
−− an auxiliary theorem for the convenience of the proof
theorem lt_of_size_branches_aux {n : N} (ts : fin n → finite_tree)
(k : fin n) : size (ts k) < Suml (λ i, size (ts i)) (upto n) + 1 :=
begin
assert kin : k ∈ upto n, exact mem_upto n k,
assert h : size (ts k) ≤ Suml (λ i, size (ts i)) (upto n),
apply le_of_mem_Suml kin,
apply lt_succ_of_le, assumption

end
−− the size of a finite tree is great than the size of any of its branches
theorem lt_of_size_of_branches {t : finite_tree × N} {T : finite_tree} :
t ∈ branches T → size t.1 < size T :=
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begin
cases T with n ts,
intro h,
assert h’ : ∃ i, ts i = t.1, cases h with b hb,

{exact exists.intro b hb.left},
cases h’ with c hc, rw −hc, apply lt_of_size_branches_aux

end
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3 The Formalization
In this section, we describe the formalization of Kruskal’s tree theorem. For
proofs that require substantial reasoning, we will give both mathematical
presentations and their formalizations in Lean. If the formal details are
not interesting or tedious, we will omit their formalizations partially. For
trivial statements, we will only give their formalizations. For mathematical
presentations, implicit arguments, i.e., hypothetical constants in sections,
will not be specified explicitly if they are clear from the context.

3.1 Dickson’s Lemma

Dickson’s lemma claims that a Cartesian product with the product order
≤prod defined in the last section preserves well-quasi-orderedness, i.e., if A
and B are well quasi-ordered, then A × B is well quasi-ordered. In the
last chapter, we have seen that the reflexivity and transitivity of ≤prod over
A× B follows immediately from the definition of ≤prod. Therefore, to prove
Dickson’s lemma it suffices to show the following.

Theorem 3.1. If A and B are wqo, then for every sequence f of elements
of A×B, f is good.

Definition 3.1. Let (A,≤) be an ordered set. We call a member f(m) of a
sequence f over A terminal if there is no n > m such that f(m) ≤ f(n).

def terminal {A : Type} (o : A → A → Prop) (f : N → A) (m : N) :=
∀ n, m < n → ¬ o (f m) (f n)

Lemma 3.1. If A is wqo, then for every sequence f over A, there are only
finitely many terminal members f(i) of f .

Proof. Suppose there are infinitely many terminal members. For every n ∈ N,
we can find a r > n such that f(r) is terminal. Now we define a new sequence
g as follows:

g(0) = f(r0) for some r0 such that r0 ≥ 0 and f(r0) is terminal.
g(n + 1) = f(rn+1) for some rn+1 such that rn+1 > rn and f(rn+1) is

terminal.
Intuitively, g simply enumerates the terminal elements of f . We claim

that g is bad. This is because if there exist i, j such that i < j and g(i) ≤ g(j),
then f(ri) ≤ f(rj) by definition. By our construction, ri < rj. This implies
that f(ri) is not terminal. Contradiction.
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Let us take a close look at what we need in this proof. We first want to
construct the sequence (rn)n∈N. Note that r is essentially a function from
N to N. Then we have to show that r as a function is strictly increasing so
that we can conclude that ri < rj if i < j. Then we simply define g(n) to be
f(rn) and claim that for every n, f(n) is terminal. Finally, we show that g is
good by a proof by contradiction. Each of these steps is reflected faithfully
in our formalization as follows.

To prove the theorem, we assume that A is wqo, and let f be a sequence
over A.

section
parameter {A : Type}
parameter [o : wqo A]
parameter f : N → A
...
end

Our assumption H is that there are infinitely many terminal members of f .

section
parameter {A : Type}
parameter [o : wqo A]
parameter f : N → A

section
parameter H : ∀ N, ∃ r, N < r ∧ terminal o.le f r
...
end

...
end

Now we define the sequence (rn)n∈N. We call it terminal_index in the for-
malization. The return type of (rn)n∈N is a subtype of N such that each of its
elements x satisfies the property that x > n and f(x) is a terminal member
of f . The advantage of using subtypes is that we can refer to the proper-
ties of a return value x easily by accessing the second field of x, without
reconstructing the proof outside the definition.

def terminal_index (n : N) : {x : N // n < x ∧ terminal o.le f x} :=
nat.rec_on n (let i := some (H 0) in 〈i, (some_spec (H 0))〉)
(λ a rec_call,
let i’ := rec_call.1, i := some (H i’) in
have p : i’ < i ∧ terminal o.le f i, from some_spec (H i’),
have a < i’, from (rec_call.2).left,
have succ a < i, from lt_of_le_of_lt this p.left,
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〈i, 〈this, p.right〉〉)

We show formally that the function terminal_index is strictly increasing.

lemma increasing_ti {n m : N} :
n < m → (terminal_index n).1 < (terminal_index m).1 :=
nat.rec_on m (λ H, absurd H dec_trivial)
(λ a ih lt,
have disj : n < a ∨ n = a, from lt_or_eq_of_lt_succ lt,
have (terminal_index a).1 < (terminal_index (succ a)).1, from
(some_spec (H (terminal_index a).1)).left,

or.elim disj (λ Hl, lt_trans (ih Hl) this) (λ Hr, by rw Hr; exact this))

Now we can define g and prove that there is a contradiction.

private def g (n : N) := f (terminal_index n).1
−− every (g n) is terminal
lemma terminal_g (n : N) : terminal o.le g n :=
have ∀ n’, (terminal_index n).1 < n’ → ¬ (f (terminal_index n).1) ≤ (f n’),
from ((terminal_index n).2).right,

λ n’ h, this (terminal_index n’).1 (increasing_ti h)
−− g is a bad sequence
lemma bad_g : ¬ is_good g o.le :=
have H1 : ∀ i j, i < j → ¬ (g i) ≤ (g j), from λ i j h, (terminal_g i) j h,
suppose ∃ i j, i < j ∧ (g i) ≤ (g j),
let 〈i,j,h〉 := this in
have ¬ (g i) ≤ (g j), from H1 i j h.left,
show _, from this h.right
−− there is a contradiction because g is good
lemma local_contradiction : false := bad_g (wqo.is_good g)
−− we conclude that there are only finitely many terminal members of f
theorem finite_terminal : ∃ N, ∀ r, N < r → ¬ terminal o.le f r :=
have ¬ ∀ N, ∃ r, N < r ∧ @terminal A o.le f r, by apply local_contradiction,
have ∃ N, ¬ ∃ r, N < r ∧ @terminal A o.le f r, by super,
let 〈n,h〉 := this in
have ∀ r, n < r → ¬ @terminal A o.le f r, by super,
〈n,this〉

Using lemma 3.1, we prove Dickson’s lemma as follows.

Proof. Let f be a sequence of elements of A×B. Then fst ◦f is a sequence of
elements of A. Since A is wqo, there are only finitely many terminal members
of fst ◦ f . Then there exists an s such that for every n > s, fst ◦ f(s) is not
terminal. We define a sequence h as follows.

h(0) = a such that a > s
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h(n+ 1) = b such that b > h(n) and fst ◦ f ◦ h(n) ≤ fst ◦ f(b)
Intuitively, h enumerates the indices of a subsequence of non-terminal

members of fst ◦ f such that fst ◦ f ◦ h(i) ≤ fst ◦ f ◦ h(i + 1) for every
i ∈ N. This is possible because we know that every fst ◦ f(n) is not terminal
if n > s, which means that for every n > s, we can find a b > n such
that fst ◦ f(n) ≤ fst ◦ f(b). Note that snd ◦ f ◦ h is an infinite sequence
of elememts of B. Since B is wqo, there exist i, j such that i < j and
snd ◦ f ◦ h(i) ≤ snd ◦ f ◦ h(j). Moreover, by our construction it is clear that
h(i) < h(j) if i < j. Therefore we claim that f is good as witnessed by h(i)
and h(j).

Each of the steps is reflected faithfully by the following encoding in Lean.
We first instantiate lemma 3.1 with fst ◦f where f is the sequence over A×B
in our assumption. Then we find a sentinel such that every element of fst ◦f
beyond it is not terminal.

section
parameters {A B : Type}
parameters [o1 : wqo A] [o2 : wqo B]

section
parameter f : N → A × B
−− apply the theorem we proved in the last section
theorem finite_terminal_on_A :
∃ N, ∀ r, N < r → ¬ @terminal A o1.le (fst ◦ f) r :=
finite_terminal (fst ◦ f)

def sentinel := some finite_terminal_on_A
...
end

...
end

The function h is then defined recursively as follows. Note that the return
type of the function h-helper is also a subtype which says that each of its
elements x is greater than the sentinel and fst ◦ f(x) is not terminal.

def h_helper (n : N) :
{x : N // sentinel < x ∧ ¬ @terminal A o1.le (fst ◦ f) x} :=
nat.rec_on n
(have ∃ m, sentinel < m, by apply existence_of_nat_gt,
let i := some this in
have ge : sentinel < i, from some_spec this,
have ¬ @terminal A o1.le (fst ◦ f) i,

18



from (some_spec finite_terminal_on_A) i ge,
have sentinel < i ∧ ¬ terminal o1.le (fst ◦ f) i, from 〈ge,this〉,
〈i, this〉)
(λ a rec_call, let i’ := rec_call.1 in
have lt’ : sentinel < i’, from (rec_call.2).left,
have ¬ terminal o1.le (fst ◦ f) i’, from (rec_call.2).right,
have ∃ n, i’ < n ∧ ((fst ◦ f) i’) ≤ ((fst ◦ f) n),

from lt_of_non_terminal this,
let i := some this in have i’ < i, from (some_spec this).left,
have lt : sentinel < i, from lt.trans lt’ this,
have ∀ r, sentinel < r → ¬ terminal o1.le (fst ◦ f) r,

from some_spec finite_terminal_on_A,
have ¬ terminal o1.le (fst ◦ f) i, from this i lt,
have sentinel < i ∧ ¬ terminal o1.le (fst ◦ f) i, from 〈lt,this〉,
〈i,this〉)

private def h (n : N) : N := (h_helper n).1

We check that h does have the properties we want, as decribed in the above
proof.

private lemma foo (a : N) :
h a < h (succ a) ∧ (fst ◦ f) (h a) ≤ (fst ◦ f) (h (succ a)) :=
have ¬ terminal o1.le (fst ◦ f) (h a), from ((h_helper a).2).right,
have ∃ n, (h a) < n ∧ ((fst ◦ f) (h a)) ≤ ((fst ◦ f) n), from

lt_of_non_terminal this,
show _, from some_spec this
−− h has the property we want
theorem property_of_h {i j : N} : i < j → (fst ◦ f) (h i) ≤ (fst ◦ f) (h j)
:= nat.rec_on j (λ H, absurd H dec_trivial)
(λ a IH lt,
have H1 : (fst ◦ f) (h a) ≤ (fst ◦ f) (h (succ a)), from (foo a).right,
have disj : i < a ∨ i = a, from lt_or_eq_of_lt_succ lt,
or.elim disj (λ Hl, quasiorder.trans (IH Hl) H1) (λ Hr, by simp [Hr, H1]))
−− h is strictly increasing
theorem increasing_h {i j : N} : i < j → h i < h j :=
nat.rec_on j
(λ H, absurd H dec_trivial)
(λ a ih lt,
have H1 : (h a) < h (succ a), from (foo a).left,
have disj : i < a ∨ i = a, from lt_or_eq_of_lt_succ lt,
or.elim disj (λ Hl, lt_trans (ih Hl) H1) (λ Hr, by simp [Hr, H1])
−− f is good
theorem good_f : is_good f (prod_order o1.le o2.le) :=
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have ∃ i j : N, i < j ∧ (snd ◦ f ◦ h) i ≤ (snd ◦ f ◦ h) j,
from wqo.is_good (snd ◦ f ◦ h),

let 〈i,j,H〉 := this in
have (fst ◦ f) (h i) ≤ (fst ◦ f) (h j), from property_of_h H.left,
have Hr : (fst ◦ f) (h i) ≤ (fst ◦ f) (h j) ∧ (snd ◦ f) (h i) ≤ (snd ◦ f) (h j),

from 〈this, H.right〉,
have h i < h j, from increasing_h H.left,
〈(h i), (h j), 〈this,Hr〉〉
−− every f over A × B is good
theorem good_pairs (f : N → A × B) : is_good f (prod_order o1.le o2.le) :=
good_f f

Finally, we gather the facts that the product order is reflexive, transitive
and every sequence over ordered pairs is good to prove Dickson’s lemma.

def wqo_prod {A B : Type} [o1 : wqo A] [o2 : wqo B] : wqo (A × B) :=
let op : A × B → A × B → Prop := prod_order o1.le o2.le in
have refl : ∀ p : A × B, op p p,
from λ p, 〈quasiorder.refl p.1,quasiorder.refl p.2〉,

have trans : ∀ a b c, op a b → op b c → op a c, from λ a b c h1 h2,
〈quasiorder.trans h1.left h2.left, quasiorder.trans h1.right h2.right〉,

show _, from wqo.mk 〈〈op〉,refl,trans〉 good_pairs
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3.2 Higman’s Lemma

Higman’s lemma claims that the ∗ operator, as defined in definition 2.4, pre-
serves well-quasi-orderedness. We first check that the ∗ operator preserves
quasi-orderedness. Let Q be a set quasi-ordered by ≤Q and A ∈ Q∗. For
reflexivity, it suffices to show that there is an injective non-descending map-
ping f : A → A. The identity function id satisfies the requirement trivially.
Let A,B,C ∈ Q∗. Suppose A ≤∗ B and B ≤∗ C. For transitivity, it suffices
to show that there is an injective non-descending mapping f : A→ C. Since
A ≤∗ B and B ≤∗ C, there exist an injective non-descending f : A → B
and an injective non-descending g : B → C. We immediately see that the
mapping g ◦ f : A → C is injective because function composition preserves
injectivity. It is also non-descending because ≤Q is transitive. Therefore, the
≤∗ over Q∗ is a quasi-order.

section
parameter {Q : Type}
parameter [o : wqo Q]
−− the relation on finite_subsets Q induced by o
def sub := @star Q o.le
−− reflexivity of sub
theorem sub_refl (q : finite_subsets Q) : sub q q :=
have ∀ a : Q, a ∈ q.1 → a ≤ (id a) ∧ id a ∈ q.1,
begin intros, split, simp, apply quasiorder.refl, simp, assumption end,
〈id, 〈inj_from_to_id q.1,this〉〉
−− transitivity of sub
theorem sub_trans (a b c : finite_subsets Q) (H1 : sub a b) (H2 : sub b c) :
sub a c := let 〈f,hf〉 := H1, 〈g,hg〉 := H2 in
have inj : inj_from_to g ◦ f a.1 c.1,
from inj_from_to_compose hg.left hf.left,

have ∀ q : Q, q ∈ a.1 → q ≤ g ◦ f q ∧ g ◦ f q ∈ c.1, from λ q Hq,
have le1 : q ≤ f q, from (hf.right q Hq).left,
have fqin : f q ∈ b.1, from (hf.right q Hq).right,
have le2 : (f q) ≤ g ◦ f q, from (hg.right (f q) fqin).left,
have qle : q ≤ g ◦ f q, from quasiorder.trans le1 le2,
have g ◦ f q ∈ c.1, from (hg.right (f q) fqin).right,
〈qle, this〉,
〈g ◦ f,〈inj,this〉〉
end
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3.2.1 A Proof Sketch

Now to prove Higman’s lemma, we only have to show that there is no bad
sequence of elements of Q∗.

Theorem 3.2. If Q is wqo, then there is no bad sequence of elements of Q∗.

We start by describing a proof sketch of the theorem. The strategy is a
proof by contradiction.

Proof. (sketch) Suppose there exists a bad sequence of elements of Q∗. We
can construct a new bad sequence (An)n∈N such that for all n, A0, ..., An is
an initial segment of some bad sequence and for all i ≤ n, |Ai| is as small
as possible. (An)n∈N is called a minimal bad sequence. Since each Ai is not
empty, there exists ai ∈ Ai for every i ∈ N. Let Bn = An − {an}. We define
the set

ClassB = {x | ∃i, x = B(i)} = ran(B)

It can be easily seen that the ≤ over ClassB is reflexive and transitive
because it is the same≤ overQ∗ by our construction. We now show that there
is no bad sequence of elements of ClassB by a proof of contradiction. Suppose
f is a bad sequence of elements of ClassB . Then there exists a bad sequence
(fh(i))i∈N such that h(0) ≤ h(i) for all i. The existence of this sequence
will allow us to construct another bad sequence comb that contradicts the
“minimality” of our minimal bad sequence. This contradiction shows that
ClassB is wqo.

Since ClassB is wqo, we conclude that Q × ClassB is wqo by Dickson’s
lemma. This means that the sequence (an, Bn)n∈N is good. By our construc-
tion of (Bn)n∈N, this will imply that there exist i, j such that i < j and
Ai ≤ Aj which in turn gives us a contradiction because (An)n∈N is bad.

The main effort in formalizing Higman’s lemma is the construction of
the minimal bad sequence. The whole argument should be formalized in a
way that it is independent of the context so that it can be applied to other
objects with different types and different notions of cardinality. Moreover,
the formalization of the argument should be broken into pieces so that each
step of the argument become reusable and maintainable. In the next section,
we decribe such a formalization in Lean.

Before diving into the details of the minimal bad sequence argument,
we first present some mechanisms needed for the later formalization. A few
reflections on the above proof sketch tells us that we need a measure for
calculating the size of our elements and a function f that picks out a least
element from a set given that measure. In the case of Higman’s lemma,
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the measure is the cardinality on (finite) sets and the f is the function that
returns the least natural number of a set of natural numbers according to the
least number principle. We give a formalization of the least number principle
in Lean as follows.

lemma wf_aux {A : set N} (n : N) : n ∈ A → ∃ a, a ∈ A ∧ ∀ b, b ∈ A → a ≤ b
:= @complete_induction_on n (λ x, x ∈ A → ∃ a, a ∈ A ∧ ∀ b, b ∈ A → a ≤ b)
(λ k ih h, by_cases
(suppose ∃ m, m ∈ A ∧ m <k, let 〈m, Hmem, Hlt〉 := this in ih m Hlt Hmem)
(λ Hn, have ∀ m, m ∈ A → ¬ m < k, by super,
〈k, h, (λ m h, le_of_not_gt (this m h))〉))
−− the least number principle
theorem wf_of_le (S : set N) (H : S 6= ∅) : ∃ a, a ∈ S ∧ ∀ b, b ∈ S → a ≤ b :=
let 〈n, Hn〉 := exists_mem_of_ne_empty H in wf_aux n Hn

The least number principle wf_of_le induces a function least which takes
a set S of natural numbers and an assumption that S 6= ∅, and returns
the least element in S. Note that least is not constructive, as marked by
noncomputable, because it requires the choice axiom to “compute” the return
value.

noncomputable def least (S : set N) (H : S 6= ∅) : N :=
some (wf_of_le S H)

Having formalized the least number principle, we prove the following theorem
saying that given a nonempty set of functions S : set (N → N) and a number
n : N, there exists a function f ∈ S such that f(n) ≤ g(n) for all g ∈ S.
theorem least_seq_at_n {S : set (N → N)} (H : S 6= ∅) (n : N) :
∃ f, f ∈ S ∧ ∀ g, g ∈ S → f n ≤ g n :=
let T : set N := {x | ∃ f, f ∈ S ∧ f n = x} in
have ∃ f, f ∈ S, from exists_mem_of_ne_empty H,
let 〈f,h〉 := this in
have nemp : T 6= ∅, from set.ne_empty_of_mem 〈f,〈h,rfl〉〉,
let a := least T nemp in
have a ∈ T, from least_is_mem T nemp,
let 〈f’,h〉 := this in
have ∀ g, g ∈ S → f’ n ≤ g n, from λ g Hg,
have a ≤ g n, from minimality _ _ 〈g,〈Hg,rfl〉〉,
by super,
〈f’,〈h.left, this〉〉

To construct the minimal bad sequence so that any of its initial segments
is an initial segment of some bad sequence, we want to be able to talk about
extensions of sequences. Given two sequences f : N→ A and g : N→ A, we
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say that f extends g at n if for every m ≤ n, g and f agree on the values at
m.

def extends_at {A : Type} (n : N) (f : N → A) (g : N → A) : Prop :=
∀ m ≤ n, g m = f m

We can show that extends_at is reflexive and transitive:

theorem extends_at.refl {A : Type} {n : N} {f : N → A} : extends_at n f f
:= λ m H, rfl
−− note that this holds when n ≤ m
theorem extends_at.trans {A : Type} {n m : N} {f g h: N → A}
(H1 : extends_at n f g) (H2 : extends_at m g h) (H3 : n ≤ m) :
extends_at n f h :=
λ k H, have g k = f k, from H1 k H,
have k ≤ m, from nat.le_trans H H3,
have h k = g k, from H2 k this,
by super

3.2.2 The Minimal Bad Sequence Argument

In this section, a general construction of the minimal bad sequence argument
is given. Lean’s section mechanism allows us to define general hypothesis
and prove facts under these assumptions. To apply the results proved in
these sections, one only needs to provide concrete instances of the hypothet-
ical constants declared at the beginning of the section. This mechanism
gives us a convenient way of managing large and complicated proofs so that
they become maintainable and the intermediate steps along the way become
reusable.

We first define a function min-func which, given an n ∈ N and an as-
sumption that there exists a function f : N→ A satisfying certain property
P , returns a function f : N→ A such that f satisfies P and |f(n)| ≤ |g(n)|
for every g satisfying P , under some measure | · | : A → N which computes
the size of an object a : A.

section
parameter {A : Type}
parameter {P : (N → A) → Prop}
parameter g : A → N
parameter H : ∃ f : N → A, P f
−− the collection of all the functions that satisfy P
def colle : set (N → A) := {f | P f}
−− we know that the collection is not empty by H
lemma nonempty_colle : colle 6= ∅ :=
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let 〈a,h〉 := H in set.ne_empty_of_mem h
−− convert each function in colle to a function from N to N
private def S : set (N → N) := image (λ f, g ◦ f) colle
−− similarly, S is not empty
lemma nonempty_S : S 6= ∅ := image_nonempty nonempty_colle
−− apply the previous theorem
theorem exists_min_func (n : N) : ∃ f, f ∈ S ∧ ∀ g, g ∈ S → f n ≤ g n :=
least_seq_at_n nonempty_S n
−− return the witness of the above theorem in its original form
def min_func (n : N) : N → A :=
let fc := some (exists_min_func n) in
have fc ∈ S ∧ ∀ g, g ∈ S → fc n ≤ g n,
from (some_spec (exists_min_func n)),

some this.left
end

The following two theorems are trivial and we give their formalizations in-
stead of mathematical proofs.

Theorem 3.3. For every n, P holds for min-func(n).

theorem min_func_property (n : N) : P (min_func n) :=
let fc := some (exists_min_func n) in
let 〈l,r〉 := some_spec (exists_min_func n) in
have min_func n ∈ colle ∧ (λ f, g ◦ f) (min_func n) = fc, from some_spec l ,
this.left

Theorem 3.4. Let f : N → A be a function satisfying P . For every n,
|min-func(n)(n)| ≤ |f(n)|.

theorem min_func_minimality (f : N → A) (Hp : P f) (n : N) :
g (min_func n n) ≤ g (f n) :=
let fc := some (exists_min_func n) in
let 〈l,r〉 := some_spec (exists_min_func n) in
have min_func n ∈ colle ∧ (λ f, g ◦ f) (min_func n) = fc, from some_spec l,
have (λ f, g ◦ f) (min_func n) = fc, from this.right,
have eq2 : (λ f, g ◦ f) (min_func n) n = fc n, by rw this,
have Hr : ∀ g, g ∈ S → fc n ≤ g n,
from (some_spec (exists_min_func n)).right,

have le : fc n ≤ (λ f, g ◦ f) f n, from Hr _ 〈f,〈Hp,rfl〉〉,
have (λ f, g ◦ f) (min_func n) n ≤ (λ f, g ◦ f) f n, by rw −eq2 at le;exact le,
by super
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Note that if we go outside the section, the function min-func will take
three explicit arguments. It needs a measure | · | : A → N, an assumption
H : ∃f, P f where P is an implicit predicate of type (N → A) → Prop and
a natural number n : N to compute the return value.

Next we construct a sequence mbs-helper of functions satisfying some
property P such that the (n + 1)th function in the sequence extends its
predecessor at n and is the minimal one at n + 1 in the sense of Theorem
3.4. As above, we assume the existence of a measure | · | : A → N and an
assumption H : ∃f, P f . Then mbs-helper is defined recursively as follows.

mbs-helper(0) = min-func(| · |, H, 0)

Suppose that we have defined mbs-helper(n). We first claim there exists a
function f that extendsmbs-helper at n, and satisfies P . This is clear because
mbs-helper(n) is a witness by the reflexivity of extends_at and Theorem 3.3.
Therefore, we have

H ′ : ∃f, extends-at n (mbs-helper(n)) f ∧ P f

Now we apply min-func to H ′ to get mbs-helper(n+ 1).

mbs-helper(n+ 1) = min-func(| · |, H ′, n+ 1)

noncomputable def mbs_helper (n : N) : {f : N → A // P f} :=
nat.rec_on n
(let f0 := min_func g H 0 in
have P f0, from min_func_property g H 0,
〈f0,this〉)
(λ pred rec_call,
let f’ := rec_call.1 in
have H1 : extends_at pred f’ f’, from extends_at.refl,
have H2 : P f’, from rec_call.2
have HP : ∃ f, extends_at pred f’ f ∧ P f, from 〈f’,〈H1,H2〉〉,
let fn := min_func g HP (succ pred) in
have extends_at pred f’ fn ∧ P fn, from min_func_property g HP (succ pred),
have P fn, from this.right,
〈fn,this〉)

By our construction, mbs-helper(n + 1) always extends mbs-helper(n) at n
for every n. Then it is not hard to see by a straightforward induction that
for every n,m, if m ≤ n then mbs-helper(n) extends mbs-helper(m) at m.

Theorem 3.5. For every n, P holds for mbs-helper(n).
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Proof. By our construction, this follows immediately from Theorem 3.3.

section
parameter n : N
−− some abbreviations and facts about mbs_helper
def helper_elt := (mbs_helper n).1
def helper_succ := (mbs_helper (succ n)).1
lemma helper_ext_refl : extends_at n helper_elt helper_elt :=
extends_at.refl
lemma helper_has_property : P helper_elt := (mbs_helper n).2
lemma helper_inner_hyp : ∃ g, extends_at n helper_elt g ∧ P g :=
〈helper_elt, 〈helper_ext_refl, helper_has_property〉〉
theorem succ_ext_of_mbs_helper : extends_at n helper_elt helper_succ
:= (min_func_property g helper_inner_hyp (succ n)).left
end

Now we move on to the definition of the minimal bad sequence. In this
section, our hypothetical constants are a measure | · | : A → N, an implicit
ordering o : A→ A→ Prop and an assumption H : ∃f,¬ is-good f o saying
that there is a bad sequence.

section
−− construction and properties of mbs.
parameter {A : Type}
parameter {o : A → A → Prop}
parameter g : A → N
parameter H : ∃ f : N → A, ¬ is_good f o
...
end

We first obtain a sequence seq-of -bad-seq of bad sequences by instanti-
ating the general H in the definition of mbs-helper with the concrete one in
this section. Note that the predicate P in the general H is now instantiated
implicitly to be (λx,¬ is-good x o).

seq-of -bad-seq(n) = mbs-helper(| · |, H, n)

noncomputable def seq_of_bad_seq (n : N) : {f : N → A // ¬ is_good f o} :=
mbs_helper g H n

Theorem 3.6. For every n, seq-of -bad-seq(n) is bad.

Proof. Since P is instantiated with (λx,¬ is-good x o), by our construction
this follows trivially from Theorem 3.5
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Intuitively, seq-of -bad-seq is of the following form:

seq-of -bad-seq(0) = s00 s01 s02 s03 · · ·

seq-of -bad-seq(1) = s00 s11 s12 s13 · · ·
seq-of -bad-seq(2) = s00 s11 s22 s23 · · ·
seq-of -bad-seq(3) = s00 s11 s22 s33 · · ·

. . .

The minimal bad sequence, minimal-bad-seq, is then defined to be the diag-
onal sequence of seq-of -bad-seq.

minimal-bad-seq(n) = seq-of -bad-seq(n)(n)

def minimal_bad_seq (n : N) : A := (seq_of_bad_seq n).1 n

Theorem 3.7. minimal-bad-seq is bad.

Proof. Suppose that it is good. Then there exist i, j such that i < j and

minimal-bad-seq(i) ≤ minimal-bad-seq(j)

Since i < j, seq-of -bad-seq(j) and seq-of -bad-seq(i) agree on the value at
i because seq-of -bad-seq(j) extends seq-of -bad-seq(i) at i. Then we know
that

seq-of -bad-seq(i)(i) = seq-of -bad-seq(j)(i) ≤ seq-of -bad-seq(j)(j)

But this just says that seq-of -bad-seq(j) is good, contradicting Theorem
3.6.

theorem badness_of_mbs : ¬ is_good minimal_bad_seq o :=
suppose is_good minimal_bad_seq o,
let 〈i,j,h〉 := this in
have i ≤ j, from le_of_lt_or_eq (or.inl h.left),
have ext : extends_at i (seq_of_bad_seq i).1 (seq_of_bad_seq j).1,
from ext_of_seq_of_bad_seq j i this,

have i ≤ i, from nat.le_refl i,
have (seq_of_bad_seq j).1 i = (minimal_bad_seq i), from ext i this,
have o ((seq_of_bad_seq j).1 i) (minimal_bad_seq j),
by rw this; exact h.right,

have i < j ∧ o ((seq_of_bad_seq j).1 i) ((seq_of_bad_seq j).1 j),
from 〈h.left, this〉,

have good : is_good (seq_of_bad_seq j).1 o, from 〈i,〈j, this〉〉,
have ¬ is_good (seq_of_bad_seq j).1 o, from (seq_of_bad_seq j).2,
this good
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Theorem 3.8. If f is a bad sequence, then |minimal-bad-seq(0)| ≤ |f(0)|.

Proof. Follows immediately from Theorem 3.4.

theorem minimality_of_mbs_0 (f : N → A) (Hf : ¬ is_good f o) :
g (minimal_bad_seq 0) ≤ g (f 0) := min_func_minimality g H f Hf 0

Theorem 3.9. If f is a bad sequence and f extends minimal-bad-seq at n,
then |minimal-bad-seq(n+ 1)| ≤ |f(n+ 1)|.

Proof. Since f extends minimal-bad-seq at n, it extends seq-of -bad-seq(n)
at n by definition. Define ϕ(f) := f is bad and f extends seq-of -bad-seq(n)
at n. Instantiating the P in Theorem 3.4 with the ϕ here gives us the
result. Note that the conclusion might not be true if f does not extend
minimal-bad-seq at n.

theorem minimality_of_mbs (n : N) (f : N → A)
(H1 : extends_at n minimal_bad_seq f ∧ ¬ is_good f o) :
g (minimal_bad_seq (succ n)) ≤ g (f (succ n)) :=
have Hl : ∀ m, m ≤ n → f m = (bad_seq_elt n) m, from λ m Hle,
have f m = minimal_bad_seq m, from H1.left m Hle,
have bad_seq_elt n m = minimal_bad_seq m,
from congruence_of_seq_of_bad_seq Hle,

by super,
have ins_P : extends_at n (bad_seq_elt n) f ∧ ¬ is_good f o,
from 〈Hl, H1.right〉,

have g (min_func g (bad_seq_inner_hyp n) (succ n) (succ n)) ≤ g (f (succ n))
,

from min_func_minimality g (bad_seq_inner_hyp n) f ins_P (succ n),
by super

Now we have completed the construction of the minimal bad sequence.
Recall that we only need two explicit hypothetical constants to get the mini-
mal bad sequence. One is the measure |·| : A→ N, the other is an assumption
that there exists a bad sequence

H : ∃f,¬is-good f o

Implicitly, we are also assuming that there is an underlying type A and an
ordering o : A → A → Prop over it. But we do not have to specify them
explicitly because Lean can infer their existence from the context.

To follow the proof sketch given in the last section, we have to construct
the bad sequence comb in order to get a contradiction. We begin by devel-
oping a general mechanism for concatenating bad sequences so that a new
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bad sequence can be obtained. In this section, we assume that there exist
two bad sequences f and g, and there exists a function h : N→ N such that
the following two conditions are satisfied:

Hh : ∀i, h(0) ≤ h(i)

H : ∀i j, f(i) ≤ (g(j − h(0)))→ f(i) ≤ (f(h(j − h(0))))

The second condition seems to be a bit subtle at first glance. The intuition
behind H will be made clear as we move on. But for now let us see how a
new bad sequence can be constructed with these hypothetical constants. We
define

comb(n) =

{
f(n) if h(0) 6= 0 ∧ n < h(0),
g(n− h(0)) otherwise;

section
/−− Given two bad sequences f and g, and a function h which modifies indices,

construct a new sequence by concatenating f and g at (h 0). −−/
parameter {Q :Type}
parameter {o : Q → Q → Prop}
parameters f g : N → Q
parameter h : N → N
parameter Hh : ∀ i, h 0 ≤ h i
parameter Hf : ¬ is_good f o
parameter Hg : ¬ is_good g o
parameter H : ∀ i j, o (f i) (g (j − h 0)) → o (f i) (f (h (j − h 0)))

def comb (n : N) : Q := if h 0 6= 0 ∧ n ≤ pred (h 0) then f n else g (n − (h 0))
...
end

Theorem 3.10. comb is bad.

Proof. Suppose that it is good. Then there exist i, j such that i < j and

comb(i) ≤ comb(j)

We prove by cases on the values of h(0).
Suppose h(0) = 0, then comb = g by definition. Since g is bad, comb is

bad.
Suppose i < h(0) and j < h(0). Then we have

f(i) = comb(i) ≤ comb(j) = f(j)

by definition. But this just says that f is good, contradicting our assumption.
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Suppose i < h(0) and j ≥ h(0). Then we have

f(i) = comb(i) ≤ comb(j) = g(j − h(0))

By H, we have
f(i) ≤ f(h(j − h(0)))

By Hh, we have
h(0) ≤ h(j − h(0))

Since i < h(0), we have
i < h(j − h(0))

But this just says that f is good as witnessed by i and h(j − h(0)). Contra-
diction.

Suppose i ≥ h(0) and j < h(0). Then j < i, which contradicts our
assumption that i < j.

Suppose i ≥ h(0) and j ≥ h(0). Then we have

g(i− h(0)) = comb(i) ≤ comb(j) = g(j − h(0))

Since i < j, we have
i− h(0) < j − h(0)

But this just says that g is good as witnessed by i − h(0) and j − h(0).
Contradiction.

All the cases lead to a contradiction. Therefore, comb must be bad.

theorem bad_comb : ¬ is_good comb o :=
λ good, let 〈i,j,hw〉 := good in
by_cases (...) (...)

Intuitively, comb is obtained by concatenating f and g at index h(0), i.e,
comb(h(0)) = g(0). In the later proofs, the sequence g here will be a sub-
sequence (indexed by the function h) of some “larger” sequence G. Think
of g(n) = G ◦ h(n). The hypothesis H simply says that if f(i) ≤ g(k)
then f(i) ≤ f(h(k)). In the later proofs we will construct the sequence G
so that G(m) ≤ f(m) for every m. This implies that H holds because if
f(i) ≤ g(j − h(0)), then

f(i) ≤ g(j − h(0)) = G ◦ h(j − h(0)) ≤ f(h(j − h(0)))

Having the minimal bad sequence and the combined sequence comb in
hand, we can obtain a contradiction by adding a new assumption Hbp :
|g(0)| < |minimal-bad-seq(h(0))|. Note that we still need the assumption
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Hex : ∃f,¬ is-good f o to construct the minimal bad sequence. We also
instantiate the f in the above section with minimal-bad-seq. Now define

comb-seq-with-mbs = comb(minimal-bad-seq, g, h)

section
parameter {Q :Type}
parameter {o : Q → Q → Prop}
parameters {g : N → Q}
parameter h : N → N
parameter m : Q → N −− the measure
parameter Hh : ∀ i, h 0 ≤ h i
parameter Hex : ∃ f, ¬ is_good f o
parameter Hg : ¬ is_good g o
parameter H : ∀ i j, o (minimal_bad_seq m Hex i) (g (j − h 0)) →
o (minimal_bad_seq m Hex i) ((minimal_bad_seq m Hex) (h (j − h 0)))

parameter Hbp : m (g 0) < m (minimal_bad_seq m Hex (h 0))

def comb_seq_with_mbs := comb (minimal_bad_seq m Hex) g h
...
end

Theorem 3.11. comb-seq-with-mbs(h(0)) = g(0)

Proof. Since h(0) 6< h(0), we have comb-seq-with-mbs(h(0)) = g(0) by defi-
nition of comb.

lemma comb_seq_h0 : comb_seq_with_mbs (h 0) = g 0 := ...

Theorem 3.12. comb-seq-with-mbs is bad.

Proof. Immediately follows from Theorem 3.10.

theorem bad_comb_seq_with_mbs : ¬ is_good comb_seq_with_mbs o :=
bad_comb (minimal_bad_seq m Hex) g h Hh (badness_of_mbs m Hex) Hg H

Theorem 3.13. If h(0) 6= 0, comb-seq-with-mbs extends minimal-bad-seq
at h(0)− 1.

Proof. It suffices to show that for all n ≤ h(0)− 1, comb-seq-with-mbs(n) =
minimal-bad-seq(n). Since n ≤ h(0) − 1, we have n < h(0). By definition,
comb-seq-with-mbs(n) = minimal-bad-seq(n).
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theorem comb_seq_extends_mbs_at_pred_bp (H : h 0 6= 0):
extends_at (pred (h 0)) (minimal_bad_seq m Hex) comb_seq_with_mbs :=
λ m Hm, if_pos 〈H, Hm〉

Theorem 3.14. In the context of this section, there is a contradiction.

Proof. We prove by cases on the values of h(0). Suppose h(0) = 0. By
Theorem 3.11 we have

comb-seq-with-mbs(0) = comb-seq-with-mbs(h(0)) = g(0)

By Hbp, we have

|comb-seq-with-mbs(0)| < |minimal-bad-seq(0)|

Since comb-seq-with-mbs is a bad sequence, this contradicts Theorem 3.8.
Suppose h(0) 6= 0. By Theorem 3.9 and Theorem 3.13, we have

|minimal-bad-seq(h(0))| ≤ |comb-seq-with-mbs(h(0))|

By Theorem 3.11, we have

|minimal-bad-seq(h(0))| ≤ |g(0)|

But this contradicts Hbp.

theorem local_contra_of_comb_seq_with_mbs : false :=
by_cases
(assume eq0 : h 0 = 0, ...)
(assume Hneg, ...)

Let us take a close look at what we have done. We have proved that given the
assumption that there exists a bad sequence, if there exists a bad sequence
g and a function h such that Hh,H and Hbp are satisfied, then there is a
contradiction. In other words, we have developed a general mechanism for
obtaining a contradiction. In the later proofs, we will get contradictions
simply by constructing concrete instances of g and h and showing that they
satisfy Hh,H and Hbp, which are trivial facts by our construction. This
keeps the formalization concise because there is no need to write down the
proof again if the strategy is similar.

We further develop a mechanism for obtaining the h satisfying Hh, as-
suming that there exist a sequence G and a function f such that G ◦ f is a
bad sequence.
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Theorem 3.15. There exists a function h such that G ◦ h is a bad sequence
and ∀i, h(0) ≤ h(i).

Proof. By the least number principle, we can take a least element s ∈ ran(f).
Since ∃m, s = f(m), we take such an m. It is clear that f(m) ≤ f(n) for
every n. Define h(n) = f(m+ n). G ◦ h is bad because otherwise there exist
i, j such that

G ◦ f(m+ i) ≤ G ◦ f(m+ j)

which contradicts the assumption that G ◦ f is bad.

theorem exists_sub_bad :
∃ h : N → N, ¬ is_good (f ◦ h) o ∧ ∀ i : N, h 0 ≤ h i :=
have badness : ¬ is_good (f ◦ h) o, from
suppose is_good (f ◦ h) o,
let 〈i,j,hij〉 := this in
have index_of_min + i < index_of_min + j,

from add_lt_add_left (and.left hij) _,
have is_good (f ◦ g) o,

from 〈index_of_min + i,〈index_of_min + j,〈this,hij.right〉〉〉,
H this,

have ∀ i : N, h 0 ≤ h i, from λ i, minimality_of_min (index_of_min + i),
〈h,〈badness,this〉〉

3.2.3 Higman’s Lemma Continued

We now decribe the formalization of Higman’s lemma following the sketch
given in the beginning of section 3. In this section, we fix the measure | · | to
be the cardinality on finite sets and assume that there exists a bad sequence
of elements of Q∗.
section
parameter {Q : Type}
parameter [o : wqo Q]
parameter H : ∃ f : N → finite_subsets Q, ¬ is_good f sub
def card_of_finite_subsets {A : Type} (s : finite_subsets A) := card s.1
...
end

Since there exists a bad sequence, we can define the minimal bad sequence
of elements of Q∗.

Higman-mbs = minimal-bad-seq

It follows immediately from Theorem 3.7 that Higman-mbs is bad.
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Theorem 3.16. For every n, Higman-mbs(n) 6= ∅.

Proof. Suppose Higman-mbs(i) = ∅ for some i. We prove that

Higman-mbs(i) ≤ Higman-mbs(i+ 1)

by showing that there exists an injective and non-descending function from
Higman-mbs(i) to Higman-mbs(i + 1). It is clear that the identity func-
tion id is injective. id is non-descending because there is no element in
Higman-mbs(i). Since i < i + 1, i and i + 1 witness that Higman-mbs is
good, but this contradicts the fact that Higman-mbs is bad.

theorem nonempty_mem_of_mbs (n : N) : (Higman’s_mbs n).1 6= ∅ :=
suppose (Higman’s_mbs n).1 = ∅,
have is_good Higman’s_mbs sub, from ...,
badness_of_Higman’s_mbs this

Since each element of Higman-mbs is not empty, we can select an an from
each Higman-mbs(n). Define B(n) = Higman-mbs(n)− {an}.
def B_pairs (n : N) : Q × finite_subsets Q :=
have ∃ a : Q, a ∈ (Higman’s_mbs n).1,
from exists_mem_of_ne_empty (nonempty_mem_of_mbs n),

let q := some this in
let b := (Higman’s_mbs n).1 \ insert q ∅ in
have finite (Higman’s_mbs n).1, from (Higman’s_mbs n).2,
have finite b, from @finite_diff _ _ _ this,
(q, 〈b,this〉)

private def B (n : N) : finite_subsets Q := (B_pairs n).2

Theorem 3.17. For every i, j, if Higman-mbs(i) ≤ B(j) then

Higman-mbs(i) ≤ Higman-mbs(j)

Proof. Since Higman-mbs(i) ≤ B(j), there exists an injective and non-
descending f from Higman-mbs(i) to B(j). Then id ◦ f is an injective and
non-descending function from Higman-mbs(i) to Higman-mbs(j). This is
because id is an injective and non-descending function fromB(j) toHigman-mbs(j).

theorem trans_of_B (i j : N) (H1 : sub (Higman’s_mbs i) (B j)) :
sub (Higman’s_mbs i) (Higman’s_mbs j) := ...
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Theorem 3.18. If there exists a function h such that B ◦ h is bad and
∀i, h(0) ≤ h(i), then there is a contradiction.

Proof. By Theorem 3.14, it suffices to construct a bad g and a function h
such that Hh,H and Hbp are satisfied. Let h be the one in our assumption
and g = B ◦ h. Hh holds by assumption. B ◦ h is bad by assumption. To
show that H holds, let i, j be arbitrary and assume that Higman-mbs(i) ≤
B ◦ h(j − h(0)). By Theorem 3.17, we have

Higman-mbs(i) ≤ Higman-mbs(h(j − h(0)))

To show that Hbp holds, it suffices to show that

|B ◦ h(0)| < |Higman-mbs(h(0))|

This is trivial because |B(n)| < |Higman-mbs(n)| for every n.

section
parameter Hg : ∃ g : N → N, ¬ is_good (B ◦ g) sub ∧ ∀ i : N, g 0 ≤ g i
private def g := some Hg

theorem Higman’s_Hg : ¬ is_good (B ◦ g) sub :=
let 〈l,r〉 := some_spec Hg in l

theorem Higman’s_Hex : ∃ f, ¬ is_good f sub := 〈(B ◦ g),Higman’s_Hg〉

theorem Higman’s_Hh : ∀ i : N, g 0 ≤ g i := (some_spec Hg).right

theorem Higman’s_H : ∀ i j, sub (Higman’s_mbs i) ((B ◦ g) (j − g 0)) →
sub (Higman’s_mbs i) (Higman’s_mbs (g (j − g 0))) :=
λ i j, λ H1, trans_of_B i (g (j − g 0)) H1
−− auxiliary theorem for proving Higman’s_Hbp
theorem card_B_lt_mbs (n : N) : card (B n).val < card (Higman’s_mbs n).val
:= ...
theorem Higman’s_Hbp : card_of_finite_subsets (B (g 0)) <
card_of_finite_subsets (Higman’s_mbs (g 0)) :=

card_B_lt_mbs (g 0)
−− a one−line proof
theorem Higman’s_local_contradition : false :=
local_contra_of_comb_seq_with_mbs ...

Now we define ClassB = ran(B). It is defined to be a Type because we want
to show that ClassB is wqo. Recall that a wqo is a structure.
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def ClassB : Type := {x : finite_subsets Q // ∃ i, B i = x}

Theorem 3.19. There is no bad sequence of elements of ClassB .

Proof. Suppose there exists a bad sequence. This sequence must be a se-
quence of the form B ◦ f for some f . By Theorem 3.15, there exists a
function h such that B ◦ h is bad and ∀i, h(0) ≤ h(i). By Theorem 3.18, we
have a contradiction.

def oB (b1 : ClassB) (b2 : ClassB) : Prop := sub b1.val b2.val

section
parameter HfB : ∃ f, ¬ is_good f oB
...
theorem exists_sub_bad_B_seq :
∃ h : N → N, ¬ is_good (B ◦ h) sub ∧ ∀ i : N, h 0 ≤ h i :=
exists_sub_bad ...
end

−−every sequence over ClassB is good
theorem oB_is_good : ∀ f, is_good f oB :=
by_contradiction
(suppose ¬ ∀ f, is_good f oB,
have ∃ f, ¬ is_good f oB, from classical.exists_not_of_not_forall this,
have ∃ h : N → N, ¬ is_good (B ◦ h) sub ∧ ∀ i : N, h 0 ≤ h i,
from exists_sub_bad_B_seq this,

Higman’s_local_contradition this)

Since the ≤ over ClassB is the same one as the ≤ over Q∗, we have reflexivity
and transitivity for free. Therefore, ClassB is wqo. By Dickson’s lemma,
Q× ClassB is wqo.

Theorem 3.20. Higman-mbs is good.

Proof. Consider the sequence (an, Bn)n∈N. Since Q × ClassB is wqo, there
exist i, j such that i < j and ai ≤ aj and Bi ≤ Bj. Then there exists an
injective and non-descending f1 from B(i) to B(j). We define

f2(a) =

{
aj if a = ai,
f1(a) otherwise;

to be a function from Higman-mbs(i) to Higman-mbs(j). It can be seen
easily that f2 is non-descending because ai ≤ aj and f1 is non-descending.
Now we show that f2 is an injection:
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Let x1, x2 ∈ Higman-mbs(i). Suppose x1 6= x2.
Suppose x1 = ai. Then f2(x2) = f1(x2) ∈ B(j). Since f2(x1) = aj /∈

B(j), f(x1) 6= f(x2).
Suppose x1 6= ai. Suppose x2 = ai. then the situation is similar to the

above case. Suppose x2 6= ai. Then f2(x1) = f1(x1) and f2(x2) = f1(x2).
Since f1 is injective, f2(x1) 6= f2(x2).

theorem exists_witness :
∃ i j, i < j ∧ sub (Higman’s_mbs i) (Higman’s_mbs j) := ...

Theorem 3.20 contradicts the fact that Higman-mbs is bad, which has been
proved at the very beginning of this section. Therefore, we conclude that
the only assumption made in this section, that there exists a bad sequence
of elements of Q∗, is false.

theorem Higman’s_contradiction : false :=
badness_of_Higman’s_mbs exists_witness

Therefore, we conclude that Q∗ is wqo.

variable {Q : Type}
variable [wqo Q]
−− every sequence over Q* is good
theorem good_star : ∀ f : N → finite_subsets Q , is_good f sub :=
by_contradiction
(suppose ¬ ∀ f, is_good f sub,
have ∃ f, ¬ is_good f sub, from classical.exists_not_of_not_forall this,
Higman’s_contradiction this)
−− Q* is good
def wqo_finite_subsets : wqo (finite_subsets Q) :=
〈〈〈sub〉,sub_refl,sub_trans〉,good_star〉
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3.3 Kruskal’s Tree Theorem

3.3.1 A Proof Sketch

We first give a sketch of the proof. The strategy is similar to the one we used
to prove Higman’s lemma.

Theorem 3.21. There is no bad sequence of finite trees.

Proof. (sketch) Suppose that there exists a bad sequence. Then we can
construct a minimal bad sequence mbs-finite-tree of finite trees. Now we
define a new sequence C such that C(n) is the finite set of branches of
mbs-finite-tree(n). We further define a set

mbs-tree =
⋃
i∈N

C(i)

We claim that mbs-tree is wqo by applying Theorem 3.14. By Higman’s
lemma, mbs-tree∗ is wqo. Since C is an infinite sequence of elements of
mbs-tree∗, C is good. Then there exist i, j such that i < j and C(i) ≤ C(j),
which subsequently implies that there is an injective and non-descending
function f from C(i) to C(j). But this just says thatmbs-finite-tree(i) �emb

mbs-finite-tree(j). Therefore, mbs-finite-tree is good as witnessed by f .
Contradiction.

section
parameter H : ∃ f, ¬ is_good f embeds
−− the minimal bad sequence of finite trees
def mbs_of_finite_tree := minimal_bad_seq size H
−− the sequence C
def seq_branches_of_mbs_tree (n : N) : set (finite_tree × N) :=
branches (mbs_of_finite_tree n)
−− the type mbs_tree
def mbs_tree : Type :=
{t : finite_tree × N // ∃ i, t ∈ seq_branches_of_mbs_tree i}
−− the embedding on mbs_tree
def embeds’ (t : mbs_tree) (s : mbs_tree) : Prop := t.val.1 4 s.val.1
...
end

The subtlety of the formalization of this proof lies in the last step. From
the perspective of daily mathematics, it is straightforward that f witnesses
the goodness of mbs-finite-tree. However, by our construction, mbs-tree
is a type. Therefore, f is a function of type mbs-tree → mbs-tree. To
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show formally that mbs-finite-tree(i) ≤ mbs-finite-tree(j), f should be a
function of type fin n→ fin m for some n and m. We will describe how to
obtain the target function from f .

3.3.2 Applying the Mininal Bad Sequence Argument

In the following proofs, we fix the measure | · | to to be the size defined
on finite trees. Now suppose that there is a bad sequence R of elements
of mbs-tree. To get a contradiction, it suffices to construct a bad g and a
function h such that Hh,H and Hbp are satisfied. By the construction of
mbs-tree, each element of R must come from some C(i). We define

family-index(n) = an i such that R(n) ∈ C(i)

least-family-index = the least l ∈ ran(family-index)

least-index = a l such that family-index(l) = least-family-index

Kruskal-h(n) = family-index(least-index+ n)

Kruskal-g(n) = R(least-index+ n)

section
parameter H’ : ∃ f, ¬ is_good f embeds’
def R : N → mbs_tree := some H’
def family_index (n : N) : N := some ((R n).2)
−− to apply the function least, we have to show that the set is not empty
def index_set_of_mbs_tree : set N := image family_index univ
lemma index_ne_empty : index_set_of_mbs_tree 6= ∅ := ...

def least_family_index := least index_set_of_mbs_tree index_ne_empty

lemma exists_least : ∃ i, family_index i = least_family_index :=
have least_family_index ∈ index_set_of_mbs_tree,
from least_is_mem index_set_of_mbs_tree index_ne_empty,

let 〈i,h〉 := this in 〈i, h.right〉

def least_index : N := some exists_least

def Kruskal’s_g (n : N) : mbs_tree := R (least_index + n)

def Kruskal’s_h (n : N) : N := family_index (least_index + n)
...
end
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Theorem 3.22. Kruskal-g is bad.

Proof. If it is not bad, then R is not bad. Contradiction.

theorem bad_Kruskal’s_g : ¬ is_good Kruskal’s_g embeds’ :=
suppose is_good Kruskal’s_g embeds’,
let 〈i,j,hij〉 := this in
have least_index + i < least_index + j,
from add_lt_add_left hij.left _,

have is_good R embeds’,
from 〈least_index + i, 〈least_index + j,〈this, hij.right〉〉〉,

(some_spec H’) this

Theorem 3.23. For every i, Kruskal-h(0) ≤ Kruskal-h(i).

Proof. By definition, we have

Kruskal-h(0) = least-family-index ≤ Kruskal-h(i)

theorem Kruskal’s_Hh (n : N) : Kruskal’s_h 0 ≤ Kruskal’s_h n :=
have Kruskal’s_h 0 = family_index least_index, from rfl,
have family_index least_index = least_family_index,
from some_spec exists_least,

have Kruskal’s_h 0 = least_family_index, by simph,
by rw this; apply minimality; apply family_index_in_index_of_mbs_tree

Theorem 3.24. |Kruskal-g(0)| < |mbs-finite-tree(Kruskal-h(0))|

Proof. It suffices to show that

|R(least-index)| < |mbs-finite-tree(least-family-index)|

Since R(least-index) ∈ C(least-family-index), R(least-index) is a branch
ofmbs-finite-tree(least-family-index). By Theorem 2.3, we have the result.

theorem size_elt_Kruskal’s_g_lt_mbs_finite_tree (n : N) :
size (Kruskal’s_g n).val.1 < size (mbs_of_finite_tree (Kruskal’s_h n)) :=
lt_of_size_of_branches (some_spec (Kruskal’s_g n).2)
−− a special case of the above theorem
theorem Kruskal’s_Hbp :
size (Kruskal’s_g 0).val.1 < size (mbs_of_finite_tree (Kruskal’s_h 0)) :=
size_elt_Kruskal’s_g_lt_mbs_finite_tree 0
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Theorem 3.25. For every i, j, if mbs-finite-tree(i) �emb Kruskal-g(j),
then mbs-finite-tree(i) �emb mbs-finite-tree(Kruskal-h(j)).

Proof. By definition,

R(least-index+ j) ∈ C(family-index(least-index+ j))

We have

Kruskal-g(j) = R(least-index+ j) ∈ C(Kruskal-h(j))

meaning that Kruskal-g(j) is a branch of mbs-finite-tree(Kruskal-h(j)).
By Theorem 2.2, Kruskal-g(j) �emb mbs-finite-tree(Kruskal-h(j)). By
transitivity of homeomorphic embedding, we have the result.

theorem trans_of_Kruskal’s_g {i j : N}
(H1 : mbs_of_finite_tree i 4 (Kruskal’s_g j).val.1) :
mbs_of_finite_tree i 4 mbs_of_finite_tree (Kruskal’s_h j) :=
have (Kruskal’s_g j).val ∈ branches (mbs_of_finite_tree (Kruskal’s_h j)),
from some_spec (Kruskal’s_g j).2,

have (Kruskal’s_g j).val.1 4 mbs_of_finite_tree (Kruskal’s_h j),
from embeds_of_branches this,

embeds_trans H1 this

Theorem 3.26. For every i, j, if

mbs-finite-tree(i) �emb Kruskal-g(j −Kruskal-h(0))

then

mbs-finite-tree(i) �emb mbs-finite-tree(Kruskal-h(j −Kruskal-h(0)))

Proof. Immediately follows from Theorem 3.25.

Theorem 3.27. There is a contradiction.

Proof. Consider the hypothetical constants in the context of Theorem 3.14.
Let g be Kruskal-g and h be Kruskal-h. Let Hh be Theorem 3.23, Hbp
be Theorem 3.24 and H be Theorem 3.26. By Theorem 3.14, we have the
contradiction.

−− a one−line proof
theorem Kruskal’s_local_contradiction : false :=
local_contra_of_comb_seq_with_mbs ...
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Therefore, we conclude thatmbs-tree is wqo. By Higman’s lemma,mbs-tree∗
is wqo. Then there is an injective and non-descending f which witnesses that
C(i) ≤ C(j) for some i < j. We should be able to conclude from the fact
that mbs-finite-tree is good, which gives us a contradiction to conclude that
finite-tree is wqo. The problem is that f is not of the correct type. We now
define a function recover which extracts a funtion of the correct type from
f . Our mathematical presentation ends here. Since the following is all about
type-theoretic encoding and transformation, we give explanations of the code
directly rather than present the transformation in mathematical language.

theorem embeds’_is_good : ∀ f, is_good f embeds’ :=
by_contradiction
(suppose ¬ ∀ f, is_good f embeds’,
have ∃ f, ¬ is_good f embeds’,
from classical.exists_not_of_not_forall this,

Kruskal’s_local_contradiction this)
−− mbs_tree is wqo
instance wqo_mbs_tree : wqo mbs_tree :=
wqo.mk (quasiorder.mk (has_le.mk embeds’) embeds’_refl embeds’_trans)

embeds’_is_good
−− mbs_tree* is wqo
def wqo_finite_subsets_of_mbs_tree : wqo (finite_subsets mbs_tree) :=
wqo_finite_subsets

3.3.3 Type-theoretic Transformations

What we have is the claim that mbs-tree∗ is wqo. Recall that mbs-tree is
the collection of all the branches appearing in the minimal bad sequence of
finite trees. On the other hand, C is a sequence of sets of finite trees, i.e.,
C is a function of type N → set (finite-tree × N). We cannot conclude
immediately that C is good because mbs-tree∗ and set (finite-tree×N) are
two different types. We first construct a “mirror” of C so that the claim can
be applied.

−− extract the ordering on mbs_tree* from the claim
def os : finite_subsets mbs_tree → finite_subsets mbs_tree → Prop :=
wqo_finite_subsets_of_mbs_tree.le
−− our claim ensures that this ordering is good
theorem good_finite_subsets_of_mbs_tree : ∀ f, is_good f os :=
wqo_finite_subsets_of_mbs_tree.is_good
−− branches of mbs_of_finite_tree form a set of mbs_tree
def elt_mirror (n : N) : set mbs_tree :=
{x : mbs_tree | x.1 ∈ seq_branches_of_mbs_tree n}
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−− the mirror should be faithful, i.e., everything in it is in C and vice versa
theorem mirror_refl_left (x : mbs_tree) (n : N) :
x ∈ elt_mirror n → x.1 ∈ seq_branches_of_mbs_tree n := λ Hx, Hx
theorem mirror_refl_right (x : mbs_tree) (n : N) :
x.1 ∈ seq_branches_of_mbs_tree n → x ∈ elt_mirror n := λ Hx, Hx
−− each element of C is finite
instance finite_seq_branches (n : N) :
finite (seq_branches_of_mbs_tree n) :=
finite_branches (mbs_of_finite_tree n)
−− each element of the mirror is finite
theorem finite_elt (n : N) : finite (elt_mirror n) :=
have mapsto : maps_to subtype.val (elt_mirror n)

(seq_branches_of_mbs_tree n), from λ x Hx, mirror_refl_left x n Hx,
have inj_on subtype.val (elt_mirror n), from λ x1 x2 H1 H2, subtype.eq,
finite_of_inj_on mapsto this
−− intuitively, the mirror is a reflection of C, but is of the type mbs_tree*
def mirror (n : N) : finite_subsets mbs_tree :=
〈elt_mirror n, finite_elt n〉

Next we check that the mirror is good. This is an immediate consequence
of the claim we have.

theorem good_mirror : ∃ i j, i < j ∧ os (mirror i) (mirror j) :=
good_finite_subsets_of_mbs_tree mirror

Now we have an injective and non-descending f : mbs-tree → mbs-tree
frommirror(i) tomirror(j). Recall that our goal is to show that there exists
a function g which witnessess that

mbs-finite-tree(i) �emb mbs-finite-tree(j)

For the convenience of description, we destruct the claim good-mirror to
make all the available facts manageable.

section
−− we want to show that there exist i, j such that (mbs_of_finite_tree i 4

mbs_of_finite_tree j)
−− fortunately, i and j from good_mirror suffice
parameters {i j : N}
−− since the mirror is good, we have an injective and non−descending f’
parameter f’ : mbs_tree → mbs_tree
parameter inj : inj_from_to f’ (elt_mirror i) (elt_mirror j)
parameter nond : ∀ a : mbs_tree, a.val ∈ seq_branches_of_mbs_tree i →

a.val.1 4 (f’ a).val.1 ∧ (f’ a).val ∈ seq_branches_of_mbs_tree j
...
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end

Now further assume that mbs-finite-tree(i) is of the form cons tsi where
tsi : fin ni→ finite-tree for some ni and mbs-finite-tree(j) is of the form
cons tsj where tsj : fin nj → finite-tree for some nj. We also know that
for every a, (tsi a, val a) ∈ B(mbs-finite-tree(i)) by definition.

−− suppose (mbs_of_finite_tree i) is of the form (cons tsi)
−− suppose (mbs_of_finite_tree j) is of the form (cons tsj)
parameters ni nj : N
parameters (tsi : fin ni → finite_tree) (tsj : fin nj → finite_tree)
−− suppose we know that they are destructed
parameter eqi : mbs_of_finite_tree i = cons tsi
parameter eqj : mbs_of_finite_tree j = cons tsj
−− recall that each branch of (mbs_of_finite_tree i) is in C(i)
parameter Htsi : ∀ a, (tsi a, val a) ∈ seq_branches_of_mbs_tree i

Next we define a function mbst-form, which takes a ti : fin ni and
returns a mbs-tree. The intuition is that mbst-form(ti) is the mbs-tree
form of tsi(ti).

−− every ti corresponds to some C(i)
lemma foo (ti : fin ni) : ∃ i, (tsi ti, val ti) ∈ seq_branches_of_mbs_tree i
:= 〈i,Htsi ti〉
−− given a ti, find the corresponding mbs_tree of (tsi ti).
def mbst_form (ti : fin ni) : mbs_tree := 〈(tsi ti, val ti),(foo ti)〉

We can show that for every a, mbst-form(a) is in mirror(a).

theorem mem_mbst_form (a : fin ni) : mbst_form a ∈ elt_mirror i := Htsi a

The function mbst-form is injective because it always keeps a copy of the
value of the input.

theorem eq_of_mbst_form {a1 a2 : fin ni}
(Heq : mbst_form a1 = mbst_form a2) : a1 = a2
:= by apply eq_of_veq;super

With these hypothetical constants and auxiliary functions, we decribe the
behavior of the function recover. Given a ti : fin ni, recover does the
following.
1. Find the mbst-form of ti, say x.
2. By nond, we know that f(x).val is in B(mbs-finite-tree(j)).
3. This means that some a : fin nj corresponds to ti.
4. By axiom of choice, take such an a : fin nj.
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def recover (ti : fin ni) : fin nj :=
have (f’ (mbst_form ti)).val ∈ seq_branches_of_mbs_tree j,
from (nond _ (begin dsimp [mbst_form], apply Htsi end)).right,

have mem : (f’ (mbst_form ti)).val ∈ branches (mbs_of_finite_tree j),
from this,

have branches (mbs_of_finite_tree j) = branches (cons tsj), by rw eqj,
have (f’ (mbst_form ti)).val ∈ branches_aux tsj,
by rw this at mem;exact mem,

some this

We check that recover does have the properties we want, i.e., it is a proper
witness of (E2).

−− the second clause of E2
theorem perm_recover (ti : fin ni) : tsi ti 4 tsj (recover ti) :=
have (f’ (mbst_form ti)).val ∈ seq_branches_of_mbs_tree j,
from (nond _ (begin dsimp [mbst_form], apply Htsi end)).right,

have mem : (f’ (mbst_form ti)).val ∈ branches (mbs_of_finite_tree j),
from this,

have branches (mbs_of_finite_tree j) = branches (cons tsj), by rw eqj,
have (f’ (mbst_form ti)).val ∈ branches_aux tsj,
by rw this at mem;exact mem,

have tsj (recover ti) = (f’ (mbst_form ti)).val.1,
from let 〈a,b〉 := some_spec this in a,

have tsi ti 4 (f’ (mbst_form ti)).val.1,
from (nond _ (begin dsimp [mbst_form], apply Htsi end)).left,

by simph
−− the first clause of E2
theorem inj_recover : injective recover :=
λ a1 a2 Heq,
have (f’ (mbst_form a1)).val ∈ seq_branches_of_mbs_tree j,
from (nond _ (begin dsimp [mbst_form], apply Htsi end)).right,

have mem : (f’ (mbst_form a1)).val ∈ branches (mbs_of_finite_tree j),
from this,

have branches (mbs_of_finite_tree j) = branches (cons tsj), by rw eqj,
have (f’ (mbst_form a1)).val ∈ branches_aux tsj,
by rw this at mem;exact mem,

have eeq1 : ∃ a : fin nj, tsj a = (f’ (mbst_form a1)).val.1 ∧
val a = (f’ (mbst_form a1)).val.2, from this,

have pr11 : tsj (recover a1) = (f’ (mbst_form a1)).val.1,
from let 〈a,b〉 := some_spec eeq1 in a,

have pr21 : val (recover a1) = (f’ (mbst_form a1)).val.2,
from let 〈a,b〉 := some_spec eeq1 in b,
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have (f’ (mbst_form a2)).val ∈ seq_branches_of_mbs_tree j,
from (nond _ (begin dsimp [mbst_form], apply Htsi end)).right,

have mem : (f’ (mbst_form a2)).val ∈ branches (mbs_of_finite_tree j),
from this,

have branches (mbs_of_finite_tree j) = branches (cons tsj), by rw eqj,
have (f’ (mbst_form a2)).val ∈ branches_aux tsj,
by rw this at mem;exact mem,

have eeq2 : ∃ a : fin nj, tsj a = (f’ (mbst_form a2)).val.1 ∧
val a = (f’ (mbst_form a2)).val.2, from this,

have pr12 : tsj (recover a2) = (f’ (mbst_form a2)).val.1,
from let 〈a,b〉 := some_spec eeq2 in a,

have pr22 : val (recover a2) = (f’ (mbst_form a2)).val.2,
from let 〈a,b〉 := some_spec eeq2 in b,

have eq1 : (f’ (mbst_form a1)).val.1 = (f’ (mbst_form a2)).val.1,
by rw [−pr12, −pr11, Heq],

have (f’ (mbst_form a1)).val.2 = (f’ (mbst_form a2)).val.2,
by rw [−pr22,−pr21, Heq],

have (f’ (mbst_form a1)).val = (f’ (mbst_form a2)).val,
from eq_of_prod eq1 this,

have f’eq : f’ (mbst_form a1) = f’ (mbst_form a2),
from subtype.eq this,

have ∀ x1 x2 : mbs_tree, x1 ∈ elt_mirror i →
x2 ∈ elt_mirror i → f’ x1 = f’ x2 → x1 = x2, from and.right inj,

have mbst_form a1 = mbst_form a2, from this (mbst_form a1) (mbst_form a2)
(mem_mbst_form a1) (mem_mbst_form a2) f’eq,

show _, from eq_of_mbst_form this

Using recover, we extract a function of the correct type that witnesses
that mbs-finite-tree is good. This fact gives us a contradiction to conclude
further that finite-tree is well quasi-ordered under homeomorphic embed-
ding.

theorem good_mbs_of_finite_tree :
∃ i j, i < j ∧ mbs_of_finite_tree i 4 mbs_of_finite_tree j :=
let 〈i,j,〈iltj,〈f’,〈inj,nond〉〉〉〉 := good_mirror in
let 〈ni,tsi,htsi〉 := @finite_tree_destruct (mbs_of_finite_tree i) in
let 〈nj,tsj,htsj〉 := @finite_tree_destruct (mbs_of_finite_tree j) in
have Htsi : ∀ a, (tsi a, val a) ∈ seq_branches_of_mbs_tree i,
from take a, mem_of_seq_branches tsi a htsi,

let f (a : fin ni) : fin nj := recover f’ nond ni _ tsi tsj htsj Htsi a in
have injf : injective f, from inj_recover _ inj _ _ _ _ _ _ _,
have ∀ z : fin ni, tsi z 4 tsj (f z), from λ z, perm_recover _ _ _ _ _ _ _ _ _,
have cons tsi 4 cons tsj, from or.inr 〈f,〈injf,this〉〉,
have mbs_of_finite_tree i 4 mbs_of_finite_tree j, by simph,
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〈i,j,〈iltj,this〉〉
−− a contradiction is obatained as we know taht the minimal bad sequence is bad
theorem Kruskal’s_contradiction : false :=
bad_mbs_finite_tree good_mbs_of_finite_tree
−− we conclude that our assumption must be false
theorem embeds_is_good : ∀ f, is_good f embeds :=
by_contradiction
(suppose ¬ ∀ f, is_good f embeds,
have ∃ f, ¬ is_good f embeds,
from classical.exists_not_of_not_forall this,
Kruskal’s_contradiction this)
−− the set of finite trees is wqo
def wqo_finite_tree : wqo finite_tree :=
〈〈〈embeds〉,embeds_refl,@embeds_trans〉,embeds_is_good〉
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4 Conclusion and Future Work
In this thesis, we have formalized the classical proof of Kruskal’s tree theo-
rem given by Nash-Williams. This is the first formalization of the theorem
in Lean. Along the way, a general abstraction of the minimal bad sequence
argument is developed so that the argument can be applied to any proof
as long as suitable instances of assumptions are constructed. Moreover, the
abstraction incorporates not only the construction of the minimal bad se-
quence, but also the proof of a subsequent contradiction. This shortens the
formalization significantly because we do not have to formalize two proofs
with similar proof strategies twice. For the tree theorem, we used a simpler
type-theoretic encoding of finite trees and homeomorphic embedding which,
we believe, encoded a clearer intuition of finite trees and embeddability.

Future work includes a formalization of the theorem using an extended
notion of finite trees so that finite trees can be built on a set of labels,
and a formalization of Higman’s lemma in terms of lists. Essential tools for
formalizing them have already been developed in the current formalization
so we expect that they can be completed in the near future3. With the
list version of Higman’s lemma and a suitable encoding of finite trees in
terms of lists, the type-theoretic transformation in section 3.3.3 might be
avoidable. Other optimizations include using more automation on linear
arithmetic (to be implemented in Lean) to simplify the proofs that require
substantial reasoning in arithmetic, and translating some definitions into
their equivalent froms so that some theorems have more elegant proofs. A
new objective is to formalize an alternative version of Kruskal’s tree theorem
found in J.J. Levy’s unpublished notes, as reported in [5], which says that
the set of finite trees is wqo under homeomorphic embedding if it is wqo
under certain given quasi-order. We hope that our work will finally gather
enough basic tools in the WQO theory so that future formal development of
the theory, as well as proving termination in Lean becomes possible.

3In fact, the list version of Higman’s lemma has been formalized right after finishing
this thesis. See the GitHub repository. https://github.com/minchaowu/Kruskal.lean3
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