
Formalization of Non-Abelian Topology
for Homotopy Type Theory

Master Thesis

Author: Jakob von Raumer

Supervisors at CMU: Prof. Jeremy Avigad
Prof. Steve Awodey

Supervisors at KIT: Prof. Dr. Gregor Snelting
Prof. Dr. Frank Herrlich

May 28, 2015

ii

Abstract | Kurzfassung

In this thesis, I present a translation of some essential algebraic structures
from non-abelian algebraic topology to a setting of homotopy type theory
and an application of these structures in the form of a fundamental double
groupoid of a 2-truncated type which is presented by a set and a 1-type. I
furthermore describe how I formalized parts of these definitions and the-
orems in the newly developed interactive theorem prover Lean.

In dieser Arbeit präsentiere ich eine Übersetzung einiger essentieller alge-
braischer Strukturen der nichtabelschen algebraischenTopologie inHomo-
topietypentheorie und eine Anwendung dieser Strukturen in Gestalt eines
fundamentalen Doppelgruppoids eines 2-abgestumpften Typs, welcher
durch eineMenge und einen 1-Typen dargestellt ist. Desweiteren beschrei-
be ich, wie ich Teile dieser Definitionen und Sätze in dem neu entwickelten
interaktiven Theorembeweiser Lean formalisiert habe.

iii

iv

I declare that I have developed and written the enclosed thesis by myself,
and have not used sources or means without declaration in the text.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenenQuellen undHilfsmittel verwendet
habe.

Jakob von Raumer

Acknowledgements

First and foremost, Iwould like to expressmydeep gratitude to Prof. Jeremy
Avigad, who has been an excellent advisor for this thesis and has been a
great help in every stage of this thesis project. He supported me in finding
a topic, and gave lots of helpful advice for the formalization as well as for
the write up.

Also, I want to thank Prof. Steve Awodey for giving me the idea to for-
malize structures from non-abelian topology and who gave me useful ad-
vice on what formalization goals to pursue.

Another great help was to be included in the reading group on non-
abelian algebraic topology whose other members Ulrik Buchholtz, Kuen-
BangHou (Favonia), EdMorehouse, CliveNewstead, Egbert Rijke, and Bas
Spitters I also want to thank for helping me to understand the matter.

Another big thank you goes out to Floris vanDoornwhowas alsowork-
ing with the Lean theorem prover during my stay in Pittsburgh and who
has always been a great help and support whenever I ran into problems
and needed fast advice.

As the developer of the Lean theorem prover, Leonardo de Moura has
also provided the best support imaginable. Most of the times, he gave an-
swers to issues with Lean or bug fixes in just a few minutes. I furthermore
have to thank Soonho Kong for providing good support for his Lean user
interface and for helpingme to set up the environment for the code listings
in this thesis.

For their contribution to make my stay in Pittsburgh possible, I want to
thank Prof. Dr. Gregor Snelting for supervising my thesis from Karlsruhe,
Prof. Dr. FrankHerrlich for allowing the thesis to count formymathematics
major, and Prof. Dr. AlexanderWaibel and the interACT exchange program
for financing my stay at Carnegie Mellon University. Last but not least, the
thesis project would not have happened without my friend Felix Maurer
pointing me to the videos of Prof. Robert Harper’s homotopy type theory
course and the latter redirecting me to Jeremy Avigad and Steve Awodey.

v

vi

Contents

1 Introduction 1

2 Homotopy Type Theory 3
2.1 Some Basic Non-Dependent Type Theory 3
2.2 Dependent Functions and Pairs 6
2.3 Propositional Equality . 9
2.4 Equivalences and Univalence 13
2.5 Truncated Types . 15
2.6 Higher Inductive Types . 18

3 Non-Abelian Topology 23
3.1 Double Categories . 23
3.2 Thin Structures and Connections 28
3.3 Double Groupoids . 29
3.4 Crossed Modules . 36
3.5 Double Groupoids and Crossed Modules are Equivalent . . 39

4 Translation and Use in Homotopy Type Theory 43
4.1 Categories in Homotopy Type Theory 44
4.2 Double groupoids in Homotopy Type Theory 48
4.3 Crossed Modules in Homotopy Type Theory 55
4.4 Presented Types . 56

5 A Formalization in the Lean Theorem Prover 61
5.1 The Lean Theorem Prover . 61
5.2 Basic Homotopy Type Theory in Lean 69
5.3 Category Theory in Lean . 73
5.4 Formalizing Double Groupoids 79
5.5 Formalizing Crossed Modules 93
5.6 Proving the Equivalence . 95

vii

viii CONTENTS

5.7 Instantiating the Fundamental Double Groupoid 100

6 Conclusion and Future Work 107

Bibliography 111

Chapter 1

Introduction

Making mathematical definitions and theorem proofs readable and veri-
fiable by computers has become increasingly important in the last years,
not only since there are proofs that are hard or impossible to be checked
by a single person due to their size (one example being Tom Hales’ proof
of the Kepler conjecture [HAB+15]). With the rise of formally verified soft-
ware, one also wants the same level of trust for the mathematical theo-
ries whose soundness guarantee the correct functionality of the program.
Fields where formal verification has been successfully used to certify com-
puter programs include cryptography and aerospace industry. These rely
heavily on results from algebra and calculus and differential equations.

Homotopy type theory (HoTT) can serve as a foundation of mathemat-
ics that is better suited to fit the needs of formalizing certain branches of
mathematics, especially the ones of topology. In traditional, set-based ap-
proaches to formalizing theworld ofmathematical knowledge, topological
spaces and their properties have to be modeled with much effort by refer-
ring to the type of real numbers. In contrast to this, homotopy type the-
ory contains topologically motivated objects like fibrations and homotopy
types as primitives. This makes it much easier and more natural to rea-
son about topological properties of these objects. Homotopy type theory
is a relatively new field but it already has produced several useful imple-
mentations and libraries in interactive theorem provers like Agda [hotb]
and Coq [hota]. One important feature of homotopy type theory is that
it is constructive and thus allows to extract programs from definitions and
proofs.

Homotopy type theory is proof relevant which means that there can be
distinct (and internally distinguishable) proofs for one statement. This

1

2

leads to the fact that types in HoTT bear the structure of a higher groupoid
in their identities. The essential problem in the field of homotopy is to ana-
lyze this structure of paths and iterated paths between paths in topological
spaces or, in the world of HoTT, in higher types. This happens by consider-
ing the algebraic properties of the homotopy groups or homotopy groupoids
of the spaces resp. types.

In his book “Nonabelian Algebraic Topology” [BHS11], Ronald Brown
introduces the notion of double groupoids with thin structures and crossed
modules over groupoids to describe the interaction between the first and the
second homotopy groupoid of a space algebraically. Brown’s approach,
preceding the discovery of homotopy type theory by a few decades, is for-
mulated entirely classically and set-based.

In this thesis I describe how I translated some of the central definitions
and lemmas from his book to dependently typed algebraic structures in
homotopy type theory, made them applicable to the analysis of 2-truncated
types by creating the notion of a fundamental double groupoid of a presented
2-type, and then formalized them in the newly built interactive theorem
proving system Lean [dMKA+].

The structure of this thesis is as follows: Chapter 2 gives a short intro-
duction to some basics of homotopy type theory. Chapter 3 summarizes
the considered categories as they are presented in Ronald Brown’s book.
Then, Chapter 4 describes, howwe can translate these definitions to the set-
ting of homotopy type theory. Eventually, Chapter 5 tells my experiences
in formalizing the definitions in Lean.

Chapter 2

Homotopy Type Theory

This chapter shall serve to provide the reader with the necessary basic
knowledge about homotopy type theory. Most of this knowledgewas gath-
ered and written up during the “special year on univalent foundations”
which took place in the years 2012 and 2013 at the Institute for Advanced
Study in Princeton. It resulted in the collaborative effort to write and pub-
lish a first book on homotopy type theory [Uni13] which is still being im-
proved and open for suggestions at GitHub. 1 Mydescription of homotopy
type theory will stick to the notation and terminology used in this book.

Furthermore, I will not make the effort to distinguish between what el-
ements of the theory were there in earlier approaches to intensional type
theory, most prominently the one of Per Martin-Löf [ML98], as this would
defy the purpose of a concise and coherent introduction to the current
“state of the art” of homotopy type theory.

2.1 Some Basic Non-Dependent Type Theory
A type theoretical foundation of mathematics uses Types wherever, in an
approach based on set theory and predicate logic, sets and propositions
are used. Homotopy type theory adds to this logical interpretation and
set interpretation the point of view of a topological space or its homotopy
type. Objects (or instances) of a type thus correspond to elements of a set,
to proofs of a proposition, as well as to points in a space.

The judgment that that some object a is an instance of a type A will be
written as a : A. Opposed to set theory it is always a priori determined,

1https://github.com/HoTT/book

3

https://github.com/HoTT/book

4 2.1. SOME BASIC NON-DEPENDENT TYPE THEORY

what type some constructed object will be an instance of, and this type
is, up to definitional equality of types, fixed. If an object or a type can be
written in two different ways, we will express the fact that two expressions
coincide using “≡” (since “=” will later denote propositional equality).
Likewise, “:≡” is the notation for abbreviating the the right hand side by
the expression on the left hand side. It is important to note that it is decid-
able to check whether a ≡ b holds for two given terms a and b.

Types in homotopy type theory are organized in universes. For every
i ∈ N we assume to have a universe Ui which is itself, as an object, con-
tained in the universe Ui+1. In this way, all types, including the universes,
can be seen as objects in some greater type. Often, it is assumed that uni-
verses are cumulative in the sense that if A : Ui, then A : Ui+1 (and thus,
A : Uj for every j ≥ i). Since this entails some computational difficulties
for theorem provers, the language Lean will not incorporate universe cu-
mulativity. A replacement for the cumulativity is an inductively defined
lifting function Ui → Ui+1. In the following, I will most of the time leave
the index of a universe implicit and just denote it by U . This means to say
that these definitions are applicable to all (combinations of) universe in-
dices. The reason for the need of multiple universes is that a system that
simply assumed that U : U would be inconsistent.

We will now take a look at some of the non-dependent type formers,
some of whichwill later be extended to dependent ones. Wewill introduce
these type formers by giving semi-formal rules for the formation of the
type, the introduction of the type’s instances and for their elimination.

The most basic type is the type A → B of non-dependent functions
between two types A, B : U . The inference rules that come with it are
exactly those known from types λ-calculus:

→-F
A, B : U

A → B : U
→-I

a : A ⊢ Φ[a/x] : B
(λx.Φ) : A → B

→-E
f : A → B a : A

f (a) : B

(2.1)

Here, Φ is a term that may have x as a free variable. Φ[a/x] denotes the
replacement by every appearance of x by a. Of course, we have the rules
of η-conversion and β-reduction:

η
f : A → B

(λx. f (x)) ≡ f
β
(λx.Φ) : A → B a : A

(λx.Φ)(a) ≡ Φ[a/x]
(2.2)

CHAPTER 2. HOMOTOPY TYPE THEORY 5

These definitional equalities will from now on be used “silently” to replace
subterms. In the logic interpretation of HoTT, function types model impli-
cation of propositions while in the set and topology interpretation they
represent (arbitrary resp. continuous) maps.

One important special case of non-dependent function types are those
of the form A → U for a type A : U . We call it the type of type families
indexed by A. With propositions as types, these represent propositions
that depend on a variable x : A. Topologically, assigning to each point of a
space another space “above” it in a continuous fashion reflects the notion
of a fibration.

Especially when thinking of types modeling propositions, it is impor-
tant to find types that correspond to to the absolute truth values true and
false. A false statement should not be provable, so it should be represented
by the empty type 0 which has no introduction rule at all:

0-F
0 : U

0-E
C : 0 → U x : 0

ind0(C, x) : C(x)

Here, ind0 stands for “induction”. The name indicates that 0 is generated
inductively on an empty collection of constructors. The rule asserts that we
can infer every possible statement once we constructed an instance of 0
(“ex falso quodlibet”). Just like for every induction principle we will state
in the rest of this chapter, we can obtain a non-dependent version of the
rule, called recursion rule, by assuming C to be a constant type family or, in
other words, a type A : U :

rec0(A, x) :≡ ind0((λy.A), x) : A.

The type corresponding to “true” is the unit type 1 which provides
exactly one way of constructing an instance of it:

1-F
1 : U

1-I
⋆ : 1

1-E
C : 1 → U p : C(⋆) x : 1

ind1(C, p, x) : C(x)

The elimination rule can be thought of ensuring that we can prove a state-
ment about an arbitrary element of 1 by just proving it for the constructor
⋆. Additionally to the rule, we furthermore specify the behavior of the
induction on the constructor itself, by saying that ind1(C, p, ⋆) ≡ p. In

6 2.2. DEPENDENT FUNCTIONS AND PAIRS

a set theoretic context, 1 would be a (or “the”) singleton, from the topo-
logical point of view it stands for a contractible space. Again, if we set
C(x) :≡ A for some type A : U , we obtain a non-dependent recursor
rec1(A) : A → 1 → A, selecting for each point a : A the function that
maps to a.

Looking at the type of some of the recursors, for example rec1, before
giving all their arguments, we struggle to express their type using only
non-dependent functions, since e.g. rec1(A) does not have the same type
for every choice of A : U . This is where dependent functions come into
play.

2.2 Dependent Functions and Pairs
Dependent Functions, also called Π-types, are the core of dependent type
theory. Opposed to a non-dependent function f : A → B between two
types A, B : U , which returns an instance of B when applied to whatever
instance of A, the return type of a dependent function on a type family
B : A → U is B(a) when the function is evaluated at some instance a : A.
Of course, we can rediscover non-dependent function types as Π-types on
constant type families. We write ∏(a:A) B(a) for the type of dependent
functions on the type family B : A → U . Since to construct such a de-
pendent function, we need to give an element of B(a) for every a : A, we
can think of ∏(a:A) B(a) as the statement “For all a : A, the statement B(a)
holds.” In the topological interpretation, we can say that this corresponds
to giving a point in each fiber of the fibration B : A → U varying contin-
uously on the chosen a : A. this is called a section of the fibration. The
rules to form the type of Π-types and to introduce and apply dependent
functions generalize the rules for non-dependent functions as follows:

Π-F
A : Ui B : A → Uj

(∏(a:A) B(a)) : Umax{i,j}
Π-I

a : A ⊢ Φ[a/x] : B(a)
(λx.Φ) : ∏(a:A) B(a)

Π-E
f : ∏(a:A) B(a) a : A

f (a) : B(a)

(2.3)

Again, we have the rules for β-reduction and η-conversion like in the non-
dependent case (2.2), yielding judgmental equalities (λx. f (x)) ≡ f and
(λx.Φ)(a) ≡ Φ[a/x].

CHAPTER 2. HOMOTOPY TYPE THEORY 7

Having definedΠ-typeswe are able to state the recursor for other basic,
essentially non-dependent, type formers: Product and coproduct types.
These take the type theoretic role of conjunction and disjunction of propo-
sitions, and of cartesian products and and disjoint unions of sets or topo-
logical spaces. The inference rules for product types are the following:

×-F
A, B : U

A × B : U
×-I

a : A b : B
(a, b) : A × B

×-E
C : A × B → U p : ∏(a:A) ∏(b:B) C((a, b)) x : A × B

indA×B(C, p, x) : C(x)

with the definitional equality indA×B(C, p, (a, b)) ≡ p(a, b). Note that the
type of indA×B can now be expressed as

∏
C:A×B→U

(
∏
a:A

∏
b:B

C((a, b))

)
→ ∏

x:A×B
C(x).

The first and second projection of an instance x : A × B is then simply
defined by

pr1(x) :≡ indA×B((λy.A), (λa.λb.a), x) : A
pr2(x) :≡ indA×B((λy.A), (λa.λb.b), x) : B,

yielding pr1((a, b)) ≡ a and pr2((a, b)) ≡ b judgmentally. An informal way
of stating the meaning of×-E would be: “To show a statement about all
instances of a product type, is suffices to prove it for all pairs”.

Dually to products we define the coproduct or sum of two types by
giving the following rules:

+-F
A : U B : U

A + B : U

+-I1
a : A

inl(a) : A + B
+-I2

b : B
inr(b) : A + B

+-E

C : (A + B) → U
p : ∏(a:A) C(inl(a)) q : ∏(b:B) C(inr(b)) x : A + B

indA+B(C, p, q, x) : C(x)

8 2.2. DEPENDENT FUNCTIONS AND PAIRS

Note that this is the first type former for which there is more than just one
introduction rule. As a consequence, there is more than one “base case” to
prove to use the induction rule.

Going back and looking at the product type, we recognize that we can,
just as for the function type, find amore general, dependent version, thede-
pendent product type or Σ-type. The gain of generality consists of the fact
that, for the pairs that make up the type, the type of their second compo-
nent may depend on the concrete value of the first component. This can be
used to model existentially quantified statements like “there exists an a : A
such that B(a) holds.” Topologically, the Σ-type of a fibration B : A → U
represents the total space of B. The first projection of a dependent pair cor-
responds to the projection of a point in a fiber onto its base. (This is the
map which topologists would traditionally refer to as “the fibration”.) The
inference rules for dependent products are:

Σ-F
A : U B : A → U
(∑(a:A) B(a)) : U

Σ-I
a : A b : B(a)

(a, b) : (∑(a:A) B(a))

Σ-E

C : ((∑(a:A) B(a))) → U
p : ∏(a:A) ∏(b:B(a))C((a, b)) x : (∑(a:A) B(a))

ind(∑(a:A) B(a))(C, p, x) : C(x)

Again, we assume the definitional equality

ind(∑(a:A) B(a))(C, p, (a, b)) ≡ p(a, b).

We can recover non-dependent products by setting B to be a constant type
family. The projections to the first and second component are defined
similar to the ones of non-dependent products for a dependent pair x :
∏(a:A) B(a):

pr1(x) :≡ ind(∏(a:A) B(a))((λx.A), (λa.λb.a), x) and

pr2(x) :≡ ind(∏(a:A) B(a))((λx.B(pr1(x))), (λa.λb.b), x).

Product types, Σ-types, coproduct types, the unit type and the empty
type all are examples for the larger class of inductive types. I will abstain
from giving the general definition of inductive types and inductive type
families and again refer to definitions in either the HoTT book [Uni13] and
the introduction of inductive families by Peter Dybier [Dyb94], which pro-
vided the blueprint for the implementation in Lean. Instead, I will another
a common example for an inductive type:

CHAPTER 2. HOMOTOPY TYPE THEORY 9

Just as the unit type was defined inductively on its constructor ⋆ and
the coproduct on two constructor inl and inr, we can obtain the natural
numbers N as the inductive type of a zero element 0 : N and the successor
function S : N → N. These data yield, besides the obvious introduction
rules, the following well-known elimination rule:

N-E
C : N → U p : C(0) q : ∏(n:N)C(n) → C(S(n)) x : N

indN(C, p, q, x) : C(x)

The judgmental equalities of the rule are indN(C, p, q, 0) ≡ p and the re-
cursive equation

indN(C, p, q, S(x)) ≡ q(x, indN(C, p, q, x)).

For a constant type family we get the non-dependent recursion

recN(A) :≡ ind(λx.A) : A → (N → A → A) → N → A,

which is exactly the intuitiveway to define a functionN → A by recursion.
If wewere to definewhat itmeans for a natural number to be odd, we could
do this by

isodd :≡ recN(U , 0, (λn.λA.A → 0)) : N → U ,

where A → 0 is inhabited if A is not, and thus models the negation of
statements. For example, this gives us the statement that the number one
is odd, witnessed by the following term:

(λx.x) : 0 → 0
≡ indN((λx.U), 0, (λn.λA.A → 0), 0) → 0
≡ indN((λx.U), 0, (λn.λA.A → 0), S(0))
≡ isodd(S(0)).

2.3 Propositional Equality
So far, all equalities were judgmental or definitional: They resulted from
defining new notations and from the judgmental equalities that comewith
each induction rule. As mentioned before, it is decidable to check two
terms for equality. But this means that with this kind of equality, we will
not be able to reason about undecidable equality statements, or express

10 2.3. PROPOSITIONAL EQUALITY

equality inside the theory. Since in the logical interpretation of type theory,
every statement should be represented by a type, so should the equality of
two objects of the same type. This is why we introduce the equality type
or identity type as our next type. It is obvious that for a type A : U and
two objects a, b : A there should be a type a =A b of which we need so
construct an instance to show that a and b are “equal” in some sense. But
what should the introduction and the elimination rule for such a type look
like? It turns out that it should be the relation that is defined inductively
on the witnesses for its reflexivity:

=-F
A : U a, b : A

a =A b : U
=-I

A : U a : A
refla : a =A a

=-E

C : ∏(a,b:A)(a =A b) → U
c : ∏(a:A)C(a, a, refla) a, b : A p : a =A b

ind=A(C, c, a, b, p) : C(x, y, p)

The introduction rule gives us a canonical proof for the equality of two def-
initionally equal objects. The recursor says that to prove a statement about
all pairs of points in a type and all equalities between them, it suffices to
show it for reflexive case and the canonical equality proof refl. An elimina-
tion rule equivalent to the unbased equality induction or J-rule stated above
is the following based equality induction where we fix the start point of each
equality we reason about:

B-=-E

a : A C : ∏(b:A)(a =A b) → U
c : C(a, refla) b : A p : a =A b

ind′=A
(a, C, c, b, p) : C(b, p)

Both elimination rules are assumed to yield judgmental equalities when
applied to the constructor refl itself:

ind=A(C, c, a, a, refla) ≡ c(a) and
ind′=A

(a, C, c, a, refla) ≡ c.

Wewill see that for the topological interpretation of types, the identity type
should not necessarily be seen as representing equality of points but rather
paths between points.

Equal objects should be indiscernible in the sense that every property
C : A → U that is provable for some a : A by giving an instance of C(a)

CHAPTER 2. HOMOTOPY TYPE THEORY 11

should also be provable for b : A, given an equality p : a =A b. As a first
lemma about equality we prove that this is indeed the case. (Note that the
distinction between a definition and a lemma or theorem together with its
proof is less clear in type theory than it is for set based mathematics.)

Lemma 2.3.1 (Transport). Let A : U be a type, C : A → U a type family, and
a, b : A be equal by p : a =A b. Then, for each c : C(a), we obtain an object
p∗(c) : C(b). We call this the transport of c along the path p.

Proof. We can use (based or unbased) path induction to reduce the state-
ment to the onewhere p ≡ refla. In this case, we simply to chose p∗(c) :≡ c.
Formally, we define

p∗(c) :≡ ind′=A
(a, (λb.λp.C(b)), c, b, p).

In the statement of this lemma, like in all the following, the list of pre-
conditions should be thought of as an iteratedΠ-type, so that the full state-
ment is of the type

∏
C:A→U

∏
a,b:A

∏
p:a=Ab

C(a) → C(b).

We have seen that the propositional equality we defined above is, by its
constructor reflexive. But since equality should be an equivalence relation,
we have to prove its symmetry and transitivity, or, in the language of paths,
provide the inverse and concatenation of paths.

Definition 2.3.2 (Inverse paths). Let A : U and a, b : A. For every path
p : a =A b, there is a path p−1 : b =A a such that refl−1

a ≡ refla for every
a : A.

Proof. By path induction, it suffices to provide refl−1
a : a =A a, which

we provide by giving refla itself. Formally: p−1 :≡ ind′=A
(a, (λb.λp.b =A

a), refla, b, p).

Definition 2.3.3 (Concatenation of paths). For a type A : U , a, b, c : A and
paths p : a = b and q : b = c there is a path p � q : a = c which can be
chosen in a way such that refla � refla ≡ refla.

12 2.3. PROPOSITIONAL EQUALITY

Proof. We again apply induction on the equalities involved to end up hav-
ing only to specify an instance of a = a which we choose to be refla. I will
from now on abstain from giving the type families and applications of the
equality elimination rule explicitly. More formal proofs for these defini-
tions can be found in any formalization or in the HoTT book [Uni13].

We see that this inversion and concatenation are exactly the operations
which are part of a groupoid. It turns out that they also fulfill the defining
properties of a groupoid:

Definition 2.3.4 (Groupoid laws). Let A : U , a, b, c, d : A and p : a = b,
q : b = c and r : c = d. Then,

• p = p � reflb = refla � p,

• p−1 � p = reflb, p � p−1 = refla,

• (p−1)−1 = p and

• p � (q � r) = (p � q) � r.

Proof. We can prove all these by applying path induction to all the three
paths involved.

Note that all these propositional equalities are between equalities. For ex-
ample, if we wrote the first equation mentioned in the previous definition
noting the type it was in, it would be p =a=Ab p � reflb. We call these equali-
ties 2-paths or 2-dimensional paths. These make the equality in a type an
∞-groupoid.

To be a suitable notion of equality, it should be respected by functions
in the sense that for a function f : A → B and an equality p : a = b
in its domain we should be able to obtain an equality f (a) = f (b) in the
codomain. This is indeed the case, which we can prove by induction on
the equality:

Lemma 2.3.5. Let A, B : U , f : A → B, and a, b : A. Then, there is a function
ap f : (a = b) → (f (a) = f (b)) such that ap f (refla) ≡ refl f (a). □

We call ap f the application of f on paths. ap is functorial with respect
to the path in the sense that it respects the concatenation and inversion
of paths, and with respect to the function by respecting composition of
functions and acting neutral on the identity function.

CHAPTER 2. HOMOTOPY TYPE THEORY 13

Lemma 2.3.6. Let A, B, C : U , f : A → B and g : B → C. For paths p : a =A b
and q : b =A c we have equalities

• ap f (p � q) = ap f (p) � ap f (q),

• ap f (p−1) = ap f (p)−1,

• apg(ap f (p)) = apg◦ f (p), and

• apidA
(p) = p. □

But what if f is a dependent function? Then, the f (a) and f (b) would
not necessarily be instances of the same type and so f (a) = f (b)would not
be a valid type. But we can use the transport (Lemma 2.3.1) to turn f (a)
into a point in the same fiber as f (b).

Lemma 2.3.7. Let A : U , P : A → U and f : ∏(a:A) P(a). Then, we can
construct a dependent function

apd f : ∏
a,b:A

∏
p:a=b

(p∗(f (a)) = f (b)),

such that apd f (a, a, refla) ≡ refl f (a). □

2.4 Equivalences and Univalence
In set based mathematics we clearly do not care about whether two proofs
for the equality of two elements are themselves equal or not. Different from
that, in the topological setting, where equalities correspond to paths and
equalities between equalities correspond to homotopies between paths, we
might want to consider types, where not all paths are homotopic. But what
about equalities between types? From the logical viewpoint, a good notion
of equality would be the biconditional: Two statements A, B : U should be
equal, if and only if we can find instances of A → B and B → A. A notion
of equality for sets, which is weaker than definitional equality, would be
their isomorphicness in the category of sets — that is, finding a bijection
between them. When talking about the homotopy type of a topological
space however, spaces are considered equivalent, and their homotopy type
equal, when they are homotopy equivalent. There is a notion of equivalence
that captures all these three viewpoints. To formulate it, we first need the
definition of homotopic functions, as known fromclassic homotopy theory:

14 2.4. EQUIVALENCES AND UNIVALENCE

Definition 2.4.1 (Homotopy of functions). Two maps f , g : A → B are
called homotopic if for all a : A we have f (a) = g(a). We define the nota-
tion

f ∼ g :≡ ∏
a:A

(f (a) = g(a)).

We can define the same for two dependent functions f , g : ∏(a:A) B(a) over
the same type family.

Definition 2.4.2 (Equivalences). Let A, B : U . A function f : A → B is
called an equivalence between A and B, if there is a g : B → A such that
η : g ◦ f ∼ idA and ϵ : f ◦ g ∼ idB and furthermore

τ : ∏
a:A

ap f (η(a)) = f (g(f (a)))=a ϵ(f (a)) ≡ ap f ◦ η ∼ ϵ ◦ f .

We need τ to make sure that each two witnesses f is an equivalence are
equal. Since τ looks like the one of the two commutativity conditions for
pairs of adjoint functors, this kind of equivalence is also called a half ad-
joint equivalence. The type of witnesses for f to be an equivalence shall
be

isequiv(f) :≡ ∑
g:B→A

∑
η:g◦ f∼idA

∑
ϵ: f ◦g∼idB

ap f ◦ η ∼ ϵ ◦ f .

The type of all equivalences between two types A, B : U is denoted by

A ≃ B :≡ ∑
f :A→B

isequiv(f).

It is an easy exercise to show that equivalence of types is indeed an
equivalence relation. isequiv(f) itself is equivalent to other known defini-
tions of equivalence, like for example the existence of a left inverse and of a
right inverse of f . Easy examples for equivalent types include (1× A) ≃ A,
(1 → A) ≃ A, (0 + A) ≃ A and (0 × A) ≃ 0, for a type A : U .

But how do equality and equivalence of types relate to each other?
Clearly equal types can be proven to be equivalent, just using path induc-
tion on the equality between them and the reflexivity of equivalence:

Lemma 2.4.3. Let A, B : U . Then there is a function

idtoeqvA,B : (A =U B) → (A ≃ B),

which for the reflexivity on U is defined by

idtoeqvA,A(reflA) ≡ (idA, idA, (λa.refla), (λa.refla), (λa.reflrefla)).

□

CHAPTER 2. HOMOTOPY TYPE THEORY 15

On the other hand, there is noway to obtain an equality of types froman
equivalence. Vladimir Voevodsky proposed the following axiom to make
it possible:

Axiom 2.4.4 (Univalence). For idtoeqvA,B is itself an equivalence for every choice
of A, B : U .

This implies that
(A =U B) ≃ (A ≃ B)

and yields an inverse to idtoeqvA,B which we call

uaA,B : (A ≃ B) → (A =U B).

From now on, we will always assume this axiom since as it is essen-
tial for the existence of higher types and thus for homotopy type theory in
general. Another important consequence of assuming univalence is that
we can prove the equality of two dependent functions by giving a homo-
topy between them:

Theorem 2.4.5. Let A : U , B : A → U and f , g : ∏(a:A) B(a). Then,

(f ∼ g) → (f =A→B g).

We omit the non-trivial proof for this theorem and refer to the slightly
distinct approaches in the HoTT book [Uni13] and the Lean library.

2.5 Truncated Types
As already considered in the previous sections, every type A : U comes
with a type of paths a =A b for each a, b : A and iterated, higher dimen-
sional paths between these paths. Sometimes we want a type to not con-
tain any information in higher paths by assuming that all its n-dimensional
paths are equal. This leads to the concept of truncated types.

The first definition shall describe what it means for a type to contain
only one point. We already defined the unit type 1 as the type with exactly
one constructor, but we want a property that we can check for any given
type. This property will then be, as a type, equivalent to being equivalent
to the unit type. When thinking about types in the logical context, this
should remind the reader of the fact that a true statement which does not
depend on any free variables, is logically equivalent to the canonical “true”
statement. In topology, spaces that are homotopy equivalent to a single

16 2.5. TRUNCATED TYPES

point are called contractible. They are equivalently characterized as those
spaces which contain a point serving as center for a contraction — that is,
a continuous choice of paths from each point in the space to the center.
This is the definition of contractibility which is directly translated to its
counterpart in homotopy type theory:

Definition 2.5.1 (Contractibility). A type A : U is called contractible if

isContr(A) :≡ ∑
x:A

∏
a:A

(a =A x).

Analyzing this definition, we first observe that a contractible type is
inhabited by pr1(isContr(A)) and that for each a, b : A we can find a path
between a and b by

pr2(isContr(A))(a) � pr2(isContr(A))(b)−1 : a =A b.

This equality of all objects in contractible types makes them the class of
typeswewant to use for true propositions. Asmentioned above, contractible
types are equivalent to the unit type:

Lemma 2.5.2. Let A : U be a contractible type. Then, A ≃ 1.

Proof. Let p : isContr(A). We obtain a function f : A → 1 by setting f (a) :≡
⋆ for each a : A and its inverse g : 1 → A, which by induction we only have
to define on the constructor of 1, by g(⋆) :≡ pr1(p). The proof that f and
g are indeed inverse to each other is then done using induction on the unit
type and the paths yielded by pr2(p).

If we want to build a class for all propositions, whether true or not, we
can use this consequence of contractibility as a definition and remove the
inhabitedness condition:

Definition 2.5.3 (Mere proposition). A type A : U is a mere proposition if

isProp(A) :≡ ∏
a,b:A

(a =A b).

Besides all contractible types, more concrete examples for mere propo-
sitions are 0, 1, function types with merely propositional codomains, and
many of the defined properties like being an equivalence isequiv(f), being a
contractible type isContr(A) and even being a mere proposition isProp(A).
In the definition of equivalence, the coherence condition τ is needed to

CHAPTER 2. HOMOTOPY TYPE THEORY 17

make it a mere proposition. Examples for types which are not mere propo-
sitions are also easy to find: A + B, whenever A and B are both non-empty
types, and N clearly contain non-equal objects.

Since the proof that two functions are inverses of each is trivial on a
pair of mere propositions, function types on mere propositions works just
as one would expect from propositions:

Lemma 2.5.4. Let A, B : U be mere propositions and f : A → B, g : B → A.
Then, A ≃ B. □

When dealing with sets, we do not require all their objects to be equal,
but only the proofs of equality:

Definition 2.5.5 (Sets). A type A : U is called a set, if there is an object in

isSet(A) :≡ ∏
a,b:A

∏
p,q:a=Ab

(p =a=Ab q).

So far most types we encountered were sets, but we can use univalence
to show that each of our universes is an example for a type that is not a set:

Lemma 2.5.6. For each i, the universe Ui is not a set.

Proof. Consider the type 2 :≡ 1+ 1 : Ui and let 02 :≡ inl(⋆) and 12 :≡ inr(⋆)
be its two constructors. As true for every (non-higher) inductive type with
multiple constructors, distinct constructors are unequal:

(02 ̸= 12) ≡ (02 = 12 → 0).

We define a function f : 2 → 2 by setting f (02) :≡ 12 and f (12) :≡ 02. It’s
easy to see that f , as an involution, is an equivalence, which, by univalence
results in a path p : 2 =Ui 2. If we assume Ui to be a set, we receive an
equality p = refl2. But transporting along that equality, f would be equal
to id f rm−e and thus

02 = f (12) = id2(12) = 12,

which, with the above inequality gives the desired result.

Just like isContr(A) and isProp(A), isSet(A) itself is a mere proposition.
We can also prove that each mere proposition is a set, by which we get

isContr(A) → isProp(A) → isSet(A)

for each type A : U . Calling a set a 0-type, a mere proposition a (−1)-
type and a contractible type a (−2)-type, we can extend this chain by the
following definition of an arbitrary n-type or n-truncated type:

18 2.6. HIGHER INDUCTIVE TYPES

Definition 2.5.7 (Truncated types). By recursion on the index we define
is-n-type as a function U → U by

is-n-type(A) :≡
{
isContr(A) if n = −2 and
∏(a,b,:A) is-n′-type(a =A b) if n = n′ + 1 otherwise.

For example, for n = 1 this yields

is-1-type(A) ≃ ∏
a,b:A

∏
p,q:a=Ab

∏
α,β:p=a=Abq

(α =p=a=Abq β).

Collecting basic facts about n-types, we have

Lemma 2.5.8. • If A : U is an n-type, then A is an (n + 1)-type.

• For each n ≥ −2 and A : U , the type is-n-type(A) is a mere proposition.

• If A : U is an n-type and B : A → U such that for each a : A, B(a) is an
n-type, then ∑(a:A) B(a) is an n-type as well.

• If A : U and B : A → U are such that B(a) is an n-type for each a : A,
then ∏(a:A) B(a) is an n-type as well.

• Let n ≥ −1. Then, A : U is an (n + 1)-type if and only if for all a : A, the
equality type a =A a is an n-type.

• Let n ≥ 0. Then, A : U is an n-type, if and only if for all a : A, the n-fold
iterated loop space Ωn+1(A, a), which is defined using recursion on n by

Ω1(A, a) :≡ (a =A a) and
Ωn+1(A, a) :≡ (refl. . .a

=Ωn(A,a) refl. . .a

),

is contractible.

2.6 Higher Inductive Types
Besides “normal” inductive types, which have constructors that objects of
or functions to the type, there is the concept of a higher inductive type.
Higher inductive types can also contain constructors which do not yield
instances of the type itself, but instead propositional equalities between
instances. Like for basic inductive types, I will abstain from giving rules

CHAPTER 2. HOMOTOPY TYPE THEORY 19

for general higher inductive type but instead we will take a look at some
common higher inductive types.

We can picture the path constructors as gluing a pair of other construc-
tors together by a new path. One of the simplest examples for such a case
is the one where the type is constructed by just two instances 0I and 1I , to-
gether with a path seg : 0I = 1I . The inference rules for this interval type
I are the following:

I-F
I : U

I-I1
0I : I

I-I2
1I : I

I-I3
seg : 0I = 1I

I-E

C : I → U
c0 : C(0I) c1 : C(1I) p : seg∗(c0) = c1 x : I

indI(C, c0, c1, p, x) : C(x)

Of course, we again get judgmental equalities for the case where x is one
of the constructors. As a suitable counterpart for the third constructor, we
assume that apd f (seg) = s, using the dependent application defined in
2.3.7, where f (x) :≡ indI(C, c0, c1, p, x).

In words, to prove a statement for an arbitrary point on the interval,
one has to prove it for both endpoints and show that the proofs can be con-
nected by a path “over” seg. In the case of the non-dependent recursor, the
transport is not necessary. The type I is a very uninteresting type because
of the following:

Lemma 2.6.1. The interval I is contractible, and therefore I ≃ 1. □

It turns out that if we don’t assume the path to be between to distinct
constructor instances but instead be a loop based in a single constructor we
obtain the homotopy type S1 of a circle or 1-sphere:

S1-F
S1 : U

S1-I1
base : S1 S1-I2

loop : base =S1 base

S1-E
C : S1 → U c : C(base) p : loop∗(c) = c x : S1

indS1(C, c, p, x) : C(x)

Topologically speaking, the elimination rule tells us that we can find
all sections of a fibration above the circle up to homotopy by appending
“constant sections” to paths that only lie in one fiber. Again, if we take C to
be the constant type family, we obtain a non-dependent recursor that lets

20 2.6. HIGHER INDUCTIVE TYPES

us define a function f : S1 → B by providing a point b, which becomes
f (base) and a loop b =B b which is propositionally equal to ap f (loop).

We can show that loop ̸= reflbase and thus, S1 provides another exam-
ple for a type which is not a set. Just as we used the type 2, which is not a
mere proposition, to show that its surrounding universe is not a set, we can
show that a universe which contains the circle cannot be a 1-type. We can
continue this correspondence by introducing higher dimensional spheres.
As is topology, they can be built as the suspension of a lower dimensional
sphere. Since suspension is an important operation, especially for homol-
ogy, we define it as a type former on arbitrary types (its notation Σ should
not be confused with the notation for the type of dependent paris):

S-F
A : U

ΣA : U
S-I1

A : U
N : ΣA

S-I2
A : U

S : ΣA

S-I3
A : U

merid : A → N =ΣA S

S-E

C : ΣA → U n : C(N)
s : C(S) m : ∏(a:A)merid(a)∗(n) =C(S) s x : ΣA

indΣA(C, n, s, m, x) : C(x)

Wehave judgmental equalities for the point constructors and a proposi-
tional equality to apd for the path constructor as in the previous examples.
It’s an easy task to prove that Σ2 ≃ S1 which leads us to defining

S0 :≡ 2 and
Sn+1 :≡ ΣSn

recursively. For each n : N, the type Sn+1 is not an n-type, the 2-sphere,
for example, is not truncated at any level.

Other important topological operations like pushouts, quotients, and
colimits can be defined in a similar way. When using higher types we often
want to make a type n-truncated for some n by “collapsing” all equalities
above dimension n while preserving its properties below that level. This
operation is called n-truncation and is defined by the following formation,

CHAPTER 2. HOMOTOPY TYPE THEORY 21

introduction and elimination rules:

T-F
A : U n : N

∥A∥n : U
T-I

a : A

|a|n : ∥A∥n

T-E

C : ∥A∥n → U p : ∏(x:∥A∥n)
is-n-type(C(x))

g : ∏(a:A) P(|a|n) x : ∥A∥n

ind∥A∥n
(C, p, g, x) : C(x)

As one can easily derive from the elimination rule, ∥A∥n is an n-type
and, together with the introduction rule, we can prove that every map in
A → B, for an n-type B, factors through ∥A∥n by |·|n and ind∥A∥n

.
Of course there are many interactions between all the elements of ho-

motopy type theory that were introduced in this chapter. A deeper anal-
ysis of these can be found in the HoTT book [Uni13] as well as in many
subsequent publications. This introduction should suffice to give enough
understanding for the reader to know all definitions used in Chapter 4.
Describing the general syntax and semantics of higher inductive types still
remains an open problem.

22 2.6. HIGHER INDUCTIVE TYPES

Chapter 3

Non-Abelian Topology

This section describes the basic notions of non-abelian topology which I
formalized and applied to higher types in homotopy type theory instead of
topological spaces. Most of the definitions are taken from the book “Non-
abelianAlgebraic Topology” byRonald Brown, Philip J.Higgins andRafael
Sivera [BHS11]. The structures used extend classical homotopy theory by
considering fundamental groupoids with multiple base points, characteriz-
ing the interaction between the first and the second homotopy group of a
space by crossed modules as well as n-fold categories, for which we will only
consider the case n = 2.

3.1 Double Categories

To make the precise definition of a double category easier, we observe that
we candefine a (small) categoryC bygiving a tuple (obC, homC, ∂−, ∂+, ϵ, ◦C)
where

• obC is the set of objects,

• homC is a set that contains all morphisms,

• ∂− and ∂+ : homC → obC are maps assigning to each morphism f its
domain and codomain,

• ϵ : obC → morC gives the identity morphism at each element (this
implies ∂− ◦C ϵ = ∂+ ◦C ϵ = id), and

23

24 3.1. DOUBLE CATEGORIES

• ◦C denotes the composition ofmorphisms as a partial function homC ×
homC → homC, defined for all (g, f) ∈ homC × homC where ∂+(f) =
∂−(g).

In accordancewith the geometric interpretation that objects correspond
to points while morphisms correspond to lines we will call ∂− and ∂+

boundary or face maps while ϵ will often be referred to as degeneracy
map.

Extending this idea, wewant a double category to be an algebraic struc-
ture that does not only contain points and lines but also squares, bounded
by four bounding sides, which we will also call faces. Like shown in Fig-
ure 3.1, we must impose conditions on the face maps so that we can re-
ally speak of squares. Furthermore, just as we needed degenerate lines at
each point, we will have degenerate squares that have a given line at both
of their vertical or both of their horizontal faces. In our definiton, ∂−1 (u),
∂+1 (u), ∂−2 (u) and ∂+2 (u) will correspond to the upper, lower, left and right
face of a square u, respectively. The whole set of faces of a given square
u ∈ D2 will be referred to as shell of this square.

...

∂−(∂−1 (u)) = ∂−(∂−2 (u))

..

∂+(∂−1 (u)) = ∂−(∂+2 (u))

..
∂−(∂−1 (u)) = ∂−(∂−2 (u))

..
∂+(∂+1 (u)) = ∂+(∂+2 (u))

.

∂−1 (u)

.

∂+2 (u)

.
∂+1 (u)

.

∂−2 (u)

.

u

Figure 3.1: A square u ∈ D2, its faces, and its corners.

Definition 3.1.1 (Double category). A double category D is given by the
following data: Three sets D0, D1, and D2, the elements of which are re-
spectively called 0-, 1- and 2-cells, together with maps ∂−, ∂+, ϵ, ◦D, ∂−1 ,
∂+1 , ϵ1, ◦1, ∂−2 , ∂+2 , ϵ2, and ◦2 that make these sets form three categories:

• a category (D0, D1, ∂−, ∂+, ϵ, ◦D) on D0, often called the (1-)skeleton
of the double category,

• a vertical category (D1, D2, ∂−1 , ∂+1 , ϵ1, ◦1), and

• a horizontal category (D1, D2, ∂−2 , ∂+2 , ϵ2, ◦2).

CHAPTER 3. NON-ABELIAN TOPOLOGY 25

Thementionedmaps are required to satisfy the following cubical iden-
tities:

∂− ◦ ∂−1 = ∂− ◦ ∂−2 ,
∂− ◦ ∂+1 = ∂+ ◦ ∂−2 ,
∂+ ◦ ∂−1 = ∂− ◦ ∂+2 ,
∂+ ◦ ∂+1 = ∂+ ◦ ∂+2 ,

(3.1)

∂−1 ◦ ϵ2 = ϵ ◦ ∂−,
∂+1 ◦ ϵ2 = ϵ ◦ ∂+,
∂−2 ◦ ϵ1 = ϵ ◦ ∂−,
∂+2 ◦ ϵ1 = ϵ ◦ ∂+, and

(3.2)

ϵ1 ◦ ϵ = ϵ2 ◦ ϵ =: 0. (3.3)

The boundary and degeneracy maps of the vertical category are fur-
thermore assumed to be a homomorphismwith respect to the composition
of the horizontal category, and vice versa:

∂−2 (v ◦1 u) = ∂−2 (v) ◦D ∂−2 (u),
∂+2 (v ◦1 u) = ∂+2 (v) ◦D ∂+2 (u),
∂−1 (v ◦2 u) = ∂−1 (v) ◦D ∂−1 (u),
∂+1 (v ◦2 u) = ∂+1 (v) ◦D ∂+1 (u),
ϵ2(g ◦D f) = ϵ2(g) ◦1 ϵ2(f), and
ϵ1(g ◦D f) = ϵ1(g) ◦2 ϵ1(g),

(3.4)

for each f , g ∈ D1 and u, v ∈ D2 where the compositions are defined.
A last condition, called the interchange law, has to be fulfilled: For each

u, v, w, x ∈ D2,

(x ◦2 w) ◦1 (v ◦2 u) = (x ◦1 v) ◦2 (w ◦1 u) (3.5)

has to hold if it is well-defined.

As seen in Figure 3.1, the four identities (3.1) correspond to the well-
definedness of the corners of a given square u ∈ D2. The next four equa-
tions (3.2) tell us that for any line f ∈ D1, besides the identities ∂±1 (ϵ1(f)) =
f and ∂±2 (ϵ2(f)) = f (which follow from the definition of a category), the
remaining two faces of a degenerate square are defined as consisting of the
suitable degenerate lines. Figure 3.2 illustrates the cases of both the vertical
and the horizontal category. Equation (3.3) is to make sure that in the case

26 3.1. DOUBLE CATEGORIES

......

f

.

ϵ(∂+(f))

.
f

.

ϵ(∂−(f))

.

ϵ1(f)

.....

ϵ(∂−(f))

.

f

.
ϵ(∂+(f))

.

f

.

ϵ2(f)

Figure 3.2: Degenerate squares of the vertical and horizontal category for
a given line f ∈ D1. Degenerate lines are drawn as double lines.

...........

u

.

v

.

w

.

x

Figure 3.3: The grid we use to illustrate the composition (x ◦2 w) ◦1 (v ◦2 u)
as well as (x ◦1 v) ◦2 (w ◦1 u), which are identical by the interchange law.

where we take the degenerate square of a line which is itself degenerate,
and end up with a square with all four faces degenerate, it doesn’t mat-
ter whether we choose the vertical or the horizontal degeneracy but that
instead we receive a unique zero-element for each x ∈ D0.

The linearity condition (3.4) serves to define the two faces of a composite
square that are not already fixed by the definition of vertical and horizontal
category.

The interchange law can be applied to four squares that are composable
as a 2 × 2-grid to another square. It makes sure that the result of the com-
position does not depend on whether we first compose horizontally and
then vertically or the other way round. This justifies illustrating such com-
positions, as well as larger, iterated ones, by “grids” like the one shown in
Figure 3.3.

Starting from a given 1-skeleton, it is easy to find some very simple but
nevertheless very useful and recurring examples for double categories:

Example 3.1.2. Let C = (C0, C1, ∂−, ∂+, ϵ, ◦C) be a category. The square

CHAPTER 3. NON-ABELIAN TOPOLOGY 27

double category on C is defined by setting D0 := C0, D1 := C1 and

D2 :=
{
(f , g, h, i)

∣∣∂+(f) = ∂−(i), ∂+(i) = ∂+(g),

∂−(g) = ∂+(h), ∂−(h) = ∂−(f)
}
⊆ D4

1

and ∂−1 , ∂+1 , ∂−2 , ∂+2 to be the four projections on this set. (To keep things
consistent, I will always state the faces of a square in the order upper,
lower, left and right.) The degenerate squares are the obvious quadru-
ples (f , f , id, id) and (id, id, f , f) for a morphism f ∈ C1. Composing two
squares (f , g1, h1, i1) and (g1, g2, h2, i2) vertically yields a square (f , g2, h2 ◦
h1, i2 ◦ i1).

Note that f , g, h, and i do not have to form a commutative square — the
square double category on C rather collects all possible squares in C. We
denote the square double category on C as □′C.

Example 3.1.3. Let again be C = (C0, C1, ∂−, ∂+, ϵ, ◦C) a category. We re-
strict the square double category on C to commutative squares and obtain
the commutative square double category or shell double category on C:

D0 := C0,
D1 := C1 and
D2 :=

{
(f , g, h, i) ∈ (□′C)2

∣∣ g ◦C h = i ◦C f
}
.

Faces and degeneracies are trivial, for defining the the vertical compo-
sition of two squares (f , g1, h1, i1) and (g1, g2, h2, i2), one obtains the com-
mutativity of the composed square by

g2 ◦C h2 ◦C h1 = i2 ◦C g1 ◦C h1

= i2 ◦C i1 ◦C f

and analogously for the horizontal composition. Wewrite□C for the com-
mutative square double category on C.

For the purpose of building a category of double categories we have
to define what it means for a map to preserve the structure of a double
category:

Definition 3.1.4. A double functor F between double categories D and E
is a triple of maps (F0, F1, F2) where F0 : D0 → E0, F1 : D1 → E1 and
F2 : D2 → E2 such that (F0, F1) is a functor between the 1-skeleton of D and
E and (F1, F2) is a functor between both the vertical and horizontal category
of D and E. That means that all faces and degeneracies commutewithwith
F1 resp. F2.

28 3.2. THIN STRUCTURES AND CONNECTIONS

Lemma 3.1.5. Double functors turn the set of all double categories into a category
DCat. Its initial object is the empty double category, its terminal object consists
of the double category D with D0 = D1 = D2 = {∗}. □

3.2 Thin Structures and Connections
We will now enrich double category with even more data: We need a no-
tion of what it means for a square to be thin. When defining the fundamen-
tal double category of a space these thin squares will correspond to those
actual geometric squares inside the considered space, which are homotopic
to degenerate squares.
Definition 3.2.1. Let D be a double category on a category C = (C0, C1).
Then, a thin structure on D is a double functor T : □C → D which on the
1-skeleton is the identity.

Equivalently, we can describe a thin structure by marking certain two-
cells as thin in way such that the following hold:
1. Every commutative shell has a unique thin filler.

2. The horizontal and vertical composition of two thin squares is thin.

3. Degenerate squares are thin.
In a double category D without a defined thin structure we have ϵ1(f)

and ϵ2(f) as two ways to receive a square from a given morphism f ∈ D1.
A thin structure adds two more canonical ways of turning a line into a
square:
Definition 3.2.2. Let D be a double category with a thin structure and f ∈
D1 a morphism. Then, the lower right connection of f is the thin square
with f as its upper and left face and ϵ(∂+(f)) as its lower and right face.
Analogously, the upper left connection of f is the thin square with f on
the bottom and right face and ϵ(∂−(f)) on the upper and left side. (See
Figure 3.4.) We denote the lower right connection of f with Γ−(f) and the
upper left connection with Γ+(f).

We observe that connections are composable in the following sense:
Lemma 3.2.3 (S-laws). Let D be a double category with thin structure and f ∈
D1. Then,

Γ−(f) ◦2 Γ+(f) = ϵ1(f) and
Γ−(f) ◦1 Γ−(f) = ϵ2(f).

CHAPTER 3. NON-ABELIAN TOPOLOGY 29

......

f

.

ϵ(∂+(f))

.
ϵ(∂+(f))
.

f

.

Γ−(f)

.....

ϵ(∂−(f))

.

f

.
f

.

ϵ(∂−(f))

.

Γ+(f)

Figure 3.4: Lower right and upper left connection of a morphism f .

............

=

.

Γ+(f)

.

Γ−(f)

.

ϵ1(f)

Figure 3.5: The horizontal S-law.

Lemma 3.2.4 (Transport laws). Let D be a double category with thin structure
and f , g ∈ D1 with ∂+(f) = ∂−(g). Then,

Γ−(g ◦ f) = (Γ−(g) ◦2 ϵ2(g)) ◦1 (ϵ1(g) ◦2 Γ−(f)) and
Γ+(g ◦ f) = (Γ+(g) ◦2 ϵ1(f)) ◦1 (ϵ2(f) ◦2 Γ+(f)).

Proof. As one can easily check (see Figures 3.5 – 3.7) for each of the equa-
tions, the composed squares are well defined and have the faces of the
square on the left hand side coincide with those of the square on the right
hand side. The composite squares are thin because they are a composition
of thin squares. Then, both theorems follow from the uniqueness of thin
fillers and the thinness of identity squares.

3.3 Double Groupoids
In general, paths in topological spaces are non-oriented or can be reversed.
Our algebraic structures describing paths and squares should reflect this
behavior by the property that also its morphisms and two-cells should be
reversible. Categories C in which for each morphism f ∈ C1 there exists
an inverse f−1 ∈ C1 are called groupoids. We apply this concept not only to
the 1-skeleton but also to the two-cells of a double category, which can be
inverted vertically as well as horizontally.

30 3.3. DOUBLE GROUPOIDS

...........

Γ−(f)

.

ϵ1(g)

.

ϵ2(g)

.

Γ−(g)

.

=

.....

Γ−(g ◦ f)

Figure 3.6: The transport law for Γ−(g ◦ f).

...........

Γ+(f)

.

ϵ2(f)

.

ϵ1(f)

.

Γ+(g)

.

=

.....

Γ+(g ◦ f)

Figure 3.7: The transport law for Γ+(g ◦ f).

CHAPTER 3. NON-ABELIAN TOPOLOGY 31

Definition 3.3.1. A weak double groupoid is a double category D where
all three categories — the 1-skeleton, the vertical category and the hori-
zontal category — are groupoids. The inverses of a square u ∈ D2 in the
vertical and horizontal category will be denoted by inv1 and inv2 and can
be seen as flipping the square along horizontal, resp. vertical, line.

For a double category to be a double groupoid we further require it to
come with a fixed thin structure.

Note, that the three notions of inversion interact with each other by
yielding the following laws:

Lemma 3.3.2 (Coherence of inverses). Let D be a weak double groupoid, a ∈ D1
and u ∈ D2. Then,

ϵ1(a) ◦2 ϵ1(a−1) = ϵ2(a) ◦1 ϵ2(a−1) = 0(∂−(a)),
ϵ1(a−1) ◦2 ϵ1(a) = ϵ2(a−1) ◦1 ϵ2(a) = 0(∂+(a)),

(3.6)

∂−1 (inv2(u)) = ∂−1 (u)
−1,

∂+1 (inv2(u)) = ∂+1 (u)
−1,

∂−2 (inv1(u)) = ∂−2 (u)
−1,

∂+2 (inv1(u)) = ∂+2 (u)
−1,

(3.7)

ϵ1(a−1) = inv2(ϵ1(a)), and
ϵ2(a−1) = inv1(ϵ2(a)).

(3.8)

Proof. All equations follow from the fact that the face maps and degenera-
cies are homomorphic and thus also respect inverses.

We can furthermore prove that our intuition is right assuming that hor-
izontally inverting the vertical composition of squares is equal to compos-
ing the inverted squares:

Lemma 3.3.3 (Distributivity of inverses). For a weak double groupoid D and
v, u ∈ D2 the following equations hold as soon as they are well defined:

inv1(v ◦2 u) = inv1(v) ◦2 inv1(u) and
inv2(v ◦1 u) = inv2(v) ◦1 inv2(u).

(3.9)

32 3.3. DOUBLE GROUPOIDS

Proof. We only prove the first equation since the second one results from
transposition of the situation and is provable analogously. Using the pre-
vious calculations and the interchange law we see that

(inv1(v) ◦2 inv1(u)) ◦1 (v ◦2 u) =(inv1(v) ◦1 v) ◦2 (inv1(u) ◦1 u)
=ϵ1(∂

−
1 (v)) ◦2 ϵ1(∂

−
1 (u))

=ϵ1(∂
−
1 (v) ◦ ∂−1 (u))

=ϵ1(∂
−
1 (v ◦2 u))

= inv1(v ◦2 u) ◦1 (v ◦2 u).

Cancelling out v ◦2 u gives the desired result.

Observing that we can “rotate” a square by 180 degrees in two ways,
by first taking the vertical and then the horizontal inverse or vice versa, we
can prove that those are actually one and the same:

Lemma 3.3.4. For any weak double groupoid D and square u ∈ D2,

inv1(inv2(u)) = inv2(inv1(u)).

Proof. Similar to the last proof we calculate that

inv1(inv2(u)) ◦2 inv1(u) = inv1(inv2(u) ◦2 u)
= inv1(ϵ2(∂

−
2 (u)))

= ϵ2(∂
−
2 (u)

−1)

= inv2(inv1(u)) ◦2 inv1(u).

Of course, the two basic examples we saw for double categories extend
to double groupoids:

Lemma 3.3.5 (Square and shell double groupoids). If C is a groupoid, then the
square double category□′C and the shell double category□C are double groupoids.

Proof. It is easily seen for both cases that inv1(f , g, h, i) := (g, f , h−1, i−1)
and inv2(f , g, h, i) := (f−1, g−1, i, h) provide valid inverses. Thin squares
in both double categories are exactly those in (□C)2, which makes □C a
double groupoids with all squares thin.

CHAPTER 3. NON-ABELIAN TOPOLOGY 33

We will now take a look at the most important example of a double
groupoid: The fundamental double groupoid of a triple of spaces. It ex-
tends and generalizes the definition of the fundamental group and the sec-
ond homotopy group of a space. We start by extending the idea of the
set of loops based at a point by allowing multiple base points and adding
squares. Just like its classical homotopy theoretic counterpart, the follow-
ing structure does not already define a double groupoid until we quotient
out homotopy classes.

Definition 3.3.6 (Filtered maps). Let C ⊆ A ⊆ X be a nested triple of
topological spaces. We obtain sets of points, lines and squares by defining

• R(X, A, C)0 := C,

• R(X, A, C)1 := {σ : (I, ∂I) → (A, C)}, and

• R(X, A, C)2 :=
{

α : (I2, ∂I2, ∂2 I2) → (X, A, C)
}
, where

the maps are meant to be based in the sense that they should map the com-
ponents of the indicated tuples to their counterparts. In other words, the
points in R(X, A, C) are the points in C , the lines are paths in A with end-
points located in C and the two-cells are squares in X which have faces in
A and corners in C.

Note that R(X, A, C)1 in the case of C = {∗} becomes the loop space
based in ∗ and in the case of C = A = {∗} the elements of R(X, A, C)2 end
up to be maps S2 → X based in ∗.

Just as for a double groupoid we give faces, degeneracies, compositions
and inversions. They might seem familiar from classical homotopy theory
since they are just an extension of the operation that defines the loop group:

For a line σ : (I, ∂I) → (A, C), the left and right face are simply given
by σ(0) and σ(1). For a square α we define ∂−1 (α)(x) = α(0, x), ∂+1 (α)(x) =
α(1, x), ∂−2 (α)(x) = α(x, 0) and ∂+2 (α)(x) = α(x, 1).

Degenerate lines are constant maps I → C, degenerate squares α are
those where α(x, y) = σ(x) or α(x, y) = σ(y) for some line σ.

Composition of two composable squares α and β is defined analogously
to the composition of paths in the loop group:

(β ◦1 α) =

{
α(2x, y) if 0 ≤ x ≤ 1

2 ,
β(2x − 1, y) if 1

2 ≤ x ≤ 1 as well as

(β ◦2 α) =

{
α(x, 2y) if 0 ≤ y ≤ 1

2 ,
β(x, 2y − 1) if 1

2 ≤ y ≤ 1.

34 3.3. DOUBLE GROUPOIDS

Inversion is given by σ−1(x) = σ(1 − x) for a line σ and inv1(α)(x, y) =
(1 − x, y), inv2(α)(x, y) = (y, 1 − x) for a square α.

The next step is to define the fundamental double groupoid of a triple
of spaces by modding out equivalence classes of filtered maps:

Definition 3.3.7. Wedefine the fundamental double groupoid Π2(X, A, C)
of a nested triple of spaces C ⊆ A ⊆ X by defining

Π2(X, A, C)0 := C,
Π2(X, A, C)1 := R(X, A, C)1/ ≡ , and
Π2(X, A, C)2 := R(X, A, C)2/ ≡ ,

where in the first case ≡ denotes homotopy rel vertices meaning that two
paths σ and σ′ are equivalent iff there is a homotopy H : I2 → A that leaves
both endpoints fixed:

∀t ∈ I : H(t, 0) = H(0, 0) ∈ C and H(t, 1) = H(0, 1) ∈ C.

For the squares, ≡ we also require the considered homotopies H : I3 → X
to keep the corners fixed. But more, we require the homotopies thin in the
sense that for all x ∈ ∂I2 we have H(t, x) ∈ A for all t ∈ I.

It can easily be seen that the operations defined on squares and lines in
Definition 3.3.6 respect this definition of equivalence and that the resulting
structure is, indeed, a weak double groupoid.

This is furthermore the pointwhere the reason for the name “thin struc-
ture” becomes clear: To define a thin structure on Π2(X, A, C) we put the
predicate “thin” on those equivalence classes of squares that contain a
squre α : I2 → X where α(x, y) ∈ A for all x, y ∈ I. It is obvious that
this property is closed under the composition of squares and it is true by
definition that for all σ ∈ Π2(X, A, C)1 the condition is fulfilled for ϵ1(σ)
and ϵ2(σ).

If for lines f , g, h, i : I → A we have g ◦ h = i ◦ f in Π2(X, A, C), there
is a homotopy H : I2 → A rel vertices between g ◦ h and i ◦ f . It is true
that in this case we can also choose H such that f , g, h, and i lie on the four
faces of a square. We define such a choice of H to be our thin filler for that
quadruple of faces.

As a last step we have to prove that this choice is unique up to thin
homotopy. We assume that we are not only given a thin square H for lines
f , g, h, and i but also another thin square H′ for a set of lines f ′, g′, h′,

CHAPTER 3. NON-ABELIAN TOPOLOGY 35

...

c2

... c1..c3 ..

c4

.

A

Figure 3.8: Filtered presentation of the sphere.

i′, respectively equivalent to f , g, h and i. To see that H and H′ can be
“connected” with a thin homotopy, we consider them, and the homotopies
Hg, Hh, and Hi between three of the faces, as five faces of a a cube:

.

..

. .

.
H

.
Hi

.

Hh

.
H′

We can fill this cube and receive a thin homotopy I3 → X by simply
choosing a point p above the cube andmapping each point in I3 to its image
under the projection onto the box centered in p.

Before we move on to introduce another algebraic structure that is use-
ful for the analysis of the first and second homotopy group of a space, here
is an example for a space and its fundamental double groupoid:

Example 3.3.8 (The fundamental double groupoid of the sphere). Let X :=
S2 be the 2-sphere, A ⊂ X its equator and C = {c1, c2, c3, c4} ⊂ A four
points on the equator (see Figure 3.8).

Then, Π2(X, A, C) has C as point set, lines are generated by the seg-
ments c0c1, c1c2, c2c3 and c3c4. All two-cells are the result of composition
of the upper and lower hemisphere and degenerate squares on the equator.

Definition 3.3.9 (Category of double groupoids). Sincemorphisms between
groupoids are nothing but functors between their underlying categorieswe

36 3.4. CROSSED MODULES

..α..

x

..

x

..

x

..

x

.

l

.

l

.

l−1

Figure 3.9: Pasting a loop l to a disk α.

can, without changing the definition of morphisms, enhance our category
DCat of double categories to a category of weak double groupoids. This
category is thus a full subcategory of DCat.

But to a greater degree we are interested in the category of double
groupoids : This is the category DGpd containing as objects all double
groupoids and asmorphisms all double functors that preserve the attached
thin structure in the sense that they map thin squares to thin squares.

3.4 Crossed Modules
The motivation to introduce crossed modules as a tool for the analysis of
the homotopy properties of a topological space comes from observing that
in the long exact sequence of relative homotopy groups for the constella-
tion x ∈ A ⊆ X, the second relative homotopy group π2(X, A, x) and the
fundamental group π1(A, x) of the subspace are related in the following
two ways:

1. There is a boundary map π2(X, A, x) → π1(A, x) which is induced
bymapping a representative α : (D2, ∂D2) → (X, A) to its restriction
to the boundary α|∂D2 : S1 → A.

2. The group π1(A, x) acts on π2(X, A, x) by “glueing” the representa-
tive l of π1(A, x) on the disk that represents the given element [α] ∈

CHAPTER 3. NON-ABELIAN TOPOLOGY 37

π2(X, A, x). We receive the resulting disk by extending α in a degen-
erate way along l as illustrated in Figure 3.9.

These two means of interaction can furthermore be observed to fulfil more
algebraic requirements that will be captured in the definition of a crossed
module:

• The boundary of a representative which was created by pasting l ∈
π1(A, x) to a disk [α] ∈ π2(X, A, x) is the concatenation of paths l−1 ·
∂α · l.

• Thedisk resulting frompasting the boundary of a disk β ∈ π2(X, A, x)
to a disk α ∈ π2(X, A, x) is homotopic to the composition β−1 · α · β

in π2(X, A, x).

So the boundary map and the action resemble the conjugation of group ele-
ments in two different ways. This motivates bundling these properties into
a new algebraic structure:

Definition 3.4.1 (Crossed module over a group). Let P be a group. A
crossed module on P is another group M together with a group homo-
morphism µ : M → P and a group action ϕ of P on M such that:

1. For all a ∈ P, x ∈ M:

µ(ϕ(a, x)) = a · µ(x) · a−1. (3.10)

2. For all x, c ∈ M :
ϕ(µ(c), x) = c · x · c−1. (3.11)

Crossed modules are not only motivated by geometric examples but
also used to capture a very common, purely group theoretic configuration:

Example 3.4.2 (Normal subgroup crossed module). Let G be a group and
N ⊆ G a normal subgroup of G. Then N is made a crossed module on G
by the inclusion map i : N → G and the conjugation action of G on N.

Nowweare not interested in the absolute and relative homotopygroups
based in one point but want to adapt the structure to fit well to the con-
cept of fundamental groupoids instead of fundamental groups. This obvi-
ous choice to achieve this is, unsurprisingly, to replace the base group P in
the definition of a crossed module by a groupoid:

38 3.4. CROSSED MODULES

Definition 3.4.3 (Crossed module over a groupoid). Let P be a groupoid.
A crossed module over P is a group Mp for every p ∈ P together with
with a family of group homomorphisms (µp : Mp → homP(p, p))p∈P and
amap ϕ which is a groupoid action of P on M in the sense that it maps a pair
(a, x), where a ∈ homP(p, q) and x ∈ Mp, to an element of Mq, such that
ϕ(idp, x) = x, ϕ(b ◦P a, x) = ϕ(b, (ϕ(a, x)) and ϕ(a, y ·Mp x) = ϕ(a, y) ·Mq

ϕ(a, x) for all p, q, r ∈ P, x, y ∈ Mp, a ∈ homP(p, q) and b ∈ homP(q, r).
And, just in the case of crossedmodules over a group, we require µ and

ϕ to fulfil the following two essential equations:

1. For all a ∈ homP(p, q) and x ∈ Mp:

µq(ϕ(a, x)) = a ◦ µp(x) ◦ a−1 ∈ homP(q, q). (3.12)

2. For all c, x ∈ Mp :

ϕ(µp(c), x) = c · x · c−1 ∈ Mp. (3.13)

With this definition we can extend the example from the beginning of
this chapter by allowing not only x as an endpoint of the paths considered
but every point in a set C ⊆ A. This generalization results in the definition
of the fundamental crossed module of a triple of spaces C ⊆ A ⊆ X.

To make the set of crossed module a category, we need to define what
a morphism between two crossed modules should be:

Definition 3.4.4 (Morphisms between crossed modules). Let (Mp)p∈P be
a crossed module over a groupoid P, with homomorphism µ and action ϕ

and let (Nq)q∈Q be a crossed module over Q with morphism µ′ and action
ϕ′. A morphism between (Mp)p∈P and (Nq)q∈Q is a functor F between P
and Q and a family of group homomorphisms (ψp)p∈P with ψp : Mp →
NF(p) such that

• F ◦ µp = µ′
F(p) ◦ ψp for all p ∈ P and

• for all p, q : P, a ∈ homP(p, q) and x : Mp, the action is preserved:

ψq(ϕ(a, x)) = ϕ(F(a), ψp(x)).

Definition 3.4.5 (Category of crossed modules). All crossed modules on
groupoids forma categoryXModusing the previously definedmorphisms.
Crossed modules over groups are a full subcategory of XMod.

CHAPTER 3. NON-ABELIAN TOPOLOGY 39

..........

ϵ1(a−1)

.

u

.

ϵ1(a)

Figure 3.10: The result ϕ(a, u) ∈ Mq of a morphism a ∈ homP(p, q) acting
on a two-cell u ∈ Mp three of whose faces are degenerate.

3.5 Double Groupoids and Crossed Modules are
Equivalent

Comparing the fundamental crossed module and the fundamental double
groupoid we observe that these two structures contain basically the same
information. In fact, not only those particular examples do, but we can
prove that the categories DGpd and XMod are equivalent.

In this chapter, the functors γ : DGpd → XMod and λ : XMod →
DGpd will be presented as well as a proof that γλ and λγ are naturally
isomorphic to the respective identity functors.

Lemma 3.5.1 (The crossed module associated to a double groupoid). Let G
be a double groupoid. We set

P := (G0, G1) and
Mp :=

{
u ∈ G2

∣∣∂+1 (u) = ∂−2 (u) = ∂+2 (u) = ϵ(p)
}

for p ∈ G0.

Then, Mp is a group with composition ◦2, neutral element 0(p) and inverse inv2.
Let further be µ = ∂−1 and let ϕ(a, u) = ϵ1(a) ◦2 u ◦2 ϵ1(a−1) ∈ Mq for a ∈
homP(p, q) and u ∈ Mp.

The given data P, (Mp)p∈P, µ and ϕ form a crossed module γG.

Proof. We easily check that µ(ϕ(a, u)) = a ◦ u ◦ a−1 for any u ∈ Mp and
a ∈ homP(p, q). To see, that ϕ(µp(c), u) = c ◦2 u ◦2 c−1 for u, c ∈ Mp, we
consider the composite square

(c ◦2 0(p) ◦2 inv2(c)) ◦1

(
ϵ1(∂

−
1 (c)) ◦2 u ◦2 ∂−1 (c

−1)
)
,

which, when evaluated as is, resolves to ϕ(µp(c), u), but after applying the
interchange law twice becomes(

c ◦1 ϵ1(∂
−
1 (c))

)
◦2 (0(p) ◦1 u) ◦2

(
inv2(c) ◦1 ∂−1 (c

−1)
)

40 3.5. DGPD AND XMOD ARE EQUIVALENT

..............

ϵ1∂−1 (c
−1)

.

u

.

ϵ1∂−1 (c)

.

inv2(c)

.

0(p)

.

c

Figure 3.11: A composite square proving the second crossedmodule axiom
for γG.

and can be simplified to c ◦2 u ◦2 c (see Figure 3.11).
Definition 3.5.2. The construction of γG can be extended to a map from
double functors to morphisms of crossed modules and we obtain a functor
γ : DGpd → XMod.

But how can we recover a double groupoid given a crossed module on
a groupoid?
Lemma 3.5.3 (The double groupoid associated to a crossed module). Let
(Mp)p∈P be a crossed module on a groupoid P. We define

G2 :=
{
(f , g, h, i, m)

∣∣∣µ(m) = i ◦ f ◦ h−1 ◦ g−1
}

.

Then, G2 forms the set of two cells of a double groupoid λ(P, (Mp)) with the first
four projections as face maps.
Proof. Defining the vertical composition of squares u = (f , g1, h1, i1, m) and
v = (g1, g2, h2, i2, n) as v ◦1 u := (f , g2, h2 ◦ h1, i2 ◦ i2, ϕ(i2, m) · n) is well-
defined since

µ(ϕ(i2, m) · n) = i2 ◦ µ(m) ◦ i−1
2 ◦ µ(n)

= i2 ◦ i1 ◦ f ◦ h−1
1 ◦ g−1

1 ◦ i−1
2 ◦ i2 ◦ g1 ◦ h−1

2 ◦ g−1
2

= (i2 ◦ i1) ◦ f ◦ (h2 ◦ h1)
−1 ◦ g−1

2

and the horizontal composition of u = (f1, g1, h, i1, m) and v = (f2, g2, i1, i2, n)
likewise by v◦2 := (f2 ◦ f1, g2 ◦ g1, h, i2, n · ϕ(g2, m)) with

µ(n · ϕ(g2, m)) = µ(n) ◦ g2 ◦ µ(m) ◦ g−1
2

= i2 ◦ f2 ◦ i−1
1 ◦ g−1

2 ◦ g2 ◦ i1 ◦ f1 ◦ h−1 ◦ g−1
1 ◦ g−1

2

= i1 ◦ (f2 ◦ f1) ◦ h ◦ (g2 ◦ g1)
−1

CHAPTER 3. NON-ABELIAN TOPOLOGY 41

Identity squares are given by (f , f , ϵ(p), ϵ(q), 1) and (ϵ(p), ϵ(q), f , f , 1) for
f ∈ homP(p, q). Identity and associativity laws follow easily from the fact
that ϕ respects identity morphisms as well as the composition in Mp and
in P.

Definition 3.5.4. The map λ can be turned into a functor λ : XMod →
DGpd by extending it to morphisms of crossed modules.

We conclude this chapter by stating:

Theorem 3.5.5. The categories DGpd and XMod are equivalent.

Proof. We show that there are isomorphic natural transfromations γλ ≃
idXMod and λγ ≃ idDGpd.

These transformation are just the identity on points an morphisms so
we only have to consider their definition on two-cells. For a crossedmodule
(Mp)p∈P,

γ(λ(Mp)) =
{
(f , g, h, i, m)

∣∣∣ µ(m) = i ◦ f ◦ h−1 ◦ g−1, g = h = i = idp

}
= {(f , idp, idp, idp, m) | µ(m) = f }
∼= Mp.

It is easy to check that this isomorphism of groups extends to an isomor-
phism of crossed modules and that it is natural in (Mp)p∈P.

To find a suitable natural isomorphism idDGpd ≃ λγ, we have to match
the structure of two-cells in a double groupoid, which are compsable in two
dimensions, to the one-dimensional nature of a group: Assume a double
groupoidG. We have tomap each two-cell u ∈ G2 with faces f , g, h, and i to
some tuple (f , g, h, i, m)where m is a square with identity on all but its top
face. But howdowe turn a squarewith arbitrary faces to a squarewith such
constraints in a revertible way? It turns out that we can use the connections
(Definition 3.2.2) to define such a folding Φ of squares (cf. Figure 3.12):

Φ(u) := Γ−(i) ◦2 u ◦2 inv2(Γ−(h)) ◦2 inv2(id1(g))

ϕ is bijective since we can just rewrite the previous equation to

u = inv2(Γ−(i)) ◦2 Φ(u) ◦2 id1(g) ◦2 Γ−(h)

Calculations tell us furthermore that Φ is a homomorphism. Φ preserves
the thin structure on G because it maps every thin square u to the zero

42 3.5. DGPD AND XMOD ARE EQUIVALENT

..

g−1

.

h−1

.

f

.

i

.
g−1

.
g

...........

inv2 id1(g)

.

inv2 Γ−(h)

.

u

.

Γ−(i)

Figure 3.12: Folding the faces of a square u to its upper face.

square based in the lower right corner of u. This can be proved by showing
that all thin squares are compositions of identity squares and connections
and the fact that these get mapped to zero. Thus, we obtain a bijective
double functor between G and λ(γ(G)), whose naturality in G is shown
by a proof we omit for the sake of brevity.

Chapter 4

Translation and Use in Homotopy
Type Theory

In this this chapter, I will describe how the structures introduced in the
previous chapter can be translated to homotopy type theory. Besides for-
mulating the concepts using dependent types this involves caring about
the effects of univalence and proof relevance on these definitions. What
does it mean for two instances of a structure to be propositionally equal?
What truncation levels should be imposed on the parameters of said struc-
ture such that algebraic structures bear no unwanted information in their
iterated equality types?

We start off with defining the notion of a categories, and then continue
to translate the definitions from the previous chapter appropriately. Fi-
nally we will show how to apply the definitions to 2-types and define the
fundamental double groupoid and fundamental crossed module of a pre-
sented type.

The standard references for the implementation of categories I will use
in this chapter are the respective chapter of the HoTT-Book [Uni13] as well
as the paper about “Univalent Categories and the Rezk Completion” by
Benedikt Ahrens, Chris Kapulkin andMike Shulman [AKS13]. Whilemost
of the time I will stick to the (consistent) notation and terminology of both
of these, I will deviate sometimes to bring the presentation more in line
with the actual Lean implementation presented in the next chapter.

43

44 4.1. CATEGORIES IN HOMOTOPY TYPE THEORY

4.1 Categories in Homotopy Type Theory
Definition 4.1.1 (Precategory). Let A : U be a type (the object type or
carrier). A precategory C on A is constructed by giving the following data:

• For each a, b : A a type of morphisms homC(a, b) : U for which we
furthermore require that ∏(a,b:A) isSet(homC(a, b)).

• The composition of morphisms

compC : ∏
a,b,c:A

homC(b, c) → homC(a, b) → homC(a, c).

We will most of the leave the first three arguments implicit and just
write g ◦C f or g f for compC(a, b, c, g, f).

• An identity operator idC : ∏(a:A) homC(a, a).

• A witness ensuring associativity for all morphisms:

∏
a,b,c,d:A

∏
h:homC(c,d)

∏
g:homC(b,c)

∏
f :homC(a,b)

h ◦C (g ◦C f) = (h ◦C g) ◦C f

• Witnesses that the identity morphisms are neutral with respect to
composition from the left and from the right:

∏
a,b:A

∏
f :homC(a,b)

(idC(b) ◦C f = f)× (f ◦C id(a) = f)

As with all the definitions given in this semi-informal style, it is, from a
theoretical standpoint, equivalent whether to see them as a description of
an iterated Σ-Type or as the only constructor of an inductive type. We will
later (Section 5.3) see that in formalization practice it is favorable to choose
to introduce them as new inductive types instead of Σ-Types.

We also observe that, since equalities in sets are mere propositions, we
have the following lemma:

Lemma 4.1.2 (Equality of precategories). Let C and D Precategories on A with
homD :≡ homC, compC = compD and idC = idD. Then, C = D.

This also justifies the fact that we do not require further coherence con-
ditions on associativity (the “pentagon coherence law”) and identity laws.

CHAPTER 4. TRANSLATION AND USE IN HOTT 45

Definition 4.1.3 (Functors). LetCA andCB be precategories on types A and
B. A functor F between CA and CB is constructed by giving the following:

• Its definition on objects as an instance of Fobj : A → B.

• Its definition on morphisms

Fhom : ∏
a,b:A

∏
f :homCA

(a,b)
homCB(Fobj(a), Fobj(b)).

Again we will often leave out the first two arguments for Fhom and
moreover abbreviating Fhom and Fobj to F whenever the distinction is
clear.

• A proof in ∏(a:A) F(idCA(a)) = idCB(F(a)) that the identies are pre-
served and

• a proof the respects the composition in the respective categories, as
an instance of

∏
a,b,c:A

∏
g:homCA (b,c)

∏
f :homCB (a,b)

F(g ◦CA f) = F(g) ◦CB F(f)

Again, the last two ingredients turn out to bemere propositions, as they
are of Π-types over equalities in sets. This leads us to the observation that
to prove the equality of two functors, it suffices to check it on their defini-
tions on objects and morphisms:

Lemma 4.1.4 (Equality of functors). Let A, B : U and let C, D be categories on
A and B, respectively. Let F and G be two functors from C to D. If we have

p : ∏
a:A

F(a) = G(a) and

q : ∏
a,b:A

∏
f :homC(a,b)

p(b)∗ (p(a)∗(F(f))) = G(f),

then F = G.

With this definition of precategories and functors, a lot of structures can
be instantiated as such. For example, the 1-types of a universe Ui give us a
precategory with morphisms between A, B : Ui being A = B, composition
being concatenation of equalities and identity being reflexivity. But often
we will only have to deal with precategories whose carrier is a set.

46 4.1. CATEGORIES IN HOTT

Definition 4.1.5 (Strict precategory). A precategory with a set as carrier is
called strict.

One primary use for strict precategories is the following: If we wanted
to build a precategory of precategorieswe encounter the problem that func-
tors between twogiven precategories don’t generally forma set! Restricting
ourselves to strict precategories solves this problem:

Lemma 4.1.6. Let C be a precategory and D be a strict precategory. Then, the
type of functors between C and D forms a set.

Proof. For the type of functors to be a set, all parameters should be sets.
Since the definition on morphisms is a set by definition and, as we already
observed, the identity witnesses are mere propositions, the only critical
parameter is the object function. But turning the codomain of this function
into a set obviously solves the problem.

Corollary 4.1.7. For each pair of universes (Ui,Uj) there is a precategory of strict
precategories with carrier in Ui and morphism types in Uj. Morphisms of this
category are functors, with composition of functors and identity functors being
defined as obvious.

Another precategory we can consider is the precategory of sets:

Lemma 4.1.8. Let Ui be a universe. Then, the 1-type of sets in Ui forms a precat-
egory with morphisms being arbitrary functions.

But the truncation level of the carrier is not the only thing that could be
bothersome when dealing with precategories: if we look at the previous
two examples of precategories where each object itself are types, we can
conclude that if two objects are isomorphic in the algebraic sense they are
equivalent types and thus, by the univalence axiom, equal. We want to
transfer this as a requirement to all categories, extending the general idea of
univalence which says that isomorphic objects should be treated as equals.
To make this definition of a category as smooth as possible, some auxiliary
definitions will be necessary.

Definition 4.1.9 (Isomorphisms). LetC be a precategory on a type A : U . A
morphism f : homC(a, b) is called an isomorphism if there is a morphism
g : homC(b, a) that is both a left and a right inverse to f . Define furthermore

CHAPTER 4. TRANSLATION AND USE IN HOTT 47

a ∼= b for a, b : A as the type of all isomorphisms in homC(a, b). Formally:

isIsoC(f) :≡ ∑
g:homC(b,a)

(g ◦C f = idC(a))× (f ◦C g = idC(b))

a ∼= b :≡ ∑
f :homC(b,a)

isIsoC(f).

Lemma 4.1.10. For each a, b : A, a ∼= b is a set and for each f : homC(a, b),
isIso(f) is a mere proposition.

Equal objects of a category are always isomorphic:

Lemma 4.1.11. If for two objects a, b : A of a precategory C we have p : a = b,
then there exists

idtoisoa,b(p) : a ∼= b,

such that idtoisoa,a(refla) = (idC(a), . . .).

Proof. Induction on p lets us assume that p ≡ refla. But since idC(a) ◦C
idC(a) = idC(a) by either of the cancellation laws for identities, we get an
instance of a ∼= a.

Definition 4.1.12 (Category). A category C on A is defined to be a pre-
category on A which is univalent: it is accompanied by a proof that for all
a, b : A, idtoisoa,b is an equivalence.

The essential use of this extension is, of course, the inverse that idtoiso is
assumed to have: Statements about isomorphic objects become statements
about equal objects and can thus be proven using induction. There are
some important examples for univalent categories:

Lemma 4.1.13. Precategories on U and precategories on subtypes of U (i.e. on
∑(A:U) P(A) where P : U → U and ∏(A:U) isProp(P(A))) with function types
as morphisms are univalent.

Lemma 4.1.14. The precategory of strict precategories is univalent.

Proof. If two precategories are isomorphic, the functors witnessing this re-
lation restrict to an equivalence on the carrier which, by univalence, gives
us an equality between the carriers. Transported along this equality the
functors also give an equivalence between the morphism types of two ob-
jects. Again, we use univalence, this time to gain an equality between the
sets of morphisms. By lemma we conclude that two isomorphic precate-
gories are equal.

48 4.2. DOUBLE GROUPOIDS IN HOMOTOPY TYPE THEORY

Lemma 4.1.15. If there is a univalent category on a type A : U , then A is a 1-type.

Proof. For all a, b : A, the fact that a ∼= b is a set implies that, since trun-
cation levels are preserved by equivalences, also a = b is a set. But by
definition, this proves that A is 1-truncated.

A last definition is the one of a groupoid. Here, the univalent case is
rather uninteresting since the structure of the groupoid is completely de-
termined by the carrier.

Definition 4.1.16 ((Pre-)Groupoids). A (pre-)groupoid is a (pre-)category
C on A : U together with

allisoC : ∏
a,b:A

∏
f :homC(a,b)

isIso(f).

4.2 Double groupoids in Homotopy Type The-
ory

Aswe sawwhen introducing (pre-)categories in homotopy type theory, we
use dependent types to model the type of morphisms. Instead, we could
have said that a category is defined on two types A, H ∈ U where A repre-
sents the objects and H is one type ofmorphisms. Thiswould have required
us to give functions ∂−, ∂+ : H → A specifying domain and codomain of
morphisms and the composition to be of the type

∏
g, f :H

(
∂+(f) = ∂−(g) → ∑

h:H

(
∂−(h) = ∂−(f)

)
×
(
∂+(h) = ∂+(g)

))
.

The difference between this approach and the one we chose is that mor-
phisms are only composable if their respective codomain and domain are
definitionally the same. Each approach is advantageous in some situations:
Using dependent typeswill force usmore often to use transports to achieve
definitional equality on codomain and domain, using ∂− and ∂+ requires
an identity proof for each composition we want to construct.

For the implementation of double categories and double groupoids I
decided to adopt the dependently typed concept that is commonly also
used to formalize categories. Also note that in the following definition we
will not require the 1-skeleton of a double category to be univalent since

CHAPTER 4. TRANSLATION AND USE IN HOTT 49

in our intended main use of the structures the object type will not be 1-
truncated and thus the 1-skeleton, as seen in Lemma 4.1.15, not a univalent
category.

Definition 4.2.1 (Double category). A double category D is constructed by
giving the following components:

• A set D0 : U of objects.

• A precategory C on D0. To be consistent with the notation in the last
chapter, we will write D1(a, b) : U for homC(a, b).

• A dependent type of two-cells:

D2 : ∏
a,b,c,d:D0

∏
f :D1(a,b)

∏
g:D1(c,d)

∏
h:D1(a,c)

∏
i:D1(b,d)

U

We will always leave the first four parameters implicit and write
D2(f , g, h, i) for the type of two-cells with f as their upper face, g as
their bottom face, h as their left face, and i as their right face.

• The vertical composition operation: For all a, b, c1, d1, c2, d2 : D0 and
f1 : D1(a, b), g1 : D1(c1, d1), h1 : D1(a, c1), i1 : D1(b, d1), g2 : D1(c2, d2),
h2 : D1(c1, c2), and i2 : D1(d1, d2) the composition of two cells

D2(g1, g2, h2, i2) → D2(f , g1, h1, i1) → D2(f1, g2, h2 ◦ h1, i2 ◦ i1).

As this is pretty verbose, we will, from now on, refrain from writing
out parameters that only serve to can easily be inferred from the rest
of the term.
We will denote the vertical composition of v : D2(g1, g2, h2, i2) and
u : D2(f , g1, h1, i1) with v ◦1 u leaving all other information implicit.

• The vertical identity id1 : ∏(a,b:D0) ∏(f :D1(a,b)) D2(f , f , idC(a), idC(b)).

• For allw : D2(g2, g3, h3, i3), v : D2(g1, g2, h2, i2), and u : D2(f , g1, h1, i1)
awitness for the associativity of the vertical composition assoc1(w, v, u)
in

assoc(i3, i2, i1)∗(assoc(h3, h2, h1)∗(w ◦1 (v ◦1 u))) = (w ◦1 v) ◦1 u,

where assoc is the associativity proof in the 1-skeleton. The transport
is required since the cells at the left and right side of the equation do
not definitionally have the same set of faces.

50 4.2. DOUBLE GROUPOIDS IN HOTT

• For every u : D2(f , g, h, i) we need proofs idLeft1(u) and idRight1(u)
that the following equations hold:

idLeft(i)∗(idLeft(h)∗(id1 ◦1u)) = u and
idRight(i)∗(idRight(h)∗(id1 ◦1u) = u.

Again, the transports are needed to account for the difference in the
faces of the two squares we compare.

• Of course, we need a horizontal composition and identity:

◦2 : ∏
...

D2(f , g, h, i) → D2(f2, g2, i, i2) → D2(f2 ◦ f , g2◦, h, i2)

id2 : ∏
a,b:D0

∏
f :D1(a,b)

D2(idC(a), idC(b), f , f)

• Analogously to the ones above, we need the associativiy and identitiy
proofs for the horizontal composition:

assoc2 : assoc(g3, g2, g1)∗(assoc(f3, f2, f1)∗(w ◦2 (v ◦2 u)))
= (w ◦2 v) ◦1 u,

idLeft2 : idLeft(g)∗(idLeft(f)∗(id2 ◦2u)) = u, and
idRight2 : idRight(g)∗(idRight(f)∗(id2 ◦2u) = u,

for every u : D2(f , g, h, i), v : D2(f2, g2, i, i2), and w : D2(f3, g3, i2, i3).

• For every f , g, h, and i, the type of two-cells D2(f , g, h, i) must be a
set.

• The identities should distribute over the respective other composition
(compare (3.4)):

∏
a,b,c:D0

∏
f :D1(a,b)

∏
g:D1(b,c)

id2(g ◦ f) = id2(g) ◦1 id2(f)

∏
a,b,c:D0

∏
f :D1(a,b)

∏
g:D1(b,c)

id1(g ◦ f) = id1(g) ◦2 id1(f)

• Corresponding to the equation (3.3), we need a proof that there is
only one, unique, zero-square for each point:

∏
a:D0

id1(idC(a)) = id2(idC(a))

CHAPTER 4. TRANSLATION AND USE IN HOTT 51

• Finally, as introduced in equation (3.5), the interchange law should
hold:

∏
...
(x ◦2 w) ◦1 (v ◦2 u) = (x ◦1 v) ◦2 (w ◦1 u)

Consider that here, the “…” indexing the iterated Π-type hide a list
of 9 points in D0, 12 morphisms and four squares. We will continue
to hide the indexing of two-cells for the sake of readability.

This list of necessary parameters of a constructor to a double category
might seem long at first glance, but the fact that we implemented the two-
cells as dependent types released us from the duty of adding the cubical
identities (3.1) and (3.2) propositionally. Not only those, but also the four
first equations in (3.4) hold by definition! Formulating the definition using
three different categories would have rendered this impossible. But the
notion of the two categories of two-cells is still accessible in the formaliza-
tion:

Definition 4.2.2. We can recover what in Definition 3.1.1 we called the
vertical precategory of a double category D as a category V on the type
A :≡ ∑(a,b:D0) D1(a, b) with morphisms

homV((a, b, f), (c, d, g)) :≡ ∑
h:D1(a,c)

∑
i:D1(b,d)

D2(f , g, h, i)

and composition (h2, i2, v) ◦V (h1, i1, u) :≡ (h2 ◦ h1, i2 ◦ i1, v ◦1 u). The cor-
responding category axioms can easily be proved to follow from the ones
of the 1-skeleton of D and their counterparts in Definition 4.2.1.

The horizontal precategory H of D is defined likewise.

But how do the basic examples 3.1.3 of a square double category and
a shell double category translate into HoTT? Stating them is surprisingly
straight-forward:

Example 4.2.3 (Square and shell double category). The square double cat-
egory on a precategory C on a Type A : U can be instantiated as the double
category having, of course, C as a one skeleton, and setting D2(f , g, h, i) :≡
1. By doing this, the type of squares does not contain anymore information
than its arguments. For every quadruple of morphisms forming a square,
there is exactly one two-cell. All necessary conditions to make this a dou-
ble category hold trivially after defining id1(f) ≡ id2(f) ≡ (u ◦1 v) ≡
(u ◦2 v) :≡ ⋆ : 1.

52 4.2. DOUBLE GROUPOIDS IN HOTT

For the commutative square double category, one might be inclined
to set D2(f , g, h, i) :≡ ∥g ◦ h = i ◦ f ∥ since each commuting set of faces
should not be inhabited by more than one element. But since morphisms
between given objects form a set, the commutativity witness is already a
mere proposition and we can, without any doubts, define D2(f , g, h, i) :≡
(g ◦ h = i ◦ f). Composition and identities can be defined like stated in
3.1.3, the remaining properties follow easily by the truncation imposed on
morphisms and two-cells.

When defining thin structures, wewant the uniqueness of a thin filler of
a commutative shell to be represented by a functional dependency. By this,
we will have more definitional equalities between thin squares than we
would get if we defined thin squares to be a mere proposition depending
on a quadruple of morphisms.

Definition 4.2.4 (Thin structure). We define a thin structure T on a double
category D to consist of:

• A dependent function selecting a thin square for each commuting
square:

thin : ∏
a,b,c,d:D0

∏
f :D1(a,b)

∏
g:D1(c,d)

∏
h:D1(a,c)

∏
i:D1(b,c)

g ◦ h = i ◦ f

→ D2(f , g, h, i)

• For each a, b : D0, f : D1(a, b), and p : f ◦ id(a) = id(b) ◦ f , q :
id(b) ◦ f = f ◦ id(a), we have thin(f , f , id(a), id(b), p) = id1(f) and
thin(id(a), id(b), f , f , q) = id2(f). We could have abstained from
quantifying over the commutativity proofs and just used idRight(f) �
idLeft(f)−1 and idLeft(f) � idRight(f)−1 as canonical choices for p and
q. But since p and q are proofs for a mere proposition this would
yield in an equivalent definition which is a bit easier to instantiate
but much less convenient to use.

• For any adjacent squares u and v, thin(v) ◦1 thin(u) = thin(v ◦1 u) and
thin(v) ◦2 thin(u) = thin(v ◦2 u) where appropriate. Here, besides
quantifying over 6 objects, 7 morphisms, and two squares, we also
quantify over every commutativity proof for the shell of u, v, as well
as their respective composite.

Definition 4.2.5 (Weakdouble groupoid). Aweak double groupoid is con-
structed by giving:

CHAPTER 4. TRANSLATION AND USE IN HOTT 53

• A double category D with objects D0, morphisms D1 and two-cells
D2.

• A proof that the 1-skeleton of D is a pregroupoid.

• Vertical and horizontal inverses

inv1 : ∏
a,b,c,d:D0

∏
f ,g,h,i

D2(f , g, h, i) → D2(g, f , h−1, i−1) and

inv2 : ∏
a,b,c,d:D0

∏
f ,g,h,i

D2(f , g, h, i) → D2(f−1, g−1, i, h)

• Proofs that inv1 and inv2 actually are inverses with respect to vertical
and horizontal composition:

leftInv1(u) : leftInv(i)∗
(
leftInv(h)∗(inv1(u) ◦1 u)

)
= id1(f),

rightInv1(u) : rightInv(i)∗
(
rightInv(h)∗(u ◦1 inv1(u))

)
= id1(g),

leftInv2(u) : leftInv(g)∗
(
leftInv(f)∗(inv2(u) ◦2 u)

)
= id2(h), and

rightInv2(u) : rightInv(g)∗
(
rightInv(f)∗(u ◦2 inv2(u))

)
= id2(i),

for every u : D2(f , g, h, i). Here we again leave implicit most of the
arguments. leftInv and rightInv are the respective witnesses for id in
the 1-skeleton of D along which we again have to transport to make
the statement well-typed.

Finally, we can definewhat a double groupoid in homotopy type theory
should be:

Definition 4.2.6 (Double groupoid). A double groupoid is a weak double
groupoid together with a thin structure on it.

We conclude by noting that our double categories and double group-
oids here are strict, since we defined them to be on set-truncated carriers.
Of course, we could omit this condition to obtain a notion of non-strict dou-
ble categories and double groupoids. Most of my formalization does not
assume those structures to be strict, but we need to include the strictness
whenever we want to deal with the category of double categories or the cate-
gory of double groupoids, because double functors will only form a set when
their codomain is strict.

Another question that could be asked is what it means for a double
category to be univalent. The most reasonable condition would be that,

54 4.2. DOUBLE GROUPOIDS IN HOTT

besides the 1-skeleton, also the vertical and horizontal precategory should
be univalent. While our main example of a fundamental double groupoid
will turn out to be univalent, I could not find a way to gain advantage by
restricting general considerations on double groupoids on univalent ones.

Definition 4.2.7 (Double functor). A double functor F between double cat-
egories D and E shall consist of the following data:

• A functor between the respective 1-skeleton ofD and E. Wewill write
F0 for the function on objects of D and F1 for the function on mor-
phisms of D.

• For all shells (f , g, h, i) we have a function

F2 : D2(f , g, h, i) → D2(F1(f), F1(g), F1(h), F1(i))

• F respects the vertical and horizontal identities: For all a, b : D0 and
f : D1(a, b), we have proofs respectId1(f) and respectId2(f) for

respectId(b)∗
(
respectId(a)∗(F2(id1(f)))

)
= id1(F1(f)) and

respectId(b)∗
(
respectId(a)∗(F2(id2(f)))

)
= id2(F1(f)).

• F is linear with respect to vertical and horizontal composition:

respectComp(i2, i1)∗
(
respectComp(h2, h1)∗(F2(v ◦1 u))

)
=F2(v) ◦1 F2(u) and
respectComp(g2, g1)∗

(
respectComp(f2, f1)∗(F2(v ◦2 u))

)
=F2(v) ◦2 F2(u),

wherever the respective composition of u and v is defined and where
respectComp is the witness that the functor on the 1-skeletons is linear
with respect to morphisms in D1.

Lemma 4.2.8. Double categories and double functors form a univalent category.
Weak double groupoids are a full subcategory of this category.

Proof. The proof can be done like the one of Lemma 4.1.14.

CHAPTER 4. TRANSLATION AND USE IN HOTT 55

4.3 Crossed Modules in Homotopy Type Theory
When defining crossed modules, there is less room for decisions, like in
what extent to rely on dependent types, than in the case of double cate-
gories and double groupoids. We use strict groupoids as base as well as a
family of groups that have a set as their carrier:

Definition 4.3.1 (Crossed module). A crossed module is defined as com-
prised of the following information:

• A strict groupoid P on a carrier P0 : U .

• A family of types M : P0 → U where for each p : P0 wehave isSet(Mp)
and a group structure on Mp, whose operation we will denote with
“·”.

• A family µ : ∏(p:P0) Mp → homP(p, p) of functions which all are
group homomorphisms:

∏
p:P0

∏
y,x:M(p)

µp(y · x) = µp(y) ◦ µp(x),

∏
p:P0

µp(1) = idP(p).

• An action ϕ : ∏(p,q:P0) homP(p, q) → Mp → Mq of P on M, which
means that

∏
p:P0

∏
x:Mp

ϕ(idP(p), x) = x,

∏
p,q,r:P0

∏
g:homP(q,r)

∏
h:homP(p,q)

∏
x:Mp

ϕ(g ◦ f , x) = ϕ(g, ϕ(f , x)), and

∏
p,q:P0

∏
f :homP(p,q)

∏
y,x:Mp

ϕ(f , y · x) = ϕ(f , y) · ϕ(f , x).

• Finally, proofs for the required relation between the action ϕ and con-
jugation in the respective structures:

∏
p,q:P0

∏
f :homP(p,q)

∏
x:Mp

µq(ϕ(f , x)) = f ◦ µp(x) ◦ f−1 and

∏
p:P0

∏
c,x:Mp

ϕ(µp(c), x) = c · x · c−1.

56 4.4. PRESENTED TYPES

Here, in both equations we have to decide for one of the two ways
to place parentheses in the right-hand side of the equation, because
associativity only holds propositionally. Either way will cause us to
require transporting, in the formalization I went with binding always
to the right.

Another definitionwhichwill cause no surprise is the one ofmorphisms
between crossed modules:

Definition 4.3.2 (Morphisms of crossed modules). A morphism between
two crossed modules X and Y on base groupoids P and Q and group fam-
ilies M and N is defined to be comprised of a functor F between the respec-
tive base groupoids and a family of functions ψ : ∏p:P0

Mp → NF(p) which
should satisfy the following equations:

∏
p:P0

∏
y,x:Mp

ψp(y · x) = ψp(y) · ψp(x),

∏
p:P0

∏
x:Mp

F(µp(x)) = µF(p)(ψp(x)), and

∏
p,q:P0

∏
f :homP(p,q)

∏
x:Mp

ψq(ϕ(f , x)) = ϕ(F(f), ψp(x)).

4.4 Presented Types

In this section we want to transfer what in Chapter 3 were the fundamen-
tal double groupoid and the fundamental crossedmodule of a space to the
world of higher types. This, of course involves more than just replacing
each occurrence of the word “space” with the word “type” but requires
more restriction to the kind of information one has to provide to character-
ize a type by the introduced algebraic structures.

In the topological settingwe did not impose any conditions on the topo-
logical properties of the components of the nested triple of spaces – even if
we pictured C as a disjoint union of points, A as one-dimensional and X as
two-dimensional in our Example 3.3.8 of the fundamental double groupoid
of a 2-sphere. To meet the truncation level requirements when instantiat-
ing the fundamental double groupoid of a triple of types we have to make
the truncation levels of the types increase in order of the inclusions. This
leads us to the following definition:

CHAPTER 4. TRANSLATION AND USE IN HOTT 57

Definition 4.4.1. A presented 2-type is a triple (X, A, C) of types X, A, C :
U together with functions ι : C → A and ι′ : A → X where X is a 2-type,
A is a 1-type and C is a set.

Example 3.3.8 matches these requirements:

Example 4.4.2. The 2-sphere S2 can be defined as the higher inductive type
on

• Four points c1, c2, c3, c4 : S2,

• equalities p12 : c1 = c2, p23 : c2 = c3, p34 : c3 = c4, and p41 : c4 = c1,
representing the equator, and

• two higher equalities n, s : p12 � p23 � p34 � p41 = reflc1 , representing the
northern and southern hemisphere.

Using this definition we can define C to be the set {c1, c2, c3, c4}, A to be
the higher inductive type S1 generated only by the points c1, . . . , c4 and the
equalities p12, . . . , p41, and X :≡ S2. ι : C → A is the obvious embedding
mapping ci 7→ ci and ι′ : A → X is defined by induction on A with ι′(ci) :≡
ci : X and apι′(pi) = pi.

Then, (
∥∥S2
∥∥

2 , A, C) is a presented 2-type.

We can now define the fundamental double groupoid of a presented
type. As it can be derived from the example above, the objects in C will cor-
respond to the objects of the groupoid, while morphisms in the groupoid
will be equalities A and two-cells will be equalities between equalities in
X. Wewill start by first considering the 1-skeleton of this double groupoid.

Definition 4.4.3 (Fundamental groupoid). Let A : U be a 1-type, C : U be a
set and ι : C → A. The fundamental double groupoid G1(A, C) associated
to this data is a groupoid on the carrier C with homG1(A,C)(a, b) :≡

(
ι(a) =

ι(b)
)
for all a, b : C and g ◦ f :≡ f � g for all f : ι(a) = ι(b) and g : ι(b) = ι(c).

Proof. The obvious choice for identity morphisms is setting idG1(A,C) :≡
∏(a:C) reflι(a). Associativity aswell as neutrality of idG1(A,C) follows directly
from the respective properties of equalities. Inverses of morphisms are
defined to be the reversed paths.

58 4.4. PRESENTED TYPES

Definition 4.4.4 (Fundamental double groupoid). Let (X, A, C) be a pre-
sented 2-type related by ι : C → A and ι′ : A → X. The fundamental dou-
ble groupoid G2(X, A, C) of this triple is defined as having the fundamen-
tal groupoid G1(A, C) as 1-skeletonwhile the dependent type G2(X, A, C)2
of two-cells is defined as:

∏
a,b,c,d:C

∏
f :ιa=ιb

∏
g:ιc=ιd

∏
h:ιa=ιc

∏
i:ιb=ιd

apι′(h) � apι′(g) = apι′(f) � apι′(i) (4.1)

Proof. Let us start by defining the vertical composition of two-cells: Let

u : apι′(h1) � apι′(g1) = apι′(f) � apι′(i1) and
v : apι′(h2) � apι′(g2) = apι′(g1) � apι′(i2).

Then, we obtain v ◦1 u as the following concatenation of paths:

apι′(h1 � h2) � apι′(g2) = (apι′(h1) � apι′(h2)) � apι′(g2)

= apι′(h1) � (apι′(h2) � apι′(g2))

= apι′(h2) � (apι′(g1) � apι′(i2))
= (apι′(h2) � apι′(g1)) � apι′(i2)
= (apι′(f) � apι′(i1)) � apι′(i2)
= apι′(f) � (apι′(i1) � apι′(i2))
= apι′(f) � apι′(i1 � i2).

(4.2)

Here, the first and last equation (an instance of the general theorem say-
ing that ap is distributive over the concatenation of paths) is what keeps
this definition from being a special case of the shell double category (Def-
inition 4.2.3) and makes its formalization a lot more difficult. Horizontal
composition is given analogously, a vertical identity square for amorphism
f : ι(a) = ι(b) consists of

apι′(reflιa) � apι′(f) ≡ reflι′ιa � apι′(f)
= apι′(f)
≡ apι′(f) � reflι′ιb

≡ apι′(f) � apι′(reflιb),

where it depends on the exact definition of equality as an inductive type
whether the second and third equality are judgmental.

Proving associativity, identity laws and the interchange law can be done
all by using the following scheme:

CHAPTER 4. TRANSLATION AND USE IN HOTT 59

1. First, we prove a version of the lawwhere points, paths and two-cells
all lie in one 2-type X. In this setting we can apply induction to the
first and second order paths involved which makes all of the laws
reduce to the form refl = refl.

2. Then, we use the that proof to show the actual instance of the laws.
Because of transports along laws in for the 1-skeleton (i.e. assoc, idLeft
and idRight) and transports along the theorem that equates apι′(p � q)
an apι′(p) � apι′(q), we first end up with an equation that contains lots
of “unnecessary” transport.

3. We can eliminate these transports by then assuming that there is no ι,
but points and paths lie in Awhile two cells are equalities in X. Here,
we can apply induction to the first order paths involved but not the
iterated ones.

I will refrain from stating these proofs in detail and I will give an example
in Section 5.7 when presenting the formalization in Lean.

The vertically inverse of a square u : apι′(h) � apι′(g) = apι′(f) � apι′(i) is
again given by using the functoriality of apι′ :

apι′(h
−1) � apι′(f) = apι′(h)

−1 � apι′(f)

= apι′(g) � apι′(i)
−1

= apι′(g) � apι′(i
−1).

The final question that remains is which squares should be defined as
thin. The answer is to regard a square in G2(X, A, C)2(f , g, h, i) as thin as
soon as it is already be “filled” in A: For every shell (f , g, h, i) and p : h � g =
f � i we get a thin square from

apι′(h) � apι′(i) = apι′(h � i)
= apι′(f � i)
= apι′(f) � apι′(i).

This again connects the name “thin” to its actual geometric interpretation.

60 4.4. PRESENTED TYPES

Chapter 5

A Formalization in the Lean
Theorem Prover

My main goal in this thesis project was the formalization and application
of Ronald Brown’s structures for non-abelian algebraic topology in the the-
orem prover Lean. Lean, at the point of timewhen I startedworking onmy
project, was still in a very early stage of development and did not only lack
any automation but also a basic library for homotopy type theory. Thus, we
will first take a look at the basic language elements and technologies used
in Lean and then describe the strategies, the structure and the pitfalls we
encountered when building up a library for basic homotopy type theory,
for categories in homotopy type theory, and finally for double groupoids
and crossed modules.

5.1 The Lean Theorem Prover
The development of the theorem prover Lean was initiated in 2013 by Leo-
nardo de Moura. De Moura had previously been working on the auto-
mated theoremprover Z3, one of the leading solvers for problem sets in the
SMT standard. With Lean, he intends to create a interactive theorem prov-
ing system that connects the strength of solvers like Z3with the expressive-
ness and flexibility of interactive systems like Agda, Coq or Isabelle. While
in the world of automated theorem proving the verification of a statement
results in a yes-or-no answer at best accompanied by a counterexample in
the case that the statement gets refuted, in interactive theorem proving, we
are interested in an actual proof that a statement is correct. Since in homo-
topy type theory it is relevant which proof of a theorem we consider and

61

62 5.1. THE LEAN THEOREM PROVER

since proofs of theorems can be part of another definition or theorem, the
proofs in an interactive theorem prover suitable for homotopy type theory
should even be objects in the language itself. Lean has twomodes: One for
standard, proof irrelevant mathematics and one for homtopy type theory.
In the following, I will only explain the features of the latter. The explana-
tions are not intended to be a tutorial for the system, but should equip the
reader with the knowledge necessary to read the code excerpts in the later
chapters.

A first ingredient to the language are type universes. Instead of us-
ing U , universes in Lean are denoted as Type.{l}, where l is the level
of the universe. Of course, Type.{l} is an object of Type.{l+1}. But in
contrast to homotopy type theory as presented in the HoTT book [Uni13],
type universes in Lean are non-cumulative, i.e. A : Type.{l} does not entail
A : Type.{l+1}.

Definitions can be universe polymorphic, whichmeans that, when no con-
crete universe levels are given, Lean will keep the definition as general as
possible regarding universe levels of arguments and return type. The in-
stantiation of a definition A at a universe l can be received manually by
writing A.{l}. To have manual control over the coherence of universe lev-
els of definitions in a certain scope, variable universe levels can be declared
using the command universe variable. The following snippet shows uni-
verse polymorphism (introducing an implicit universe placeholder l_1)
and the use of universe variables:

1 check Type -- Prints Type.{l_1} : Type.{l_1+1}

2

3 universe variable l

4 check Type.{l} -- Prints Type.{l} : Type.{l+1}

The only built-in type formers are (dependent andnon-dependent) func-
tion types, structures, and inductive families.

The type of functions between types A and B is written as A → B. A

and B do not have to lie in the same universe to form this type and the
universe level of the function type is the maximum of the level of domain
and codomain type. Lambda abstraction and function application can be
written like known from e.g. Haskell. β reduction is applied automatically
for each output, η conversion is applied when necessary in the unification
process.

CHAPTER 5. FORMALIZATION IN LEAN 63

1 variables (A B : Type) (a : A) (b : B) (f : A → B)

2

3 check A → B -- Prints A → B : Type.{max l_1 l_2}

4 check (λ (x : A), b) -- Prints λ (x : A), b : A → B

5 check (f a) -- Prints f a : B

6 check (λ x, f x) a -- Prints f a : B

An important special case of non-dependent function types are type
families of the form A → Type. For every P : A → Type we can form the
Π-type Π (x : A), P x over P. Actually, non-dependent function types
are just treated as the special case of dependent functions where P is con-
stant. The Π-type Π (x : A), B for A B : Type is automatically reduced
to A → B.

1 variables (A B : Type) (P : A → Type) (Q : Π (x : A) , P x → Type)

2 variables (p : Π (x : A), P x) (a : A)

3

4 check p a -- Prints p a : P a

5 check Q a -- Prints Q a : P a → Type

6 check (λ (x : A), Q x (p x)) -- Prints λ (x : A), Q x (p x) : A → Type

Lean furthermore allows the definition of inductive types and inductive
families. To construct an inductive type, one must give a list of parame-
ters the type should depend on and a list of constructors. This makes the
definition of important types like the natrual numbers or the identity type
possible. The dependent recursor for inductive types is generated auto-
matically by the kernel:

1 inductive nat : Type :=

2 zero : nat,

3 succ : nat → nat

4 check nat.succ nat.zero -- Prints nat.succ nat.zero : nat

5 check @nat.rec_on -- Prints Π {C : nat → Type} (n : nat), C nat.zero →
6 -- (Π (a : nat), C a → C (nat.succ a)) → C n

1 inductive eq (A : Type) (a : A) : A → Type :=

2 refl : eq A a a

3 variables (A : Type) (a : A)

4 check @eq.refl A a -- Prints eq.refl a : eq A a a

5 check @eq.rec_on A a -- Prints Π {C : Π (a_1 : A), eq A a a_1 → Type}

6 -- {a_1 : A} (n : eq A a a_1),

7 -- C a (eq.refl a) → C a_1 n

64 5.1. THE LEAN THEOREM PROVER

We can not only define single inductive types but also families of in-
ductive types [Dyb94], which we can define by recursion on the index of
the family:

1 open nat

2

3 inductive vec (A : Type) : ℕ → Type :=

4 nil : vec A 0,

5 cons : Π (n : ℕ), A → vec A n → vec A (n+1)

6

7 open vec

8 variables (A : Type) (a : A)

9 check @vec.rec_on A -- Prints Π {C : Π (a : ℕ), vec A a → Type} {a : ℕ}
10 -- (n : vec A a), C 0 (nil A) →
11 -- (Π (n : ℕ) (a : A) (a_1 : vec A n), C n a_1

12 -- → C (n + 1) (cons n a a_1)) →
13 -- C a n

14 check cons 0 a (nil A) -- Prints cons 0 a (nil A) : vec A (0+1)

A widely used subclass of inductive types are structures, which are
similar to what is often referred to as “records”. Structures are induc-
tive types which are non-recursive and only have one constructor. That
means that they are equivalent to iterated sigma types but, among other
advantages, have named projections. Structures provide a basic inheri-
tancemechanism as they can extend arbitrarilymany other structures with
coercions to each parent structure being added automatically:

1 structure graph (V : Type₀) :=

2 (E : V → V → Type₀)

3

4 structure refl_graph (V : Type₀) extends graph V :=

5 (refl : Π (v : V), E v v)

6

7 structure trans_graph (V : Type₀) extends graph V :=

8 (trans : Π (u v w : V), E u v → E v w → E u w)

9

10 structure refl_trans_graph (V : Type₀) extends refl_graph V, trans_graph V

11

12 variables (V : Type₀)

13 check graph.E (refl_graph.mk (λ (a b : V), a = b) eq.refl)

14 /- Prints

15 graph.E (refl_graph.to_graph

16 (refl_graph.mk (λ (a b : V), a = b) eq.refl)) :

17 V → V → Type₀ -/

CHAPTER 5. FORMALIZATION IN LEAN 65

As one can already seen in these small examples, writing out the full
names and the complete list of parameters for each call of a defined func-
tion can be very tedious. Lean implements some features that allow its
users to make theory files more succinct and readable by leaving out infor-
mation that can be inferred automatically by Lean.

One feature that allows more brevity are implicit arguments. To mark
an argument to a definition to be automatically inferred by Lean, the user
can mark it with curly brackets instead of round brackets when listing it in
the signature of the definition. Of course the missing arguments have to
be such that they can be uniquely determined by the unification process,
otherwise the unifier will return an appropriate error message whenever
the definition is used. The user can make all arguments in a function call
implicit by prepending a ! to the definition name. The opposite, making
all arguments explicit, can be achieved by prepending the symbol @. By
default, implicit arguments are maximally inserted. That means, that any
expression of a Π-type with its first argument implicit is not interpreted
as is but already further applied by inference of that argument. By using
double curly brackets {|...|} instead of single curly brackets, the user can
change this behaviour to be more passive and only infer an argument au-
tomatically if it precedes a explicitely stated one:

1 definition inverse {P : Type} {x y : P} (p : x = y) : y = x :=

2 eq.rec (eq.refl x) p

3 check inverse -- Prints inverse : ?x = ?y → ?y = ?x

4

5 definition id {|A : Type|} (a : A) := A

6 check id -- Prints id : Π {|A : Type|}, A → Type

7

8 variables {A : Type} (a : A)

9 check id a -- Prints id a : Type

Another useful feature to organize formalizations and shorten code is
the interaction between namespaces and overloading. In general there are
no restrictions on overloading theorem names but each additional over-
load with the same name makes it harder for the elaborator to figure out
which one it needs to use in a certain case. To make overloads more or-
ganized, definitions can be put in hierarchical namespaces which can be
opened selectively. Opening a namespace makes each theorem in that
namespace available to be calledwith its name as stated in the definition in-
side that namespace, as opposed to giving its absolute name. Definitions
can be marked as protected to prevent their names from being pruned

66 5.1. THE LEAN THEOREM PROVER

and as private to exclude them from exporting completely. Furthermore,
opening namespaces enables the use of notations defined in that names-
pace.

1 open nat

2

3 namespace exponentiation

4 definition squared (a : ℕ) := a * a

5 notation a`²`:100 := squared a

6 end exponentiation

7

8 open exponentiation

9 check squared -- Prints squared : ℕ → ℕ
10 eval 4² -- Prints 16

Often, consecutive definitions share a lot of arguments. To avoid the need
to repeat those arguments for eachdefinition, Leanprovides sectionswhich
serve as scopes for common variables. Besides variables, there are
parameters which will not be generalized until the context or section is
closed.

One last feature helping to create short and readable files are type class-
es. Aftermarking an inductive type or a family of inductive type as [class],
we can declare definitions which are objects of this type as [instance].
Then, we can use a fourth mode of argument implicitness (besides (...),
{...}, and {|...|}) denoted by [...] to tell Lean that it should infer this
argument by filling in one of the instances of the required type. The selec-
tion of one out of several fitting instances can be influenced by assigning
priorities to the instance declarations. Type classes are a tool for achieving
canonicity. One important application is the fixation of instances of alge-
braic structures on certain types or their closure under certain type form-
ers, for example the structure of an abelian group on the type of integers
or the direct product of groups as a canonical group structure on a prod-
uct type. By marking theorems as instances which themselves have type
class parameters, we can put quite some automation load on the type class
resolution algorithm. In the following example we give a canonical graph
structure on the natural numbers and prove that the resulting graph is se-
rial:

CHAPTER 5. FORMALIZATION IN LEAN 67

1 open nat eq sigma.ops

2

3 structure graph [class] (V : Type₀) := (E : V → V → Type₀)

4

5 definition nat_graph [instance] : graph nat := graph.mk (λ x y, y = x+1)

6

7 definition is_serial (V : Type₀) [G : graph V] := Π x, Σ y, graph.E x y

8

9 definition nat_serial : is_serial nat := λ x, ⟨x+1, idp⟩

In all previous examples, we stated all definitions and proofs by giving
the whole term at once. In some theorem provers like Agda [Nor09], this
method, support by the presence of let and where terms, is used for all
proofs while others, like Coq [BBC+97], rely on the use of tactics. Tactics
are sequentially executed commands that transform a given proof goal into
a set of (potentially) easier to solve goals. Lean allows both approaches to
be used purely or even intertwined, using tactics for subterms of a declara-
tive proofs. The user candeclare a proof in tacticmodewith begin ... end.
As soon as the tactic block has been successfully filled in with tactic calls,
the full proof term gets elaborated, type checked, and is, from there on, in
distinguishable from a declaratively entered proof.

The tactics in Lean are still under development and will be extended in
near future. Thus, I will only give a list of the tactics that were used at the
time of writing the formalizations in this thesis:

• The tactic exact takes a proof term as argument which it uses to solve
the first subgoal completely. If Lean fails to infer every argument that
is not stated explicitly or if Lean cannot unify the expression with the
goal, the tactic fails.

• If one wants to work on the current first subgoal with an arbitrary
theorem without already solving it completely, one can use apply. It
unifies the theoremwith the subgoal but opposed to failing it creates
a new subgoal for each undetermined or unresolved argument of the
stated theorem. The new subgoals are added from the last argument
to the first. Arguments, that can be inferred from later arguments
will not be converted to a new subgoal.

• Sometimes, one wants to prove premises or give arguments in the
order they appear in the statement of the applied theorem. This can

68 5.1. THE LEAN THEOREM PROVER

be achieved by using fapply. In general, it results in more subgoals
than apply.

• Using assert lets the user prove a named hypothesis which then is
added to the context for the rest of the main proof.

• If the current subgoal is a (dependent or non-dependent) function,
intro adds the variable, which the goal quantifies over, to the con-
text and applies it to the goal. intros does the same iteratively for
multiple variables. revert does the opposite: It selects a variable in
the context and replaces the goal by its quantification over this vari-
able. A similar job is done by generalize. It takes an arbitrary term as
argument and quantifies the goal over a variable of that term’s type,
replacing all its occurrences by the quantifying variable.

• The tactic clear is used to delete unused variables from the con-
text. This is especially useful to speed up type class resolution and to
shorten the output of the current context.

• casesdestructs a given context variable of an inductive type using the
automatically generated cases_on theorem. Optionally, a list of the
desired names for the newly generated variables can be appended.

• Often, a goal is not expressed in its simplest form. esimp simplifies
the goal after unfolding a given list of definitions.

• The rewrite tactic takes a theorem yielding a (propositional) equality
and replaces occurrences of the equation’s left hand side by the right
hand side. The user can specify in what pattern or how often the
replacement should be made.

• By using rotate, one can rotate the list of subgoals by a given number
of steps. This is useful when the user wants to postpone the goal at
the first position to be solved at the end of the proof.

• Tactics can furthermore be concatenated to a single tactic using the
and-then composition (tactic1 ; tactic2). The resulting tactic fails
if either one of the tactics fail.
The notation [tactic1 | tactic2] specifies an or-else branching of
tactics: Lean first tries to apply the first tactic and if it fails the second
one. The composed tactic only fails if both of them fail.

CHAPTER 5. FORMALIZATION IN LEAN 69

• Adding to this composition of tactics one can use the repeat tactic
as a loop command. The tactic given to repeat as an argument is
applied over and over until it fails. So, by giving it an or-else compo-
sition of tactics Lean tries each one from a set of tactics until none of
them is applicable. If one wants to specify the number of repetitions
manually (e.g. for performance reasons), do is the tactic of choice.

• Curly brackets can be used to create a scope which only aims to solve
the first subgoal. If the subgoal is not solved within that scope, an
error will appear at the line of the closing bracket.

5.2 Basic Homotopy Type Theory in Lean
Lean’s homotopy type theory library is split into two parts: The content
of a folder init is imported by default and provides theories which are
used in built-in features like rewrite. Besides this folder there are other
theories which are not required at startup and which the user can import
manually. They include characterizations of path spaces and basic theories
about common algebraic structures which will be presented in the next
chapter. The extension and maintenance of the library is an ongoing joint
effort by Jeremy Avigad, Floris van Doorn, Leonardo de Moura and me.

One important definition in the initialization folder is, of course, the one
ofpropositional equality. Asmentioned above, equality is just a very basic
example for an inductive type. Here, we define equality eq as inductive
family of types and, with idp, give an alternative name for refl with the
base being an implicit argument:

1 universe variable l

2 inductive eq.{l} {A : Type.{l}} (a : A) : A → Type.{l} :=

3 refl : eq a a

4

5 definition idp {a : A} := refl a

Concatenation and inversion of paths are defined using path induction and
abbreviated with the obvious notation:

1 definition concat (p : x = y) (q : y = z) : x = z := eq.rec (λu, u) q p

2 definition inverse (p : x = y) : y = x := eq.rec (refl x) p

3

4 notation p₁ � p₂ := concat p₁ p₂

5 notation p ⁻¹ := inverse p

70 5.2. BASIC HOMOTOPY TYPE THEORY IN LEAN

By this definition, p � refl is definitionally equal to p while refl � p = p can
only be proved by induction on p. A lot of basic calculations in the path
groupoid can also be proved by just using path induction. Here is one
example for this kind of lemma:

1 definition eq_of_idp_eq_inv_con (p q : x = y) : idp = p⁻¹ � q → p = q :=

2 eq.rec_on p (take q h, h � (idp_con _)) q

Two other basic definitions for paths are the one of transports and ap, the
application of a non-dependent function to a path.

1 definition transport [reducible] (P : A → Type) {x y : A}

2 (p : x = y) (u : P x) : P y :=

3 eq.rec_on p u

4

5 definition ap {|A B : Type|} (f : A → B) {x y:A} (p : x = y) : f x = f y :=

6 eq.rec_on p idp

To be able to express univalence it is important to have a useful defini-
tion of the equivalence of types. We use structures to express the type of
proofs isequiv(f) that a function f is a half-adjoint equivalence as well as
for the type of equivalences between two given types (~ denotes the type
of homotopies between two functions) :

1 structure is_equiv [class] {A B : Type} (f : A → B) :=

2 (inv : B → A)

3 (retr : (f ∘ inv) ∼ id)

4 (sect : (inv ∘ f) ∼ id)

5 (adj : Π x, retr (f x) = ap f (sect x))

6

7 structure equiv (A B : Type) :=

8 (to_fun : A → B)

9 (to_is_equiv : is_equiv to_fun)

In practice, we will almost never use the generated constructor of is_equiv
but instead we proved an alternative constructor adjointify which does
not require the adjointness proof adj.

Univalence then states that the function equiv_of_eq, which lets us
gain an equivalence from an equality between two types in the same uni-
verse, is itself an equivalence. We mark the axiom as instance so that,
whenever there is mention of equiv_of_eq, we have access to its inverse.
This inverse ua is also the only common form in which univalence appears
elsewhere.

CHAPTER 5. FORMALIZATION IN LEAN 71

1 section

2 universe variable l

3 variables {A B : Type.{l}}

4

5 definition is_equiv_tr_of_eq (H : A = B) :

6 is_equiv (transport (λ X, X) H) :=

7 @is_equiv_tr Type (λX, X) A B H

8

9 definition equiv_of_eq (H : A = B) : A ≃ B :=

10 equiv.mk _ (is_equiv_tr_of_eq H)

11 end

12

13 axiom univalence (A B : Type) : is_equiv (@equiv_of_eq A B)

14 attribute univalence [instance]

15

16 definition ua {A B : Type} : A ≃ B → A = B := (@equiv_of_eq A B)⁻¹

We use the univalence axiom to prove function extensionality of first
non-dependent and then dependent functions. We first define three vari-
eties of function extensionality and then proof that the desired definition
of function extensionality (stating that the function apD10, which returns
for each equality between functions a homotopy between those functions,
is an equivalence) follows from the other ones. This approach has been
ported from the Coq HoTT library [hota].

1 definition funext.{l k} :=

2 Π {|A : Type.{l}|} {P : A → Type.{k}} (f g : Π x, P x),

3 is_equiv (@apD10 A P f g)

4

5 -- Naive funext is the assertion that pointwise equal functions are equal.

6 definition naive_funext :=

7 Π {|A : Type|} {P : A → Type} (f g : Πx, P x), (f ∼ g) → f = g

8

9 -- Weak funext says that a product of contractible types is contractible.

10 definition weak_funext :=

11 Π {|A : Type|} (P : A → Type) [H: Πx, is_contr (P x)], is_contr (Πx, P x)

Truncation levels are implemented by first creating a version of the
natural numbers that “start at -2” together with a coercion from the actual
type nat, then defining internal versions of contractability and truncated-
ness, and eventually defining a type class structure holding a proof of the
internal truncatedness:

72 5.2. BASIC HOMOTOPY TYPE THEORY IN LEAN

1 inductive trunc_index : Type₁ :=

2 minus_two : trunc_index,

3 succ : trunc_index → trunc_index

4 ...

5 structure contr_internal (A : Type) :=

6 (center : A)

7 (contr : Π(a : A), center = a)

8

9 definition is_trunc_internal (n : trunc_index) : Type → Type :=

10 trunc_index.rec_on n (λA, contr_internal A)

11 (λn trunc_n A, (Π(x y : A), trunc_n (x = y)))

12 ...

13 structure is_trunc [class] (n : trunc_index) (A : Type) :=

14 (to_internal : is_trunc_internal n A)

15

16 abbreviation is_contr := is_trunc -2

17 abbreviation is_hprop := is_trunc -1

18 abbreviation is_hset := is_trunc 0

By this trick we can then define contractability as the special case of being
truncated at level -2. This makes it a lot easier to write theorems that hold
for all levels of truncatedness. The type class is_trunc has many instances
that, by calling type class resolution themselves, automatize the process of
finding the truncation level of a given iteratedΣ-type orΠ-type (proofs and
surrounding context omitted, definitions gathered from multiple files):

1 --Equalities in contractible types are contractible.

2 definition is_contr_eq {A : Type} [H : is_contr A] (x y : A) :

3 is_contr (x = y) := ...

4

5 -- n-types are also (n+1)-types.

6 definition is_trunc_succ [instance] [priority 100]

7 (A : Type) (n : trunc_index) [H : is_trunc n A] : is_trunc (n.+1) A := ...

8

9 -- The unit type is contractible.

10 definition is_contr_unit [instance] : is_contr unit := ...

11

12 -- The empty type is a mere proposition.

13 definition is_hprop_empty [instance] : is_hprop empty := ...

14

15 -- A Sigma type is n-truncated if the type of all possible projections is.

16 definition is_trunc_sigma [instance] (B : A → Type) (n : trunc_index)

17 [HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] :

18 is_trunc n (Σ a, B a) := ...

19

CHAPTER 5. FORMALIZATION IN LEAN 73

20 -- Any dependent product of n-types is an n-type.

21 definition is_trunc_pi [instance] (B : A → Type) (n : trunc_index)

22 [H : Πa, is_trunc n (B a)] : is_trunc n (Πa, B a) := ...

23

24 -- Being an equivalence is a mere proposition.

25 theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) := ...

An important part of the library, besides the initialization files, consists
of theorems characterizing paths between instances of different type for-
mers. One example for such a characterization is that a path between two
dependent pairs can be built out of paths between their projections:

1 definition dpair_eq_dpair (p : a = a') (q : p ▹ b = b') : ⟨a, b⟩ = ⟨a', b'⟩ :=

2 by cases p; cases q; apply idp

3

4 definition sigma_eq (p : u.1 = v.1) (q : p ▹ u.2 = v.2) : u = v :=

5 by cases u; cases v; apply (dpair_eq_dpair p q)

Tables 5.1 and 5.2 show the line count and the compilation time for each
theory in Lean’s HoTT library excluding the library for category theory.

5.3 Category Theory in Lean
Our library of basic category theoretical definitions and theorems, which
is still work in progress, also mimics the structure of Coq’s HoTT imple-
mentation of categories while aiming to be more succinct than it. We use
structures and type classes for most definitions of algebraic structures and
their closure properties.

The central structure our formalization revolves around is, of course,
the one of a precategory:

1 structure precategory [class] (ob : Type) : Type :=

2 (hom : ob → ob → Type)

3 (homH : Π(a b : ob), is_hset (hom a b))

4 (comp : Π{|a b c : ob|}, hom b c → hom a b → hom a c)

5 (ID : Π (a : ob), hom a a)

6 (assoc : Π {|a b c d : ob|} (h : hom c d) (g : hom b c) (f : hom a b),

7 comp h (comp g f) = comp (comp h g) f)

8 (id_left : Π {|a b : ob|} (f : hom a b), comp !ID f = f)

9 (id_right : Π {|a b : ob|} (f : hom a b), comp f !ID = f)

Since usually the domain of an identity morphism is determined by the
context, we will most often use a shorter notation for the identity:

74 5.3. CATEGORY THEORY IN LEAN

Theory Line Count Compilation Time in s

init.

bool 28 0.043
datatypes 90 0.044
default 15 0.421
equiv 276 1.082
function 61 0.042
hedberg 47 0.399
logic 359 0.173
nat 345 0.565
num 135 0.073
path 648 2.683
priority 12 0.036
relation 43 0.072
reserved_notation 103 0.035
tactic 106 0.067
trunc 262 0.821
util 18 0.324
wf 162 0.394
axioms.

funext_of_ua 162 0.674
funext_varieties 111 0.483
ua 51 0.302

types.

empty 23 0.055
prod 99 0.225
sigma 26 0.058
sum 19 0.036

Table 5.1: Theories imported in Lean’s initial startup.

CHAPTER 5. FORMALIZATION IN LEAN 75

Theory Line Count Compilation Time in s

arity 188 0.797
algebra.

binary 74 0.156
group 570 1.317
relation 122 0.330

types.

arrow 49 0.143
eq 271 0.556
equiv 98 0.652
fiber 51 0.199
pi 198 1.177
pointed 40 0.121
prod 48 0.144
sigma 397 1.599
trunc 140 0.371
W 157 0.128

Table 5.2: Theories in Lean’s standard library for its homotopy type theory
mode. (Category theory excluded.)

76 5.3. CATEGORY THEORY IN LEAN

1 definition id [reducible] := ID a

We introduce a shortcut for the type class instance postulating that each
equality of morphisms is a mere proposition. We use this instance, for ex-
ample, to prove that it is sufficient to give equalities between themorphism
types, composition and identities of two precategories on the same type of
objects, to show that these precategories are equal:

1 definition is_hprop_eq_hom [instance] : is_hprop (f = f') := !is_trunc_eq

2

3 definition precategory_eq_mk' (ob : Type) (C D : precategory ob)

4 (p : @hom ob C = @hom ob D)

5 (q : transport (λ x, Πa b c, x b c → x a b → x a c) p

6 (@comp ob C) = @comp ob D)

7 (r : transport (λ x, Πa, x a a) p (@ID ob C) = @ID ob D) : C = D :=

8 begin

9 cases C, cases D,

10 apply precategory_eq_mk, apply q, apply r,

11 end

We also define a bundled version of a category, as the structure contain-
ing the object type and a precategory on it as fields:

1 structure Precategory : Type :=

2 (carrier : Type)

3 (struct : precategory carrier)

Using typeclasses for split monos, split epis and isomorphisms enables
us to access the left, right or both-sided inverse filling in the precategory
structure as well as the invertability witness by type class instance resolu-
tion:

CHAPTER 5. FORMALIZATION IN LEAN 77

1 structure split_mono [class]

2 {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=

3 {retraction_of : b ⟶ a}

4 (retraction_comp : retraction_of ∘ f = id)

5

6 structure split_epi [class]

7 {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=

8 {section_of : b ⟶ a}

9 (comp_section : f ∘ section_of = id)

10

11 structure is_iso [class]

12 {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=

13 {inverse : b ⟶ a}

14 (left_inverse : inverse ∘ f = id)

15 (right_inverse : f ∘ inverse = id)

Onpurpose, weweaken some theorems to accepting arbitrarywitnesses
for mere propositions that would actually be derivable from the other wit-
nesses. By this, we can have class instance resolution fill in a witness se-
lected by highest instance priority. In the following example, even if there
is a theorem obtaining is_iso (f⁻¹) from is_iso f, we might want the
witness to be the axiom that in a groupoid allmorphisms are isomorphisms.
This spares us the need of transporting the statement to the right witness
each time we use it:

1 definition inverse_involutive (f : a ⟶ b) [H : is_iso f] [H : is_iso (f⁻¹)]
2 : (f⁻¹)⁻¹ = f :=

3 inverse_eq_right !left_inverse

4

5 definition id_inverse (a : ob) [H : is_iso (ID a)] : (ID a)⁻¹ = id :=

6 inverse_eq_left !id_comp

7

8 definition comp_inverse [Hp : is_iso p] [Hpq : is_iso (q ∘ p)] :

9 (q ∘ p)⁻¹ʰ = p⁻¹ʰ ∘ q⁻¹ʰ :=

10 inverse_eq_left (show (p⁻¹ʰ ∘ q⁻¹ʰ) ∘ q ∘ p = id, from

11 by rewrite [-assoc, inverse_comp_cancel_left, left_inverse])

Not only the the property of a morphism f being an isomorphism but
also the type of morphisms between two given objects is encapsulated in a
structure that helps to fill in proofs automatically.

78 5.3. CATEGORY THEORY IN LEAN

1 structure iso (a b : ob) :=

2 (to_hom : hom a b)

3 [struct : is_iso to_hom]

4

5 infix `≅`:50 := iso.iso

6 attribute iso.struct [instance] [priority 400]

7

8 -- The type of isomorphisms between two objects is a set.

9 definition is_hset_iso [instance] : is_hset (a ≅ b) :=

10 begin

11 apply is_trunc_is_equiv_closed,

12 apply (equiv.to_is_equiv (!iso.sigma_char)),

13 end

Another definition we later want to generalize to the two dimensional
case is the one of a functor. We introduce functors as a structure and add
coercions to its function on objects and to its function on morphisms. By
doing so, we will be able to write F a for its evaluation at an object a and
F f for its evaluation at a morphism f.

1 structure functor (C D : Precategory) : Type :=

2 (to_fun_ob : C → D)

3 (to_fun_hom : Π {|a b : C|}, hom a b → hom (to_fun_ob a) (to_fun_ob b))

4 (respect_id : Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a))

5 (respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b),

6 to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)

7

8 infixl `⇒`:25 := functor

9 attribute to_fun_ob [coercion]

10 attribute to_fun_hom [coercion]

One example where these coercions are used is the definition of the
composition of functors:

1 definition compose [reducible] (G : functor D E) (F : functor C D) :

2 functor C E :=

3 functor.mk

4 (λ x, G (F x))

5 (λ a b f, G (F f))

6 (λ a, calc

7 G (F (ID a)) = G (ID (F a)) : by rewrite respect_id

8 ... = ID (G (F a)) : by rewrite respect_id)

9 (λ a b c g f, calc

10 G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp

11 ... = G (F g) ∘ G (F f) : by rewrite respect_comp)

CHAPTER 5. FORMALIZATION IN LEAN 79

Like mentioned above, it is useful to still have a representation of a
structure as an iterated product and Σ-type. With this characterization we
can formalize Lemma 4.1.6 easily using type class resolution:

1 protected definition sigma_char :

2 (Σ (to_fun_ob : C → D)

3 (to_fun_hom : Π {|a b : C|}, hom a b → hom (to_fun_ob a) (to_fun_ob b)),

4 (Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) ×

5 (Π {a b c : C} (g : hom b c) (f : hom a b),

6 to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)) ≃ (functor C D) :=

7 ...

8

9 section

10 local attribute precategory.homH [priority 1001]

11 protected theorem is_hset_functor [instance]

12 [HD : is_hset D] : is_hset (functor C D) :=

13 by apply is_trunc_equiv_closed; apply functor.sigma_char

14 end

This enables us to implement the precategory of strict precategories
(compare Corollary 4.1.7). The proof that this precategory is univalent
(Lemma 4.1.14) still lacks a formalization.

1 structure strict_precategory [class] (ob : Type) extends precategory ob :=

2 (is_hset_ob : is_hset ob)

3

4 structure Strict_precategory : Type :=

5 (carrier : Type)

6 (struct : strict_precategory carrier)

7

8 definition precat_strict_precat : precategory Strict_precategory :=

9 precategory.mk (λ a b, functor a b)

10 (λ a b, @functor.is_hset_functor a b _)

11 (λ a b c g f, functor.compose g f)

12 (λ a, functor.id)

13 (λ a b c d h g f, !functor.assoc)

14 (λ a b f, !functor.id_left)

15 (λ a b f, !functor.id_right)

5.4 Formalizing Double Groupoids
When formalizing the structures presented in Chapters 3 and 4, I pro-
ceeded in the order the concepts are presented in this thesis. Since it was

80 5.4. FORMALIZING DOUBLE GROUPOIDS

Theory Line Count Compilation Time in s

algebra.

groupoid 119 0.419
category.

basic 74 0.265
constructions 144 1.180

precategory.

adjoints 143 *0.638
basic 236 1.870
constructions 268 1.862
functor 253 *2.981
iso 350 2.131
nat_trans 114 1.033
strict 53 0.246
yoneda 208 3.852

Table 5.3: The theories in Lean’s category theory library. Theories marked
with * contain unfinished proofs.

necessary to change several definitions to improve compatibility with the
library and to improve performance I had to changemost of the definitions
repeatedly during the process. In the following, I will only present the final
version of the definitions.

The first structure is the one of a double category. Since it has many
fields, it was useful to come up with an idea to shorten the definition: We
first define what it means to be a worm category. This structure consists
of objects, morphisms and two-cells the same way a double category does,
but it only allows for composition in one direction. In contrast to an ac-
tual double category there are essentially two, instead of three, categories
involved in the definition of a worm category.

1 structure worm_precat {D₀ : Type} (C : precategory D₀)

2 (D₂ : Π {|a b c d : D₀|}

3 (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d), Type) :=

4 (comp₁ : proof Π {|a b c₁ d₁ c₂ d₂ : D₀|}

5 {|f₁ : hom a b|} {|g₁ : hom c₁ d₁|} {|h₁ : hom a c₁|} {|i₁ : hom b d₁|}

6 {|g₂ : hom c₂ d₂|} {|h₂ : hom c₁ c₂|} {|i₂ : hom d₁ d₂|},

7 (D₂ g₁ g₂ h₂ i₂) → (D₂ f₁ g₁ h₁ i₁)

8 → (@D₂ a b c₂ d₂ f₁ g₂ (h₂ ∘ h₁) (i₂ ∘ i₁)) qed)

CHAPTER 5. FORMALIZATION IN LEAN 81

9 (ID₁ : proof Π {|a b : D₀|} (f : hom a b), D₂ f f (ID a) (ID b) qed)

10 (assoc₁ : proof Π {|a b c₁ d₁ c₂ d₂ c₃ d₃ : D₀|}

11 {|f : hom a b|} {|g₁ : hom c₁ d₁|} {|h₁ : hom a c₁|} {|i₁ : hom b d₁|}

12 {|g₂ : hom c₂ d₂|} {|h₂ : hom c₁ c₂|} {|i₂ : hom d₁ d₂|}

13 {|g₃ : hom c₃ d₃|} {|h₃ : hom c₂ c₃|} {|i₃ : hom d₂ d₃|}

14 (w : D₂ g₂ g₃ h₃ i₃) (v : D₂ g₁ g₂ h₂ i₂) (u : D₂ f g₁ h₁ i₁),

15 (assoc i₃ i₂ i₁) ▹ ((assoc h₃ h₂ h₁) ▹
16 (comp₁ w (comp₁ v u))) = (comp₁ (comp₁ w v) u) qed)

17 (id_left₁ : proof Π {|a b c d : D₀|}

18 {|f : hom a b|} {|g : hom c d|} {|h : hom a c|} {|i : hom b d|}

19 (u : D₂ f g h i),

20 (id_left i) ▹ ((id_left h) ▹ (comp₁ (ID₁ g) u)) = u qed)

21 (id_right₁ : proof Π {|a b c d : D₀|}

22 {|f : hom a b|} {|g : hom c d|} {|h : hom a c|} {|i : hom b d|}

23 (u : D₂ f g h i),

24 (id_right i) ▹ ((id_right h) ▹ (comp₁ u (ID₁ f))) = u qed)

25 (homH' : proof Π {|a b c d : D₀|}

26 {|f : hom a b|} {|g : hom c d|} {|h : hom a c|} {|i : hom b d|},

27 is_hset (D₂ f g h i) qed)

We then use the inheritance mechanism for structures to define a dou-
ble category as extending two worm precategories on the same object type
D₀, the same 1-skeleton C and dependent types of two-cells that differ by
transposition in the sense that if D₂ is the type of two-cells of the “vertical”
worm category, (λ {|a b c d : D₀|} f g h i, D₂ h i f g) is the respec-
tive dependent type for the “horizontal” one. To prevent the fields of the
twoworm precategories from beingmerged (which is the default for struc-
ture fields with identical names), we have to rename the fields of the hori-
zontal worm category. Then we add the laws that could not be expressed
in terms of only one direction of two-cell composition.

1 structure dbl_precat {D₀ : Type} (C : precategory D₀)

2 (D₂ : Π {|a b c d : D₀|}

3 (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d), Type)

4 extends worm_precat C D₂,

5 worm_precat C (λ {|a b c d : D₀|} f g h i, D₂ h i f g)

6 renaming comp₁→comp₂ ID₁→ID₂ assoc₁→assoc₂

7 id_left₁→id_left₂ id_right₁→id_right₂ homH'→homH'_dontuse :=

8 (id_comp₁ : proof Π {a b c : D₀} (f : hom a b) (g : hom b c),

9 ID₂ (g ∘ f) = comp₁ (ID₂ g) (ID₂ f) qed)

10 (id_comp₂ : proof Π {a b c : D₀} (f : hom a b) (g : hom b c),

11 ID₁ (g ∘ f) = comp₂ (ID₁ g) (ID₁ f) qed)

12 (zero_unique : proof Π (a : D₀), ID₁ (ID a) = ID₂ (ID a) qed)

13 (interchange : proof Π {a₀₀ a₀₁ a₀₂ a₁₀ a₁₁ a₁₂ a₂₀ a₂₁ a₂₂ : D₀}

14 {f₀₀ : hom a₀₀ a₀₁} {f₀₁ : hom a₀₁ a₀₂} {f₁₀ : hom a₁₀ a₁₁}

82 5.4. FORMALIZING DOUBLE GROUPOIDS

15 {f₁₁ : hom a₁₁ a₁₂} {f₂₀ : hom a₂₀ a₂₁} {f₂₁ : hom a₂₁ a₂₂}

16 {g₀₀ : hom a₀₀ a₁₀} {g₀₁ : hom a₀₁ a₁₁} {g₀₂ : hom a₀₂ a₁₂}

17 {g₁₀ : hom a₁₀ a₂₀} {g₁₁ : hom a₁₁ a₂₁} {g₁₂ : hom a₁₂ a₂₂}

18 (x : D₂ f₁₁ f₂₁ g₁₁ g₁₂) (w : D₂ f₁₀ f₂₀ g₁₀ g₁₁)

19 (v : D₂ f₀₁ f₁₁ g₀₁ g₀₂) (u : D₂ f₀₀ f₁₀ g₀₀ g₀₁),

20 comp₁ (comp₂ x w) (comp₂ v u) = comp₂ (comp₁ x v) (comp₁ w u) qed)

This unbundled definition of a double category is useful when mak-
ing statements about all double category structures on a certain pair of
1-skeletons and two-cell types. But since we often want to talk about all
double categories (in a certain universe), we add a bundled up version that
also adds the strictness condition.

1 structure Dbl_precat : Type :=

2 (cat : Precategory)

3 (two_cell : Π {|a b c d : cat|} (f : hom a b)

4 (g : hom c d) (h : hom a c) (i : hom b d), Type)

5 (struct : dbl_precat cat two_cell)

6 (obj_set : is_hset (carrier cat))

With that definition, we can start instantiating first simple examples.
When implementing the square double category (Definition 4.2.3), we can
make use of the repeat tactic to fill in each of the many arguments of the
double category constructor with either the constructor ⋆ of 1, the fact that
1 is a mere proposition, or the fact mere propositions are sets:

1 definition square_dbl_precat : dbl_precat C

2 (λ {|a b c d : D₀|} (f : hom a b) (g : hom c d)

3 (h : hom a c) (i : hom b d), unit) :=

4 begin

5 fapply dbl_precat.mk,

6 repeat (intros; (rexact ⋆ | apply is_hprop.elim | apply is_trunc_succ)),

7 repeat (intros; apply idp),

8 end

The definition of the shell double category is not as straightforward,
since we have to perform the calculations from 3.1.3 for the commutativity
of composite squares:

1 definition comm_square_dbl_precat : dbl_precat C

2 (λ {|a b c d : D₀|} (f : hom a b) (g : hom c d)

3 (h : hom a c) (i : hom b d), g ∘ h = i ∘ f) :=

4 begin

5 fapply dbl_precat.mk,

CHAPTER 5. FORMALIZATION IN LEAN 83

6 intros, exact (calc g₂ ∘ h₂ ∘ h₁ = (g₂ ∘ h₂) ∘ h₁ : assoc

7 ... = (i₂ ∘ g₁) ∘ h₁ : a_1

8 ... = i₂ ∘ g₁ ∘ h₁ : assoc

9 ... = i₂ ∘ i₁ ∘ f₁ : a_2

10 ... = (i₂ ∘ i₁) ∘ f₁ : assoc),

11 intros, exact (calc f ∘ ID a = f : id_right

12 ... = ID b ∘ f : id_left),

13 repeat (intros; apply is_hset.elim),

14 intros, apply is_trunc_eq,

15 intros, exact (calc (i₂ ∘ i₁) ∘ f₁ = i₂ ∘ i₁ ∘ f₁ : assoc

16 ... = i₂ ∘ g₁ ∘ h₁ : a_2

17 ... = (i₂ ∘ g₁) ∘ h₁ : assoc

18 ... = (g₂ ∘ h₂) ∘ h₁ : a_1

19 ... = g₂ ∘ h₂ ∘ h₁ : assoc),

20 intros, exact (calc ID b ∘ f = f : id_left

21 ... = f ∘ ID a : id_right),

22 repeat (intros; apply is_hset.elim),

23 intros, apply is_trunc_eq,

24 repeat (intros; apply is_hset.elim),

25 end

Extracting the horizontal and vertical precategory of a double category
is something that can already be defined on a worm precategory where we
have one category of two-cells. We encapsulate the objects and the mor-
phisms of this category in their own structure definitions:

1 parameters {D₀ : Type} [C : precategory D₀] {D₂ : ...} (D : worm_precat C D₂)

2

3 structure two_cell_ob :=

4 (vo1 vo2 : D₀)

5 (vo3 : hom vo1 vo2)

6

7 structure two_cell_connect (Sf Sg : two_cell_ob) :=

8 (vc1 : hom (two_cell_ob.vo1 Sf) (two_cell_ob.vo1 Sg))

9 (vc2 : hom (two_cell_ob.vo2 Sf) (two_cell_ob.vo2 Sg))

10 (vc3 : D₂ (two_cell_ob.vo3 Sf) (two_cell_ob.vo3 Sg) vc1 vc2)

After characterizing those types by sigma types, characterizing equali-
ties between them and examining the truncation level of the structures we
can define the two-cell precategory of a worm category: (Note the relations
between the universe levels involved.)

1 universe variables l₀ l₁ l₂

2 variables {D₀ : Type.{l₀}} [C : precategory.{l₀ (max l₀ l₁)} D₀]

3 {D₂ : Π ..., Type.{max l₀ l₁ l₂}}

84 5.4. FORMALIZING DOUBLE GROUPOIDS

4

5 definition two_cell_precat (D : worm_precat C D₂)

6 : precategory.{(max l₀ l₁) (max l₀ l₁ l₂)} (two_cell_ob D) :=

7 begin

8 fapply precategory.mk.{(max l₀ l₁) (max l₀ l₁ l₂)},

9 intros [Sf, Sg], exact (two_cell_connect D Sf Sg),

10 intros [Sf, Sg], apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv,

11 exact (two_cell_connect_sigma_char D Sf Sg),

12 apply is_trunc_sigma, intros,

13 apply is_trunc_sigma, intros, apply (homH' D),

14 intros [Sf, Sg, Sh, Sv, Su], apply (two_cell_comp D Sv Su),

15 intro Sf, exact (two_cell_id D Sf),

16 intros, exact (two_cell_assoc D h g f),

17 intros [Sf, Sg, Su], exact (two_cell_id_left D Su),

18 intros [Sf, Sg, Su], exact (two_cell_id_right D Su),

19 end

Now we can obtain the vertical and horizontal precategory as the two-
cell precategory of each parent worm precategory:

1 definition vert_precat (D : dbl_precat C D₂) :=

2 worm_precat.two_cell_precat.{l₀ l₁ l₂} (to_worm_precat_1 D)

3

4 definition horiz_precat (D : dbl_precat C D₂) :=

5 worm_precat.two_cell_precat.{l₀ l₁ l₂} (to_worm_precat_2 D)

Before we continue to define thin structures and double groupoids, we
create a library of helper lemmas that will often be used in the other theo-
ries. In the definition of a double category we already saw that often com-
posite squares have to be transported along an equality in one of their faces.
Continuing to prove more complex equations of squares, these transports
can best be managed when on the outside of a composition. So we create
a library of theorems that equate a square composition involving a trans-
port on one or both of the squares with a another composition where the
transport is pulled to the outside or eliminated. Some examples for these
lemmas are the following:

1 variables {a b c d b₂ d₂ : D₀} {E : Type}

2 {f : hom a b} {g : hom c d} {h : hom a c} {i : hom b d}

3 {f₂ : hom b b₂} {g₂ : hom d d₂} {i₂ : hom b₂ d₂}

4

5 definition transp_comp₂_eq_comp₂_transp_l_l {e : E → hom a c}

6 {h h' : E} (q : h = h')

7 (u : D₂ f g (e h) i) (v : D₂ f₂ g₂ i i₂) :

CHAPTER 5. FORMALIZATION IN LEAN 85

8 transport (λ x, D₂ _ _ (e x) _) q (comp₂ D v u)

9 = comp₂ D v (transport (λ x, D₂ _ _ (e x) _) q u) :=

10 by cases q; apply idp

11

12 definition transp_comp₂_inner_deal1 {e : E → hom b d}

13 {i i' : E} (q : i = i')

14 (u : D₂ f g h (e i)) (v : D₂ f₂ g₂ (e i') i₂) :

15 comp₂ D v (transport (λ x, D₂ _ _ _ (e x)) q u)

16 = comp₂ D (transport (λ x, D₂ _ _ (e x) _) q⁻¹ v) u :=

17 by cases q; apply idp

18

19 definition transp_comp₂_eq_comp₂_transp_inner {e : E → hom b d}

20 {i i' : E} (q : i = i')

21 (u : D₂ f g h (e i)) (v : D₂ f₂ g₂ (e i) i₂) :

22 comp₂ D v u = comp₂ D (transport (λ x, D₂ _ _ (e x) _) q v)

23 (transport (λ x, D₂ _ _ _ (e x)) q u) :=

24 by cases q; apply idp

Since for a given double category there will, in all relevant cases, be one
canonical thin structure, we use the type class mechanism to find that thin
structure as an instance of the following type class of thin structures:

1 structure thin_structure [class] {D₀ : Type} [C : precategory D₀]

2 {D₂ : Π {|a b c d : D₀|}, hom a b → hom c d → hom a c → hom b d → Type}

3 (D : dbl_precat C D₂) :=

4 (thin : Π {|a b c d : D₀|}

5 (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d), g ∘ h = i ∘ f

6 → D₂ f g h i)

7 (thin_id₁ : proof Π {|a b : D₀|} (f : hom a b),

8 thin f f (ID a) (ID b) ((id_right f) � (id_left f)⁻¹) = ID₁ D f qed)

9 (thin_id₂ : proof Π {|a b : D₀|} (f : hom a b),

10 thin (ID a) (ID b) f f ((id_left f) � (id_right f)⁻¹) = ID₂ D f qed)

11 (thin_comp₁ : proof Π {|a b c₁ d₁ c₂ d₂ : D₀|}

12 {|f₁ : hom a b|} {|g₁ : hom c₁ d₁|} {|h₁ : hom a c₁|} {|i₁ : hom b d₁|}

13 {|g₂ : hom c₂ d₂|} {|h₂ : hom c₁ c₂|} {|i₂ : hom d₁ d₂|}

14 (pv : g₂ ∘ h₂ = i₂ ∘ g₁) (pu : g₁ ∘ h₁ = i₁ ∘ f₁)

15 (px : g₂ ∘ h₂ ∘ h₁ = (i₂ ∘ i₁) ∘ f₁),

16 comp₁ D (thin g₁ g₂ h₂ i₂ pv) (thin f₁ g₁ h₁ i₁ pu)

17 = thin f₁ g₂ (h₂ ∘ h₁) (i₂ ∘ i₁) px qed)

18 (thin_comp₂ : proof Π {|a b c₁ d₁ c₂ d₂ : D₀|}

19 {|f₁ : hom a b|} {|g₁ : hom c₁ d₁|} {|h₁ : hom a c₁|} {|i₁ : hom b d₁|}

20 {|g₂ : hom c₂ d₂|} {|h₂ : hom c₁ c₂|} {|i₂ : hom d₁ d₂|}

21 (pv : i₂ ∘ g₁ = g₂ ∘ h₂) (pu : i₁ ∘ f₁ = g₁ ∘ h₁)

22 (px : (i₂ ∘ i₁) ∘ f₁ = g₂ ∘ h₂ ∘ h₁),

23 comp₂ D (thin h₂ i₂ g₁ g₂ pv) (thin h₁ i₁ f₁ g₁ pu)

24 = thin (h₂ ∘ h₁) (i₂ ∘ i₁) f₁ g₂ px qed)

86 5.4. FORMALIZING DOUBLE GROUPOIDS

25

26 open thin_structure

27 check @thin_id₁ /- Prints

28 thin_id₁ :

29 Π {D₀ : Type} {C : precategory D₀}

30 {D₂ : Π {|a b c d : D₀|}, hom a b → hom c d → hom a c → hom b d → Type}

31 (D : dbl_precat C D₂) [c : thin_structure D] {|a b : D₀|} (f : hom a b),

32 thin D f f (ID a) (ID b) (id_right f � (id_left f)⁻¹) = ID₁ D f -/

Defining a connection is, of course, very straightforward:

1 definition br_connect {|a b : D₀|} (f : hom a b) : D₂ f (ID b) f (ID b) :=

2 thin D f (ID b) f (ID b) idp

3

4 definition ul_connect {|a b : D₀|} (f : hom a b) : D₂ (ID a) f (ID a) f :=

5 thin D (ID a) f (ID a) f idp

In contrast, proving the S-law (3.2.3) takes a surprising amount of ef-
fort. It is the first of many theorems for which we need helper lemmas that
generalize paths to make a statement provable by path induction.

1 definition ID₁_of_ul_br_aux {a b : D₀} (f g h : hom a b)

2 (p : g = f) (q : h = f)

3 (r1 : h ∘ id = id ∘ g) (r2 : f ∘ id = id ∘ f)

4 (rr : q ▹ (p ▹ r1) = r2) :

5 q ▹ (p ▹ thin D g h id id r1) = thin D f f id id r2 :=

6 by cases rr; cases p; cases q; apply idp

7

8 definition ID₁_of_ul_br {|a b : D₀|} (f : hom a b) :

9 (id_left f) ▹ ((id_right f) ▹
10 (comp₂ D (br_connect f) (ul_connect f))) = ID₁ D f :=

11 begin

12 -- Bring transports to right hand side

13 apply tr_eq_of_eq_inv_tr, apply tr_eq_of_eq_inv_tr,

14 -- Work on left hand side

15 apply concat,

16 -- Composites of thin squares are thin

17 apply thin_comp₂,

18 -- Commutativity of composite square

19 apply inverse, apply assoc,

20 -- Bring transports to left hand side

21 apply eq_inv_tr_of_tr_eq, apply eq_inv_tr_of_tr_eq,

22 apply concat,

23 -- Apply helper lemma eliminating transports

24 apply ID₁_of_ul_br_aux, apply is_hset.elim,

25 exact ((id_right f) � (id_left f)⁻¹),

CHAPTER 5. FORMALIZATION IN LEAN 87

26 -- Identity squares are thin

27 apply thin_id₁,

28 end

To prove the transport laws, we use a similar auxiliary lemma and the
assert command to provide proofs of commutativity and for the different
rows to the context:

1 definition br_of_br_square_aux {a c : D₀} (gf : hom a c)

2 (h₁ : hom c c) (p : h₁ = ID c)

3 (r1 : h₁ ∘ gf = h₁ ∘ gf) (r2 : (ID c) ∘ gf = (ID c) ∘ gf) :

4 (p ▹ thin D gf h₁ gf h₁ r1) = thin D gf (ID c) gf (ID c) r2 :=

5 by cases p; apply (ap (λ x, thin D _ _ _ _ x) !is_hset.elim)

6

7 definition br_of_br_square {|a b c : D₀|} (f : hom a b) (g : hom b c) :

8 (id_left id) ▹ (comp₁ D (comp₂ D (br_connect g) (ID₂ D g))

9 (comp₂ D (ID₁ D g) (br_connect f)))

10 = br_connect (g ∘ f) :=

11 begin

12 apply tr_eq_of_eq_inv_tr,

13 -- Prove commutativity of second row

14 assert line2_commute : (id ∘ id) ∘ g = id ∘ g ∘ id,

15 exact (calc (id ∘ id) ∘ g = id ∘ g : @id_left D₀ C

16 ... = (id ∘ g) ∘ id : id_right

17 ... = id ∘ (g ∘ id) : assoc),

18 -- Prove thinness of second row

19 assert line2_thin : comp₂ D (br_connect g) (ID₂ D g)

20 = thin D (g ∘ id) (id ∘ id) g id line2_commute,

21 apply concat, apply (ap (λx, comp₂ D _ x)), apply inverse, apply thin_id₂,

22 apply thin_comp₂,

23 -- Prove commutativity of first row

24 assert line1_commute : (g ∘ id) ∘ f = id ∘ g ∘ f,

25 exact (calc (g ∘ ID b) ∘ f = g ∘ f : @id_right D₀ C

26 ... = ID c ∘ g ∘ f : id_left),

27 -- Prove thinness of first row

28 assert line1_thin : comp₂ D (ID₁ D g) (br_connect f)

29 = thin D (g ∘ f) (g ∘ id) f id line1_commute,

30 apply concat, apply (ap (λx, comp₂ D x _)), apply inverse, apply thin_id₁,

31 apply thin_comp₂,

32 -- Replace composite squares by thin squares

33 apply concat, exact (ap (λx, comp₁ D x _) line2_thin),

34 apply concat, exact (ap (λx, comp₁ D _ x) line1_thin),

35 -- Thinness of the entire 2x2 grid

36 apply concat, apply thin_comp₁, apply idp,

37 apply eq_inv_tr_of_tr_eq,

38 apply br_of_br_square_aux,

88 5.4. FORMALIZING DOUBLE GROUPOIDS

39 end

Now we can start defining double groupoids. The definition of a weak
double groupoid poses a greater task to Lean’s type checker than the one
of a double category which is why we first define the the type of the argu-
ments that are required to make a weak double groupoid out of a double
category as separate definitions to give Lean the chance to elaborate and
type check the terms before using them in the actual definition. Note that in
the extends command in structure definition, C is automatically cast from
a groupoid to a general precategory.

1 context

2 parameters

3 {D₀ : Type}

4 (C : groupoid D₀)

5 (D₂ : Π {|a b c d : D₀|}, hom a b → hom c d → hom a c → hom b d → Type)

6 (D : dbl_precat C D₂)

7

8 definition inv₁_type : Type :=

9 Π {|a b c d : D₀|} {f : hom a b} {g : hom c d} {h : hom a c} {i : hom b d},

10 D₂ f g h i → D₂ g f (h⁻¹) (i⁻¹)
11

12 definition left_inverse₁_type (inv₁ : inv₁_type) : Type :=

13 Π {|a b c d : D₀|} {f : hom a b} {g : hom c d} {h : hom a c} {i : hom b d}

14 (u : D₂ f g h i),

15 (left_inverse i) ▹ (left_inverse h) ▹ (comp₁ D (inv₁ u) u) = ID₁ D f

16 ...

17 end

18

19 structure weak_dbl_gpd {D₀ : Type} (C : groupoid D₀)

20 (D₂ : Π {|a b c d : D₀|}, hom a b → hom c d → hom a c → hom b d → Type)

21 extends D : dbl_precat C D₂ :=

22 (inv₁ : inv₁_type C D₂)

23 (left_inverse₁ : left_inverse₁_type C D₂ D inv₁)

24 (right_inverse₁ : right_inverse₁_type C D₂ D inv₁)

25 (inv₂ : inv₂_type C D₂)

26 (left_inverse₂ : left_inverse₂_type C D₂ D inv₂)

27 (right_inverse₂ : right_inverse₂_type C D₂ D inv₂)

To implement Definition 4.2.6 of a double groupoid, we only have to
add a thin structure to a weak double groupoid. For the definition of the
category of double groupoids we again add a strict and bundled version:

1 structure dbl_gpd {D₀ : Type} (C : groupoid D₀) (D₂ : Π {|a b c d : D₀|},

2 hom a b → hom c d → hom a c → hom b d → Type)

CHAPTER 5. FORMALIZATION IN LEAN 89

3 extends D : weak_dbl_gpd C D₂:=

4 (T : thin_structure (weak_dbl_gpd.to_dbl_precat D))

5

6 structure Dbl_gpd : Type :=

7 (gpd : Groupoid)

8 (two_cell : Π {|a b c d : gpd|},

9 hom a b → hom c d → hom a c → hom b d → Type)

10 (struct : dbl_gpd gpd two_cell)

11 (obj_set : is_hset (carrier gpd))

For the definition of a double functor we again have to pull out the def-
inition of the argument types to make it easier for the elaborator:

1 structure dbl_functor (D E : Dbl_gpd) :=

2 (catF : functor (gpd D) (gpd E))

3 (twoF : Π {|a b c d : gpd D|}

4 {|f : hom a b|} {|g : hom c d|} {|h : hom a c|} {|i : hom b d|},

5 two_cell D f g h i → two_cell E (catF f) (catF g) (catF h) (catF i))

6 (respect_id₁ : respect_id₁_type D E catF twoF)

7 (respect_comp₁ : respect_comp₁_type D E catF twoF)

8 (respect_id₂ : respect_id₂_type D E catF twoF)

9 (respect_comp₂ : respect_comp₂_type D E catF twoF)

As a first lemma characterizing equalities between double functors we
have the following:

1 parameters (D E : Dbl_gpd)

2 (catF1 catF2 : functor (gpd D) (gpd E))

3 (twoF1 : Π {|a b c d : gpd D|}

4 {|f : hom a b|} {|g : hom c d|} {|h : hom a c|} {|i : hom b d|},

5 two_cell D f g h i → two_cell E (catF1 f) (catF1 g) (catF1 h) (catF1 i))

6 (twoF2 : Π {|a b c d : gpd D|}

7 {|f : hom a b|} {|g : hom c d|} {|h : hom a c|} {|i : hom b d|},

8 two_cell D f g h i → two_cell E (catF2 f) (catF2 g) (catF2 h) (catF2 i))

9 (respect_id₁1 : proof respect_id₁_type D E catF1 qed twoF1)

10 (respect_id₁2 : proof respect_id₁_type D E catF2 qed twoF2)

11 (respect_comp₁1 : proof respect_comp₁_type D E catF1 qed twoF1)

12 (respect_comp₁2 : proof respect_comp₁_type D E catF2 qed twoF2)

13 (respect_id₂1 : proof respect_id₂_type D E catF1 qed twoF1)

14 (respect_id₂2 : proof respect_id₂_type D E catF2 qed twoF2)

15 (respect_comp₂1 : proof respect_comp₂_type D E catF1 qed twoF1)

16 (respect_comp₂2 : proof respect_comp₂_type D E catF2 qed twoF2)

17

18 definition dbl_functor.congr (p1 : catF1 = catF2) (p2 : p1 ▹ twoF1 = twoF2) :

19 dbl_functor.mk catF1 twoF1

90 5.4. FORMALIZING DOUBLE GROUPOIDS

20 respect_id₁1 respect_comp₁1 respect_id₂1 respect_comp₂1

21 = dbl_functor.mk catF2 twoF2

22 respect_id₁2 respect_comp₁2 respect_id₂2 respect_comp₂2 :=

23 begin

24 cases p1, cases p2,

25 intros, apply (ap01111 (λ f g h i, dbl_functor.mk catF2 twoF2 f g h i)),

26 repeat (

27 repeat (apply eq_of_homotopy ; intros) ;

28 apply (@is_hset.elim _ (!(homH' E)))),

29 end

But in practice, this formalization turned out to be less useful than one
where we don’t have a path between the category functors but instead be-
tween their objects and morphisms, separately. The parameters of such
a theorem dbl_functor.congr' are the following. (apD011 is the lemma
that equates f (a, b) and f (a′, b′) for an arbitrary dependent function f and
equalities between the respective arguments.)

1 (p1 : to_fun_ob catF1 = to_fun_ob catF2)

2 (p2 : transport

3 (λ x, Π (a b : carrier (gpd D)), hom a b → hom (x a) (x b)) p1

4 (to_fun_hom catF1) = to_fun_hom catF2)

5 (p3 : apD011 (λ Hob Hhom,

6 Π {|a b c d : carrier (gpd D)|}

7 {|f : hom a b|} {|g : hom c d|} {|h : hom a c|} {|i : hom b d|},

8 two_cell D f g h i →
9 @two_cell E (Hob a) (Hob b) (Hob c) (Hob d)

10 (Hhom a b f) (Hhom c d g) (Hhom a c h) (Hhom b d i))

11 p1 p2 ▹ twoF1 = twoF2)

Using these more fine grained prerequisites for equality between dou-
ble functors we can prove the associativity of double functors in a pretty
straightforward way:

1 definition dbl_functor.assoc {B C D E : Dbl_gpd}

2 (H : dbl_functor D E) (G : dbl_functor C D) (F : dbl_functor B C) :

3 dbl_functor.compose H (dbl_functor.compose G F)

4 = dbl_functor.compose (dbl_functor.compose H G) F :=

5 begin

6 fapply (dbl_functor.congr' B E),

7 apply idp,

8 apply idp,

9 apply idp,

10 end

CHAPTER 5. FORMALIZATION IN LEAN 91

The composition mentioned in that theorem is defined as obvious on
the 1-skeleton and on the two-cells, but it is quite a bit of work to show that
it respects identities and composition. Let’s take a look at the part of the
proof that shows that the composite functor respects the vertical identity:

1 intros, apply tr_eq_of_eq_inv_tr, apply tr_eq_of_eq_inv_tr,

2 apply concat, apply (ap (λ x, twoF G x)), apply respect_id₁',

3 apply concat, apply twoF_transport_l, apply tr_eq_of_eq_inv_tr,

4 apply concat, apply twoF_transport_r, apply tr_eq_of_eq_inv_tr,

5 apply concat, apply respect_id₁',

6 apply inv_tr_eq_of_eq_tr, apply inv_tr_eq_of_eq_tr,

7 apply inverse,

8 apply concat, apply (transport_eq_transport4 (λ f g h i, two_cell E f g h i)),

9 apply concat, apply transport4_transport_acc,

10 apply concat, apply transport4_transport_acc,

11 apply concat, apply transport4_transport_acc,

12 apply concat, apply transport4_transport_acc,

13 apply concat, apply transport4_transport_acc,

14 apply transport4_set_reduce,

The two calls to apply respect_id₁' are the use of the fact that each of the
double functors respects identity squares. The lemmas twoF_transport_l
and twoF_transport_r serve to pull a transport out of the application of
a double functor to a two-cell. Just as in many proofs, we then end up
with a goal that consists of an equation with the same term on its left and
right hand side but with lots of transport terms on one side. Since the
transports are all on the different faces of a two-cell, we create an auxiliary
definition transport4 holding transports for each face. Then we turn the
regular transports into instances of this new definition using transport_

eq_transport4 and transport4_transport_acc so that in the end we can
use the fact that morphisms between two objects form a set to eliminate
the transport4 term.

transport4 itself ist defined as follows:

1 parameters {A B C D : Type} (P : A → B → C → D → Type)

2 definition transport4 {a0 a1 : A} {b0 b1 : B} {c0 c1 : C} {d0 d1 : D}

3 (pa : a0 = a1) (pb : b0 = b1) (pc : c0 = c1) (pd : d0 = d1)

4 (u : P a0 b0 c0 d0) : P a1 b1 c1 d1 :=

5 pd ▹ pc ▹ pb ▹ pa ▹ u

After turning the outermost transport into a transport4 we can accu-
mulate other transport by just using the following lemma:

92 5.4. FORMALIZING DOUBLE GROUPOIDS

1 definition transport4_transport_acc {E : Type}

2 {a0 : A} {b0 : B} {c0 : C} {d0 : D}

3 {e0 e1 : E} {f : E → A} {g : E → B} {h : E → C} {i : E → D}

4 (pa : f e1 = a0) (pb : g e1 = b0) (pc : h e1 = c0) (pd : i e1 = d0)

5 (p : e0 = e1) (u : P (f e0) (g e0) (h e0) (i e0)) :

6 transport4 pa pb pc pd (transport (λ (x : E), P (f x) (g x) (h x) (i x)) p u)

7 = transport4 (ap f p � pa) (ap g p � pb) (ap h p � pc) (ap i p � pd) u :=

8 by cases pa; cases pb; cases pc; cases pd; cases p; apply idp

The final reduction step is done by assuming that all parameter types
A, B, C, and D are sets:

1 definition transport4_set_reduce [HA : is_hset A] [HB : is_hset B]

2 [HC : is_hset C] [HD : is_hset D]

3 {a0 : A} {b0 : B} {c0 : C} {d0 : D}

4 {pa : a0 = a0} {pb : b0 = b0} (pc : c0 = c0) (pd : d0 = d0)

5 (u : P a0 b0 c0 d0) :

6 transport4 pa pb pc pd u = u :=

7 begin

8 assert Ppa : pa = idp, apply is_hset.elim,

9 assert Ppb : pb = idp, apply is_hset.elim,

10 assert Ppc : pc = idp, apply is_hset.elim,

11 assert Ppd : pd = idp, apply is_hset.elim,

12 rewrite [Ppa, Ppb, Ppc, Ppd],

13 end

Finally, we can instantiate the precategory of double groupoids:

1 universe variables l₁ l₂ l₃

2 definition cat_dbl_gpd [reducible] :

3 precategory.{(max l₁ l₂ l₃)+1 (max l₁ l₂ l₃)} Dbl_gpd.{l₁ l₂ l₃} :=

4 begin

5 fapply precategory.mk,

6 intros [D, E], apply (dbl_functor D E),

7 intros [D, E], apply (is_hset_dbl_functor D E),

8 intros [C, D, E, G, F], apply (dbl_functor.compose G F),

9 intro D, apply (dbl_functor.id D),

10 intros [B, C, D, E, H, G, F], apply (dbl_functor.assoc),

11 intros [B, C, F], apply (dbl_functor.id_left),

12 intros [B, C, F], apply (dbl_functor.id_right),

13 end

CHAPTER 5. FORMALIZATION IN LEAN 93

5.5 Formalizing Crossed Modules
The definition of a crossed module involves stating the fact that the given
map µ is a group homomorphism and that ϕ is a groupoid action. Since the
algebra library did not contain any definitions for these algebraic notions
and since their properties are only rarely used, I decided to add them to
the definition of a crossed module as additional fields:

1 structure xmod {P₀ : Type} [P : groupoid P₀] (M : P₀ → Group) :=

2 (P₀_hset : is_hset P₀)

3 (μ : Π {|p : P₀|}, M p → hom p p)

4 (μ_respect_comp : Π {|p : P₀|} (b a : M p), μ (b * a) = μ b ∘ μ a)

5 (μ_respect_id : Π (p : P₀), μ 1 = ID p)

6 (φ : Π {|p q : P₀|}, hom p q → M p → M q)

7 (φ_respect_id : Π {|p : P₀|} (x : M p), φ (ID p) x = x)

8 (φ_respect_P_comp : Π {|p q r : P₀|} (b : hom q r) (a : hom p q) (x : M p),

9 φ (b ∘ a) x = φ b (φ a x))

10 (φ_respect_M_comp : Π {|p q : P₀|} (a : hom p q) (y x : M p),

11 φ a (y * x) = (φ a y) * (φ a x))

12 (CM1 : Π {|p q : P₀|} (a : hom p q) (x : M p), μ (φ a x) = a ∘ (μ x) ∘ a⁻¹)
13 (CM2 : Π {|p : P₀|} (c x : M p), φ (μ c) x = c * (x * c⁻¹ᵍ))

The fact that µ respects inverses and ϕ respects the neutral element of
the group can then be derived from the fields listed in the definition of a
crossed module:

1 definition μ_respect_inv {|p : P₀|} (a : M p) : μ MM a⁻¹ᵍ = (μ MM a)⁻¹ :=

2 begin

3 assert H : μ MM a⁻¹ᵍ ∘ μ MM a = (μ MM a)⁻¹ ∘ μ MM a,

4 exact calc μ MM a⁻¹ᵍ ∘ μ MM a = μ MM (a⁻¹ᵍ * a) : μ_respect_comp

5 ... = μ MM 1 : by rewrite mul_left_inv

6 ... = id : μ_respect_id

7 ... = (μ MM a)⁻¹ ∘ μ MM a : left_inverse,

8 apply epi.elim, exact H,

9 end

10

11 definition φ_respect_one {|p q : P₀|} (a : hom p q) : φ MM a 1 = 1 :=

12 begin

13 assert H : φ MM a 1 * 1 = φ MM a 1 * φ MM a 1,

14 exact calc φ MM a 1 * 1 = φ MM a 1 : mul_one

15 ... = φ MM a (1 * 1) : one_mul

16 ... = φ MM a 1 * φ MM a 1 : φ_respect_M_comp,

17 apply eq.inverse, apply (mul_left_cancel H),

18 end

94 5.5. FORMALIZING CROSSED MODULES

Just like we did for double functors, we define morphisms of crossed
modules as their own structures, with lemmas to state a representation by
iterated sigma and product types, their truncation level and a lemma to
build an equality between two of them:

1 structure xmod_morphism : Type :=

2 (gpd_functor : functor (Groupoid.mk X (gpd X)) (Groupoid.mk Y (gpd Y)))

3 (hom_family : Π (p : X), (groups X p) → (groups Y (gpd_functor p)))

4 (hom_family_hom : Π (p : X) (x y : groups X p),

5 hom_family p (x * y) = hom_family p x * hom_family p y)

6 (mu_commute : Π (p : X) (x : groups X p),

7 gpd_functor (μ X x) = μ Y (hom_family p x))

8 (phi_commute : Π (p q : X) (a : hom p q) (x : groups X p),

9 hom_family q (φ X a x) = φ Y (gpd_functor a) (hom_family p x))

10

11 definition xmod_morphism_sigma_char :

12 (Σ (gpd_functor : functor (Groupoid.mk X (gpd X)) (Groupoid.mk Y (gpd Y)))

13 (hom_family : Π (p : X), (groups X p) → (groups Y (gpd_functor p))),

14 (Π (p : X) (x y : groups X p),

15 hom_family p (x * y) = (hom_family p x) * (hom_family p y))

16 × (Π (p : X) (x : groups X p),

17 to_fun_hom gpd_functor (μ X x) = μ Y (hom_family p x))

18 × (Π (p q : X) (a : @hom X _ p q) (x : groups X p),

19 hom_family q (φ X a x) = φ Y (gpd_functor a) (hom_family p x)))

20 ≃ xmod_morphism := ...

21

22 definition xmod_morphism_hset : is_hset xmod_morphism := ...

23

24 parameters ...

25 (p : to_fun_ob gpd_functor1 = to_fun_ob gpd_functor2)

26 (q : transport (λ x, Π a b, hom a b → hom (x a) (x b)) p

27 (to_fun_hom gpd_functor1) = to_fun_hom gpd_functor2)

28 (r : transport (λ x, Π p', (groups X p') → (groups Y (x p'))) p

29 hom_family1 = hom_family2)

30

31 definition xmod_morphism_congr :

32 xmod_morphism.mk gpd_functor1 hom_family1

33 hom_family_hom1 mu_commute1 phi_commute1

34 = xmod_morphism.mk gpd_functor2 hom_family2

35 hom_family_hom2 mu_commute2 phi_commute2 := ...

This equality lemma can then be used to prove the identity and asso-
ciativity of crossed module morphisms to build the precategory of crossed
modules.

CHAPTER 5. FORMALIZATION IN LEAN 95

1 definition xmod_morphism_id_left :

2 xmod_morphism_comp (xmod_morphism_id Y) f = f :=

3 begin

4 cases f,

5 fapply xmod_morphism_congr,

6 apply idp,

7 apply idp,

8 repeat (apply eq_of_homotopy ; intros),

9 apply idp,

10 end

11

12 universe variables l₁ l₂ l₃

13 definition cat_xmod :

14 precategory.{(max l₁ l₂ l₃)+1 (max l₁ l₂ l₃)} Xmod.{l₁ l₂ l₃} :=

15 begin

16 fapply precategory.mk,

17 intros [X, Y], apply (xmod_morphism X Y),

18 intros [X, Y], apply xmod_morphism_hset,

19 intros [X, Y, Z, g, f], apply (xmod_morphism_comp g f),

20 intro X, apply xmod_morphism_id,

21 intros [X, Y, Z, W, h, g, f], apply xmod_morphism_assoc,

22 intros [X, Y, f], apply xmod_morphism_id_left,

23 intros [X, Y, f], apply xmod_morphism_id_right,

24 end

5.6 Proving the Equivalence
Proving the equivalence between the categoriesDGpd andXMod involves
the following steps:

1. Define γ and λ on objects – as functions mapping double groupoids
to crossed modules and vice versa.

2. Define γ and λ on the morphisms of the respective categories: On
double functors and crossed module morphisms. This is a step that
we glossed over when defining the functors in the original topologi-
cal and set theoretic setting.

3. Instantiate γ and λ as actual functors by proving that they respect
identities and composition.

4. Build natural transformations γλ → idXMod and λγ → idDGpd.

96 5.6. PROVING THE EQUIVALENCE

5. Show that these natural transformations are isomorphic by showing
that they map each object in the respective category to an isomor-
phism in that category.

We start by implementing γ as a function Dbl_gpd → Xmod. This first of
all involved building the family of groups in the desired crossed module.
We create a further structure to hold the objects of each of these groups:
The type of two-cells which have the identity on all but their upper face.

1 structure folded_sq (a : D₀) :=

2 (lid : hom a a)

3 (filler : D₂ lid id id id)

After proving the group axioms for folded_sq a, a task which again
involves extensive transport management, we can instantiate the actual
group of “folded squares” over a point a : D₀. Here, l₂ is the the uni-
verse level of morphisms in the double groupoid in the context and l₃ is
the level of two-cells.

1 protected definition folded_sq_group [instance] (a : D₀) :

2 group (folded_sq a) :=

3 begin

4 fapply group.mk,

5 intros [u, v], apply (folded_sq.comp u v),

6 apply (folded_sq.is_hset a),

7 intros [u, v, w], apply ((folded_sq.assoc u v w)⁻¹),
8 apply folded_sq.one,

9 intro u, apply (folded_sq.id_left u),

10 intro u, apply (folded_sq.id_right u),

11 intro u, apply (folded_sq.inv u),

12 intro u, apply (folded_sq.left_inverse u),

13 end

14

15 protected definition folded_sq_Group [reducible] (a : D₀) :

16 Group.{max l₂ l₃} :=

17 Group.mk (folded_sq a) (folded_sq_group a)

The definitions for µ and ϕ themselves are again very straightforward,
while some of the axioms are surprisingly hard to prove, one example be-
ing the proof that ϕ respects the group composition, which takesmore than
100 lines due to the massive need to transform transport terms. In the end
we can define the bundled crossed module that results from γ:

CHAPTER 5. FORMALIZATION IN LEAN 97

1 protected definition xmod [reducible] :

2 xmod (λ x, gamma.folded_sq_Group G x) :=

3 begin

4 fapply xmod.mk,

5 exact D₀set,

6 intros [x, u], apply (gamma.mu G u),

7 intros [x, v, u], apply (gamma.mu_respect_comp G v u),

8 intro x, apply gamma.mu_respect_id,

9 intros [x, y, a, u], apply (gamma.phi G a u),

10 intros [x, u], apply (gamma.phi_respect_id G u),

11 intros [x, y, z, b, a, u], apply (gamma.phi_respect_P_comp G b a u),

12 intros [x, y, a, v, u], apply (gamma.phi_respect_M_comp G a v u),

13 intros [x, y, a, u], apply (gamma_CM1 a u),

14 intros [x, v, u], apply (gamma_CM2 v u),

15 end

16

17 end

18

19 open Dbl_gpd

20 protected definition on_objects [reducible] (G : Dbl_gpd) : Xmod :=

21 Xmod.mk (λ x, gamma.folded_sq_Group G x) (gamma.xmod G)

Defining the functor γ on morphisms we have to map a double functor
to a morphism of crossed modules. We first define the morphism on the
group family by applying the double functor to the “folded squares” with
transports to keep three of their faces the identity. Proving that this defines
a group homomorphism, and proving the further axioms again makes use
of the statements that functors respect composition and identities and of
the helper lemmas to move the resulting transport terms.

1 context

2 parameters {G H : Dbl_gpd} (F : dbl_functor G H)

3

4 protected definition on_morphisms_on_base [reducible]

5 (p : gamma.on_objects G) (x : Xmod.groups (gamma.on_objects G) p) :

6 Xmod.groups (gamma.on_objects H) (to_fun_ob (dbl_functor.catF F) p) :=

7 begin

8 cases F with [catF, twoF, F3, F4, F5, F6],

9 cases G with [gpdG,sqG,structG,carrierG_hset],

10 cases H with [gpdH,sqH,structH,carrierH_hset],

11 cases x with [lid,filler],

12 fapply folded_sq.mk, apply (to_fun_hom catF lid),

13 apply (transport (λ x, sqH _ x id id) (respect_id catF p)),

14 apply (transport (λ x, sqH _ _ x id) (respect_id catF p)),

98 5.6. PROVING THE EQUIVALENCE

15 apply (transport (λ x, sqH _ _ _ x) (respect_id catF p)),

16 apply (twoF filler),

17 end

18

19 set_option unifier.max_steps 30000

20 protected definition on_morphisms_hom_family [reducible]

21 (p : Xmod.carrier (gamma.on_objects G))

22 (x y : Xmod.groups (gamma.on_objects G) p) :

23 gamma.on_morphisms_on_base F p (x * y) =

24 (gamma.on_morphisms_on_base F p x) * (gamma.on_morphisms_on_base F p y) :=

25 begin

26 ...

27 end

28

29 protected definition on_morphisms :

30 xmod_morphism (gamma.on_objects G) (gamma.on_objects H) :=

31 begin

32 ...

33 end

We show the final instantiation of γ as a functor using function exten-
sionality for the proof that γ respects composition and identity.

1 protected definition functor :

2 functor Cat_dbl_gpd.{l₁ l₂ l₃} Cat_xmod.{(max l₁ l₂) l₂ l₃} :=

3 begin

4 fapply functor.mk,

5 intro G, apply (gamma.on_objects G),

6 intros [G, H, F], apply (gamma.on_morphisms F),

7 intro G, cases G,

8 fapply xmod_morphism_congr, apply idp, apply idp,

9 repeat (apply eq_of_homotopy ; intros), cases x_1, apply idp,

10 ...

11 end

Just like for γ, we create a structure to hold the two-cell of the double
groupoid we create when defining the functor λ:

1 parameters {P₀ : Type} [P : groupoid P₀] {M : P₀ → Group} (MM : xmod M)

2 ...

3 structure lambda_morphism {|a b c d : P₀|}

4 (f : hom a b) (g : hom c d) (h : hom a c) (i : hom b d) :=

5 (m : M d) (comm : μ MM m = i ∘ f ∘ h⁻¹ ∘ g⁻¹)

Compositions, identity squares, thin squares and axioms that are needed
to build a double groupoid are defined without major difficulties. In the

CHAPTER 5. FORMALIZATION IN LEAN 99

end we collect all 27 of these definitions to form the double groupoid we
want:

1 protected definition dbl_gpd [reducible] : dbl_gpd P lambda_morphism :=

2 begin

3 fapply dbl_gpd.mk,

4 intros, apply (lambda_morphism.comp₁ a_1 a_2),

5 intros, apply (lambda_morphism.ID₁ f),

6 intros, apply lambda_morphism.assoc₁,

7 intros, apply lambda_morphism.id_left₁,

8 intros, apply lambda_morphism.id_right₁,

9 intros, apply lambda_morphism.is_hset,

10 intros, apply (lambda_morphism.comp₂ a_1 a_2),

11 intros, apply (lambda_morphism.ID₂ f),

12 intros, apply lambda_morphism.assoc₂,

13 intros, apply lambda_morphism.id_left₂,

14 intros, apply lambda_morphism.id_right₂,

15 intros, apply lambda_morphism.is_hset,

16 intros, apply lambda_morphism.id_comp₁,

17 intros, apply lambda_morphism.id_comp₂,

18 intros, apply lambda_morphism.zero_unique,

19 intros, apply lambda_morphism.interchange,

20 intros, apply (lambda_morphism.inv₁ a_1),

21 intros, apply lambda_morphism.left_inverse₁,

22 intros, apply lambda_morphism.right_inverse₁,

23 intros, apply (lambda_morphism.inv₂ a_1),

24 intros, apply lambda_morphism.left_inverse₂,

25 intros, apply lambda_morphism.right_inverse₂,

26 intros, fapply thin_structure.mk,

27 intros, apply (lambda_morphism.T f g h i a_1),

28 intros, apply lambda_morphism.thin_ID₁,

29 intros, apply lambda_morphism.thin_ID₂,

30 intros, apply lambda_morphism.thin_comp₁,

31 intros, apply lambda_morphism.thin_comp₂,

32 end

After defining λ on morphisms we can instantiate it as a functor be-
tween categories with the same restriction to universe levels that we al-
ready saw in the definition of γ.

1 protected definition functor :

2 functor Cat_xmod.{l₁ l₂ l₃} Cat_dbl_gpd.{(max l₁ l₂) l₂ l₃} :=

3 begin

4 fapply functor.mk,

5 intro X, apply (lambda.on_objects X),

6 intros [X, Y, f], apply (lambda.on_morphisms f),

100 5.7. INSTANTIATING THE FUNDAMENTAL DOUBLE GROUPOID

7 intro X, cases X,

8 fapply dbl_functor.congr', apply idp, apply idp,

9 repeat (apply eq_of_homotopy ; intros), cases x_8,

10 fapply lambda_morphism.congr', apply idp,

11 apply is_hset.elim,

12 intros [X, Y, Z, g, f], cases X, cases Y, cases Z, cases g, cases f,

13 fapply dbl_functor.congr', apply idp, apply idp,

14 repeat (apply eq_of_homotopy ; intros), cases x_8,

15 fapply lambda_morphism.congr', apply idp,

16 apply is_hset.elim,

17 end

5.7 Instantiating the Fundamental Double Group-
oid

The general strategy for the instantiation of the fundamental double group-
oid of a presented 2-type has been laid out in Definition 4.4.4. We start by
building the fundamental groupoid of a 1-type A, a set C and a function
ι : C → A relating them:

1 definition fundamental_groupoid [reducible] : groupoid C :=

2 groupoid.mk

3 (λ (a b : C), ι a = ι b)

4 (λ (a b : C), is_trunc_eq nat.zero (ι a) (ι b))

5 (λ (a b c : C) (p : ι b = ι c) (q : ι a = ι b), q � p)

6 (λ (a : C), refl (ι a))

7 (λ (a b c d : C) (p : ι c = ι d) (q : ι b = ι c) (r : ι a = ι b),

8 con.assoc r q p)

9 (λ (a b : C) (p : ι a = ι b), con_idp p)

10 (λ (a b : C) (p : ι a = ι b), idp_con p)

11 (λ {|a b : C|} (p : ι a = ι b),

12 @is_iso.mk C _ a b p (eq.inverse p) (!con.right_inv) (!con.left_inv))

We then continue to provide all the components for the double groupoid
in the “flat” setting where we only consider points, equalities and iterated
equalities in the 2-type X. This is done by basic manipulation of the given
equalities. The vertical composition, for example, is given by the following
calculation:

1 definition fund_dbl_precat_flat_comp₁ {a₁ b₁ a₂ b₂ a₃ b₃ : X}

2 {f₁ : a₁ = b₁} {g₁ : a₂ = b₂} {h₁ : a₁ = a₂} {i₁ : b₁ = b₂}

3 {g₂ : a₃ = b₃} {h₂ : a₂ = a₃} {i₂ : b₂ = b₃}

CHAPTER 5. FORMALIZATION IN LEAN 101

4 (v : h₂ � g₂ = g₁ � i₂) (u : h₁ � g₁ = f₁ � i₁) :

5 (h₁ � h₂) � g₂ = f₁ � (i₁ � i₂) :=

6 calc (h₁ � h₂) � g₂ = h₁ � (h₂ � g₂) : by rewrite con.assoc

7 ... = h₁ � (g₁ � i₂) : by rewrite v

8 ... = (h₁ � g₁) � i₂ : by rewrite con.assoc'

9 ... = (f₁ � i₁) � i₂ : by rewrite u

10 ... = f₁ � (i₁ � i₂) : by rewrite con.assoc

The corresponding axioms are proven by induction over the equalities
involved. Here, one has to carefully choose the order in which to destruct
the equalities, since the iterated equalities can only be destructed if their
right hand side is atomic and since in Lean p � refl, but not refl � p is judgmen-
tally equal to p. The following example shows the proof of the interchange
law by destruction in the order which is illustrated in Figure 5.1 (with non-
reflexivity equalities shown as paths and iterated equalities as bounded
areas).

1 variables

2 {a₀₀ a₀₁ a₀₂ a₁₀ a₁₁ a₁₂ a₂₀ a₂₁ a₂₂ : X}

3 {f₀₀ : a₀₀ = a₀₁} {f₀₁ : a₀₁ = a₀₂} {f₁₀ : a₁₀ = a₁₁} {f₁₁ : a₁₁ = a₁₂}

4 {f₂₀ : a₂₀ = a₂₁} {f₂₁ : a₂₁ = a₂₂} {g₀₀ : a₀₀ = a₁₀} {g₀₁ : a₀₁ = a₁₁}

5 {g₀₂ : a₀₂ = a₁₂} {g₁₀ : a₁₀ = a₂₀} {g₁₁ : a₁₁ = a₂₁} {g₁₂ : a₁₂ = a₂₂}

6 (x : g₁₁ � f₂₁ = f₁₁ � g₁₂) (w : g₁₀ � f₂₀ = f₁₀ � g₁₁)

7 (v : g₀₁ � f₁₁ = f₀₁ � g₀₂) (u : g₀₀ � f₁₀ = f₀₀ � g₀₁)

8

9 definition fund_dbl_precat_flat_interchange :

10 fund_dbl_precat_flat_interchange_vert_horiz x w v u

11 = fund_dbl_precat_flat_interchange_horiz_vert x w v u :=

12 begin

13 revert v, revert f₀₁, revert g₀₂,

14 revert u, revert f₀₀, revert g₀₁, revert g₀₀,

15 revert x, revert f₁₁, revert g₁₂, revert f₂₁,

16 revert w, revert f₁₀, revert g₁₁, revert g₁₀,

17 cases f₂₀,

18 intro g₁₀, cases g₁₀,

19 intro g₁₁, cases g₁₁,

20 intro f₁₀, intro w, cases w,

21 intro f₂₁, cases f₂₁,

22 intro g₁₂, cases g₁₂,

23 intro f₁₁, intro x, cases x,

24 intro g₀₀, cases g₀₀,

25 intro g₀₁, cases g₀₁,

26 intro f₀₀, intro u, cases u,

27 intro g₀₂, cases g₀₂,

28 intro f₀₁, intro v, cases v,

102 5.7. INSTANTIATING THE FUNDAMENTAL DOUBLE GROUPOID

...........

cases f₂₀;
.........

cases g₁₀;
........

cases g₁₁;

.......

cases w;

.......

cases f₂₁;

......

cases g₁₂;

.....

cases x;

.....

cases g₀₀;

....

cases g₀₁;

...

cases u;

...

cases g₀₂;

.

Figure 5.1: Destructing a grid of squares to prove the “flat” interchange
law.

29 apply idp,

30 end

The actual vertical composition is then derived from the “flat” version
by transporting twice along the functoriality ap_con of path concatenation.

1 definition fund_dbl_precat_comp₁ ...

2 (v : ap ι' h₂ � ap ι' g₂ = ap ι' g₁ � ap ι' i₂)

3 (u : ap ι' h₁ � ap ι' g₁ = ap ι' f₁ � ap ι' i₁) :

4 ap ι' (h₁ � h₂) � ap ι' g₂ = ap ι' f₁ � ap ι' (i₁ � i₂) :=

5 ((ap_con ι' i₁ i₂)⁻¹) ▹ ((ap_con ι' h₁ h₂)⁻¹) ▹
6 @fund_dbl_precat_flat_comp₁ X A C Xtrunc Atrunc Cset

7 (ι' (ι a₁)) (ι' (ι b₁)) (ι' (ι a₂)) (ι' (ι b₂)) (ι' (ι a₃)) (ι' (ι b₃))

8 (ap ι' f₁) (ap ι' g₁) (ap ι' h₁) (ap ι' i₁)

9 (ap ι' g₂) (ap ι' h₂) (ap ι' i₂) v u

Thenwe can prove the axioms for the double groupoid performing step
2 and 3 from the proof of Definition 4.4.4. Like in the following example
of vertical associativity, we first use the flat version of the axiom and in the
end refer to another auxiliary lemma that allows for path induction in the
type A.

CHAPTER 5. FORMALIZATION IN LEAN 103

1 definition fund_dbl_precat_assoc₁_aux {a₁ a₂ a₃ a₄ b₁ b₂ b₃ b₄ : A}

2 (f₁ : a₁ = b₁) (g₁ : a₂ = b₂) (h₁ : a₁ = a₂) (i₁ : b₁ = b₂)

3 (g₂ : a₃ = b₃) (h₂ : a₂ = a₃) (i₂ : b₂ = b₃) (g₃ : a₄ = b₄)

4 (h₃ : a₃ = a₄) (i₃ : b₃ = b₄)

5 (w : (ap ι' h₃) � (ap ι' g₃) = (ap ι' g₂) � (ap ι' i₃))

6 (v : (ap ι' h₂) � (ap ι' g₂) = (ap ι' g₁) � (ap ι' i₂))

7 (u : (ap ι' h₁) � (ap ι' g₁) = (ap ι' f₁) � (ap ι' i₁)) :

8 (transport (λ x, ((ap ι' h₁) � x) � (ap ι' g₃) = _) (ap_con ι' h₂ h₃)

9 (transport (λ x, _ = ((ap ι' f₁) � ((ap ι' i₁) � x))) (ap_con ι' i₂ i₃)

10 (transport (λ x, (x � (ap ι' g₃)) = _) (ap_con ι' h₁ (concat h₂ h₃))

11 (transport (λ x, _ = (ap ι' f₁) � x) (ap_con ι' i₁ (concat i₂ i₃))

12 (transport (λ x, _ = (ap ι' f₁) � (ap ι' x)) (con.assoc i₁ i₂ i₃)

13 (transport (λ x, (ap ι' x) � _ = _) (con.assoc h₁ h₂ h₃)

14 (transport (λ x, _ = (ap ι' f₁) � x) (ap_con ι' (concat i₁ i₂) i₃)⁻¹
15 (transport (λ x, x � (ap ι' g₃) = _) (ap_con ι' (concat h₁ h₂) h₃)⁻¹
16 (transport (λ x, _ = _ � (x � _)) (ap_con ι' i₁ i₂)⁻¹
17 (transport (λ x, (x � _) � _ = _) (ap_con ι' h₁ h₂)⁻¹
18 (transport (λ x, x � _ = _)

19 (con.assoc (ap ι' h₁) (ap ι' h₂) (ap ι' h₃))⁻¹
20 (transport (λ x, _ = _ � x)

21 (con.assoc (ap ι' i₁) (ap ι' i₂) (ap ι' i₃))⁻¹
22 (fund_dbl_precat_flat_comp₁

23 (fund_dbl_precat_flat_comp₁ w v) u)))))))))))))

24 = (fund_dbl_precat_flat_comp₁ (fund_dbl_precat_flat_comp₁ w v) u) :=

25 begin

26 ...

27 end

28

29 definition fund_dbl_precat_assoc₁ :

30 (con.assoc i₁ i₂ i₃) ▹ (con.assoc h₁ h₂ h₃) ▹
31 (fund_dbl_precat_comp₁ w (fund_dbl_precat_comp₁ v u))

32 = fund_dbl_precat_comp₁ (fund_dbl_precat_comp₁ w v) u :=

33 begin

34 unfold fund_dbl_precat_comp₁,

35 apply tr_eq_of_eq_inv_tr, apply tr_eq_of_eq_inv_tr,

36 apply inv_tr_eq_of_eq_tr, apply inv_tr_eq_of_eq_tr,

37 apply concat, apply fund_dbl_precat_flat_transp1, apply inv_tr_eq_of_eq_tr,

38 apply concat, apply fund_dbl_precat_flat_transp2, apply inv_tr_eq_of_eq_tr,

39 apply concat, apply fund_dbl_precat_flat_assoc₁', -- Call flat version

40 apply eq_tr_of_inv_tr_eq, apply eq_tr_of_inv_tr_eq,

41 apply eq_tr_of_inv_tr_eq, apply eq_tr_of_inv_tr_eq,

42 apply eq_inv_tr_of_tr_eq, apply eq_inv_tr_of_tr_eq,

43 apply eq_inv_tr_of_tr_eq, apply eq_inv_tr_of_tr_eq,

44 apply inverse,

45 apply concat, apply fund_dbl_precat_flat_transp3, apply inv_tr_eq_of_eq_tr,

46 apply concat, apply fund_dbl_precat_flat_transp4, apply inv_tr_eq_of_eq_tr,

104 5.7. INSTANTIATING THE FUNDAMENTAL DOUBLE GROUPOID

47 apply inverse, apply fund_dbl_precat_assoc₁_aux, -- Call half-flat lemma

48 end

Thin squares are defined by the following calculation using, again, the
functoriality of ap.

1 definition fund_dbl_precat_thin {a b c d : C}

2 {f : ι a = ι b} {g : ι c = ι d} {h : ι a = ι c} {i : ι b = ι d}

3 (comm : h � g = f � i) :

4 ap ι' h � ap ι' g = ap ι' f � ap ι' i :=

5 calc ap ι' h � ap ι' g = ap ι' (h � g) : ap_con

6 ... = ap ι' (f � i) : comm

7 ... = ap ι' f � ap ι' i : ap_con

Using the same strategy for the axioms for this thin structure as for the
axioms of the weak double groupoid lets us finally conclude by defining
the fundamental double groupoid:

1 definition fundamental_dbl_precat : dbl_gpd (fundamental_groupoid)

2 (λ (a b c d : C)

3 (f : ι a = ι b) (g : ι c = ι d) (h : ι a = ι c) (i : ι b = ι d),

4 ap ι' h � ap ι' g = ap ι' f � ap ι' i) :=

5 begin

6 fapply dbl_gpd.mk, ...

7 fapply thin_structure.mk, ...

8 end

CHAPTER 5. FORMALIZATION IN LEAN 105

Theory Line Count Compilation Time in s

transport4 49 0.333
dbl_cat.

basic 224 5.272
decl 58 4.253

dbl_gpd.

basic 199 6.375
category_of 41 1.314
decl 69 8.856
functor 582 47.997
fundamental 1270 21.091

equivalence.

equivalence 371 *30.049
gamma_functor 51 6.109
gamma 164 6.054
gamma_group 229 5.973
gamma_morphisms 167 5.986
gamma_mu_phi 407 24.828
lambda_functor 27 4.086
lambda 569 16.148
lambda_morphisms 70 7.914

thin_structure.

basic 154 3.091
decl 33 0.766

xmod.

category_of 25 0.327
decl 53 0.794
morphism 209 4.542

Table 5.4: The theories of my formalization project. Theories marked with
* contain unfinished proofs.

106 5.7. INSTANTIATING THE FUNDAMENTAL DOUBLE GROUPOID

Chapter 6

Conclusion and Future Work

Summarizing the previous chapters, my work consists of translating the
algebraic structures of double groupoids and crossed module to set based
structures in homotopy type theory. I transferred the principal example of
a fundamental double groupoid of a triple of spaces from the topological
setting to its equivalent in the world of higher types by defining the fun-
damental double groupoid of a presented 2-type. I formalized the struc-
tures of double categories, double groupoids and crossed modules in the
new theoremproving language Lean andmechanized the essential parts of
the proof that double groupoids with thin structures and crossed modules
form equivalent categories. I furthermore made the formalized structures
applicable to 2-truncated higher types by instantiating the fundamental
double groupoid of such types.

I hereby made it possible to analyze presented 2-types in purely set-
based algebraic structures. This opens up the analysis of second homotopy
groups or second homotopy groupoids of 2-types and the characteristics
of these groups and groupoids to the use of formalized group theoretical
and category theoretical knowledge. This could lead to direct computation
of several homotopy invariants. Being one of the first greater formalization
projects in Lean, the problems encountered during the process of writing
the formal definitions and proofs led to improvements in the performance
and usability of Lean. With respect to their compilation time, my theory
files also serve as a benchmark for the elaboration and type checking algo-
rithms used in Lean.

What are the main insights and experiences gained from this work?
Many of the difficulties in writing the formalization are certainly due to
the early development stage of the system used. During my work, Lean’s

107

108

features for structure definition, type class inference, tactics, aswell as trou-
bleshooting and output were vastly enhanced and improved. Also, the
time Lean needs to elaborate and type check the theory files have decreased
drastically since the start of the project. The library of category theory
and group theory that were developed alongside the actual formalization
project and are still work in progress. Another big hurdle was the manage-
ment of transport terms inmyproofs. Even actually trivial proofs involving
equalities of two-cells in double categories and double groupoids turned
out to be long and tedious due to the need of moving transport terms from
the inside of an operator or a function to its outside. This is, of course,
the price one has to pay for the heavy use of dependently typed two-cells
in double categories. After gaining experience on what auxiliary lemmas
were needed and how to use them, this burden of moving transport terms
was reduced to a mere strain on the theorem prover and a part of the the-
ories that made the files longer and less readable. Finally, some parts of
the proofs which were not stated explicitly but instead left out as “trivial”
in my main reference [BHS11] turned out to be more sophisticated than
initially anticipated.

There are several points where I could have made a different decision
that would have led to different results in the complexity and the character
of my formalization. As mentioned in Chapter 4, the decision on whether
to formalize the higher cells of a double category as dependent types or
as flat types with face operators is a difficult one. Deciding for flat types
would have prevented the need for many auxiliary lemmas involved in
the effort to control transport terms in equalities of two-cells. It is hard
to judge whether a flat typed approach would have led to longer proofs
and less readable definitions or if it made the formalization cleaner and
shorter. Another way of preventing the need of said auxiliary lemmas and
of applying lemmas to move transport terms to different sides of equations
would be using what Daniel Licata calls “pathovers” and “squareovers” in
his paper [LB] describing a strategy for the proof that, as a higher induc-
tive type, the torus is equivalent to the product of two circles. These en-
capsulate the type of equalities like those of the form p∗(x) = y as objects,
formalized as an inductive type. Another solution would be to switch to
a different logic that allow postulating judgmental equalities, e.g. the cu-
bical identities (3.1). One example for such a logical framework might by
Vladimir Voevodsky’s Homotopy Type System (HTS) [Voe]. This system
mightmake it possible to generalizemy formalization to the case of cubical
ω-groupoids and crossed complexes – something which, with my current

CHAPTER 6. CONCLUSION AND FUTURE WORK 109

approach – is not possible since there is no uniform way to describe the
dependent types of n-cells for all n ∈ N.

This leads to the question what could be a possible way to continue and
extend my project. The most obvious use of the formalization would be a
2-dimensional Seifert-van Kampen theorem for presented 2-types. In its
most common form, such a theoremwould state that the category theoret-
ical pushout of the fundamental double groupoid of two presented 2-types
is isomorphic to the fundamental double groupoid of the pushout of those
presented 2-types in the form of a higher inductive type. Then, one could
search for ways to find “reasonable” presentations for 2-types, homotopy
surjective ones come to mind, either manually or automatically at the time
of the definition of a higher inductive type. Such an automation could
then be part of the definitional package of an interactive theorem prover
that provides these higher inductive types as a primitive. As mentioned in
the above paragraph, themost important generalization of myworkwould
consist of replacing the “double” in “double groupoid” by “n-fold” for an
arbitrary n ∈ N or, as an ultimate goal, by the case of ω-groupoids that
contain higher cells for every dimension. Finally, one could ask if there are
any applications of Ronald Brown’s attempts to “compute” crossed mod-
ules induced by subgroups [BW96] to computable homotopy characteris-
tics of higher types.

110

Bibliography

[AKS13] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman.
Univalent categories and the rezk completion. Mathematical
Structures in Computer Science, pages 1–30, 2013. (Cited on page
43.)

[BBC+97] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël
Courant, Jean-Christophe Filliatre, Eduardo Gimenez, Hugo
Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al.
The Coq proof assistant reference manual: Version 6.1. 1997.
(Cited on page 67.)

[BHS11] Ronald Brown, Philip J Higgins, and Rafael Sivera. Nonabelian
Algebraic Topology: Filtered spaces, crossed complexes, cubical homo-
topy groupoids. European Mathematical Society, 2011. (Cited
on pages 2, 23, and 108.)

[BW96] Ronald Brown andChristopherDWensley. Computing crossed
modules induced by an inclusion of a normal subgroup, with
applications to homotopy 2-types. Theory Appl. Categ, 2(1):3–16,
1996. (Cited on page 109.)

[dMKA+] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van
Doorn, and Jakob von Raumer. The Lean Theorem Prover. sub-
mitted. (Cited on page 2.)

[Dyb94] Peter Dybjer. Inductive families. Formal aspects of computing,
6(4):440–465, 1994. (Cited on pages 8 and 64.)

[HAB+15] Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang,
John Harrison, Truong Le Hoang, Cezary Kaliszyk, Victor Ma-
gron, Sean McLaughlin, Thang Tat Nguyen, et al. A formal

111

112 BIBLIOGRAPHY

proof of the Kepler conjecture. arXiv preprint arXiv:1501.02155,
2015. (Cited on page 1.)

[hota] Homotopy type theory. https://github.com/HoTT/HoTT. Ac-
cessed: April 24, 2015. (Cited on pages 1 and 71.)

[hotb] Homotopy type theory in agda. https://github.com/HoTT/

HoTT-Agda. Accessed: April 24, 2015. (Cited on page 1.)

[LB] Daniel R Licata and Guillaume Brunerie. A cubical approach
to synthetic homotopy theory. (Cited on page 108.)

[ML98] Per Martin-Löf. An intuitionistic theory of types. In Giovanni
Sambin and Jan M. Smith, editors, Twenty-five years of construc-
tive type theory (Venice, 1995), volume 36 of Oxford Logic Guides,
pages 127–172. Oxford University Press, 1998. (Cited on page
3.)

[Nor09] Ulf Norell. Dependently typed programming in Agda. In Ad-
vanced Functional Programming, pages 230–266. Springer, 2009.
(Cited on page 67.)

[Uni13] The Univalent Foundations Program. Homotopy Type
Theory: Univalent Foundations of Mathematics. http:

//homotopytypetheory.org/book, Institute for Advanced
Study, 2013. (Cited on pages 3, 8, 12, 15, 21, 43, and 62.)

[Voe] Vladimir Voevodsky. A simple type system with two identity
types. http://uf-ias-2012.wikispaces.com/file/view/HTS.

pdf. Accessed: April 22, 2015. (Cited on page 108.)

https://github.com/HoTT/HoTT
https://github.com/HoTT/HoTT-Agda
https://github.com/HoTT/HoTT-Agda
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book
http://uf-ias-2012.wikispaces.com/file/view/HTS.pdf
http://uf-ias-2012.wikispaces.com/file/view/HTS.pdf

	1 Introduction
	2 Homotopy Type Theory
	2.1 Some Basic Non-Dependent Type Theory
	2.2 Dependent Functions and Pairs
	2.3 Propositional Equality
	2.4 Equivalences and Univalence
	2.5 Truncated Types
	2.6 Higher Inductive Types

	3 Non-Abelian Topology
	3.1 Double Categories
	3.2 Thin Structures and Connections
	3.3 Double Groupoids
	3.4 Crossed Modules
	3.5 Double Groupoids and Crossed Modules are Equivalent

	4 Translation and Use in Homotopy Type Theory
	4.1 Categories in Homotopy Type Theory
	4.2 Double groupoids in Homotopy Type Theory
	4.3 Crossed Modules in Homotopy Type Theory
	4.4 Presented Types

	5 A Formalization in the Lean Theorem Prover
	5.1 The Lean Theorem Prover
	5.2 Basic Homotopy Type Theory in Lean
	5.3 Category Theory in Lean
	5.4 Formalizing Double Groupoids
	5.5 Formalizing Crossed Modules
	5.6 Proving the Equivalence
	5.7 Instantiating the Fundamental Double Groupoid

	6 Conclusion and Future Work
	Bibliography

