Aspects of Ergodic Theory
in
Subsystems

of
Second-order Arithmetic

Ksenija Simic
Carnegie Mellon University
Thesis advisor: Jeremy Avigad

Submitted to
The Department of Mathematical Sciences,
in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

May 5, 2004






The ordinary-sized stuff which is our lives, the things people write
poetry about - clouds - daffodils - waterfalls - and what happens
in a cup of coffee when the cream goes in - these things are full of
mystery, as mysterious to us as the heavens were to the Greeks.
We’re better at predicting events at the edge of the galazy or in-
side the nucleus of an atom than whether it’ll rain on auntie’s
garden party three Sundays from now. Because the problem turns
out to be different. We can’t even predict the next drip from a
dripping tap when it gets irreqular. FEach drip sets up conditions
for the next, the smallest variation blows predictions apart, and
the weather is unpredictable the same way, will always be unpre-
dictable. When you push numbers through the computer you can
see it on the screen. The future is disorder. A door like this has
cracked open five or siz times since we got up on our hind legs.
It’s the best possible time to be alive, when almost everything you
thought you knew is wrong.

(Tom Stoppard, Arcadia)
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Introduction

Formalizing mathematics within second-order arithmetic is far from being
a novel venture. On the contrary, the origin of this practice can be traced
back to the beginning of the twentieth century. The turn of the last cen-
tury saw major changes in both practice and philosophy of mathematics,
one of the main new developments being the introduction of formal meth-
ods. The greatest mathematicians of the time, including Dedekind, Frege,
Peano, Russell and Weyl, contributed, in different ways, to the development
of axiomatic foundations for mathematics. It would be inaccurate to say
that these mathematicians began the development of mathematics within
second-order arithmetic, since for the most part they worked in higher-order
logic or without an underlying formal system. It wasn’t until Hilbert that
first and second-order logic were clearly separated from higher-order logic.
It was also Hilbert who first advocated second-order arithmetic as a for-
mal system suitable for development of analysis. He wrote about first and
second-order logic as early as 1917/18 in his lecture notes for the course
“Prinzipien der Mathematik,” but the true pioneering work in this area was
Grundlagen der Mathematik that Hilbert wrote with Bernays, and which
was first published in 1934. More than just recognizing second-order logic
as a separate entity, they gave axioms for second-order arithmetic and ex-
pressed the belief that analysis can be done naturally in this formal system.
They proceeded to develop some of the theory and proved a number of
results. Between the 1950’s and 1970’s this subject was taken up by a num-
ber of mathematicians, including Kleene, Kreisel, Friedman, Feferman and
Takeuti, who undertook an even finer analysis, dividing second-order arith-
metic into subsystems of varying logical strengths. The question arose of
which of the standard mathematical theorems are provable in which frag-
ments of second-order arithmetic, and has since been successfully answered
in a number of different areas. More on this subject, in the broader context
of historical development of proof theory, can be found in [1].

A question that often seems to arise in connection to doing mathematics

vii



viii INTRODUCTION

in second-order mathematics is: what is the purpose of this endeavor? If set
theory provides a sound foundation for the practice of mathematics, why
forsake it for a much weaker theory? The simple answer is this: using the
complex machinery of ZFC for proving theorems of countable mathematics
is, in a sense, an overkill. It is frequently the case that only a fragment of
full set theory is used in a proof. Our goal is to determine exactly what this
fragment is. We want to know not only whether a theorem can be formalized
and proved in second-order arithmetic, but also precisely how much of its full
strength is used. The motivation for this approach is primarily foundational,
though it should be noted that it also provides insight into the structure and
complexity of proofs and the mathematical concepts involved.

It is true that the language of second-order arithmetic is limited: the
only objects it allows for are natural numbers and sets of natural numbers.
But if we focus our attention on non set-theoretic mathematics, it turns
out that second-order arithmetic suffices for most considerations, both with
respect to representations and proofs.

Full second-order arithmetic consists of axioms for an ordered semiring,
the induction axiom and the comprehension scheme

IXVn(n € X < p(n))

where ¢ is any formula of the language in which X doesn’t occur freely.
This implies that every set defined by a formula in the language exists. In
most cases, however, full comprehension is more than is needed to prove
a theorem and can be replaced with weaker set existence axioms, yielding
different subsystems of second-order arithmetic. Conveniently, there is no
need for a whole array of such subsystems: six suffice to prove most theorems
of countable mathematics, and I will for the most part be using only three
out of those six.

The name frequently used for this area of research is reverse mathemat-
ics. It comes from the nature of the pursuit: not only do the axioms apply
certain theorems, but oftentimes the reverse is also true, and most relevant
theorems are logically equivalent to set existence axioms used to prove them.
For example, the Heine-Borel covering theorem is equivalent to weak Konig'’s
lemma over the base system RCAg and the Bolzano-Weierstrass theorem is
equivalent to arithmetic comprehension (ACA) over RCAg. (The subsystems
will be defined in Chapter 1.)

Principal investigators in this area in the past twenty years or so have
been Harvey Friedman, Stephen Simpson and Simpson’s students. Large
portions of mathematics have been formalized, including topology, measure
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theory, algebra. My research builds on this work, especially that in measure
theory. At the same time, it deals with a number of topics that were not
previously addressed, such as the theory of Hilbert spaces. Although the
title of the thesis indicates that it is an investigation into ergodic theory,
proofs of the mean and pointwise ergodic theorems are only the end result
of a broader work. Substantial effort needs to be put into setting the grounds
for proving them.

Outline

Chapter 1 provides general definitions and preliminaries, as well as a brief
overview of ergodic theory, a discussion of some of the peculiarities and
possible drawbacks of working in second-order arithmetic, and a comparison
with constructive mathematics. Hilbert spaces are discussed in the second
chapter, in particular, existence of orthogonal projections and properties
of bounded linear functionals, interesting in their own right, but essential
in the proof of the mean ergodic theorem. Next follows the proof of this
theorem and its reversal to (ACA) for a general Hilbert space. Then, before
moving on to the pointwise ergodic theorem, an entire chapter (Chapter 4)
is dedicated to measure theory. Though it is almost entirely self-contained,
it lists properties of integrable functions (and more generally elements of L,
spaces) needed to prove the pointwise ergodic theorem. The last chapter
contains three proofs of the pointwise ergodic theorem and its reversal to
(ACA). The appendices contain proofs of a few facts that are used in the
text, but are not necessary for its understanding.
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Chapter 1

General Preliminaries

1.1 Definitions

Note: Most definitions in this and other chapters are contained in Simpson’s
monograph [26], which is the most comprehensive account on the topic of
second-order arithmetic to date.

The language of second-order arithmetic (usually referred to as Ls) is
a two-sorted language. This means that there are two types of variables:
number variables, denoted as n,m,... and intended to range over natural
numbers, and set variables, denoted as X,Y, ... intended to range over sets
of natural numbers. Terms are built from variables and constant symbols 0
and 1. Atomic formulas are of the form t; = t9, t; < t9 and t; € X, where
t1 and 9 are terms. Finally, formulas are built from atomic formulas by
means of propositional connectives, and number and set quantifiers.

Full second-order arithmetic (usually referred to as Z, or 1. -C'Ap) is
formalized by classical propositional logic and axioms for second-order arith-
metic. The latter are divided into:

e Basic (ordered semiring) axioms:
n+1#0
m+l=n+1l—-m=n
m+0=m
m+(n+1)=(m+n)+1
m-0=20
m-(n+1)=(m-n)+m
—(m < 0)
m<n+1le (m<nVm=n);

1
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e Induction axiom

DeXAVn(neX >n+1€X))—=Vn(neX),

e Comprehension scheme
X (o(n) <> n € X),

where ¢(n) is any formula in Ls and X is not free in ¢(n).

Different subsystems of second-order arithmetic are obtained by restrict-
ing comprehension and replacing it with weaker set existence axioms. In
some cases induction is also modified.

Definition 1.1.1 An Lo formula is said to be a bounded quantifier formula
if all the quantifiers occurring in it are of the formVn <t ,In <t ,Vn <t
orIn<t.

An Lo formula is ¢ if it is of the form In ¢ where n is a number
variable and ¢ a bounded quantifier formula. Similarly, a TIY formula is of
the form Vn .

More generally, a 22 formula is of the form Ing Vno Ing ...ng @, where
ni,...n, are number variables and ¢ is a bounded quantifier formula. Sim-
ilarly, a Hg formula is of the form ¥Yni Ing ...ng .

A formula of Ly is an arithmetical formula if it is equivalent to a Z% or
Hg formula for some k.

A formula is TIL if it is of the form VX 0, where X is a set variable, and
0 is an arithmetic formula.

Note: If a formula being considered has only first-order quantifiers, and
if there is no confusion, the superscript 0 will be omitted. For example, 3,
stands for XY etc.

Most countable mathematics can be formalized in one of the five systems
listed below, ordered from weakest to strongest. The subscript 0 will stand
for restricted induction, since no system allows induction over an arbitrary
formula in the language.

e [RCA]. Basic axioms, plus ¥; induction and A; comprehension.

e [WKLg]. RCAq together with weak Konig’s Lemma ( WKL), a compact-
ness principle stating that every infinite subtree of 2<N has a path.

e [ACAq]. RCAq plus arithmetic comprehension axiom (ACA).
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e [ATRp]. ACAq with arithmetical transfinite recursion.
e [M1-CAq]. ACAy plus ITi comprehension (II}-CA).

Though Simpson doesn’t consider it one of the main subsystems, a sixth
system, WWKLy, will be of great use to us. It lies between RCAy and WKL,
and consists of the axioms for RCAp and the weak-weak Konig’s Lemma
(WWKL), stating that if T is a subtree of 2<N with no infinite path, then
lim, o€l Libo)=n}]

Much more could be said about the origin of each of these subsystems and
their relationships with pertinent mathematical programs, such as Weyl’s
predicativism (ACAg) or Hilbert’s finitism (WKLg), but, since Chapter 1 of
[26] provides all the necessary information, there is no need to discuss it
here.

All the remaining definitions in this section take place in RCAy.

The basic building block of second-order arithmetic are natural numbers.
As is customary, integers and rational numbers are represented as pairs of
natural numbers. Furthermore, a sufficient portion of number theory is
formalizable in RCAj, most importantly, it is possible to code finite sets of
natural numbers as single numbers within this system. This enables us to
discuss sequences of rational numbers, and consequently real numbers.

Definition 1.1.2 A real number is represented as a strong Cauchy sequence
of rational numbers, that is, a sequence (g, | n € N) such that q, € Q for
all m, and YVm V¥n (m <n — |gm — gn| < 27™).

Two real numbers represented as (g,) and (g},) are equal if Vn (|g, — ¢},| <
27k+1) and it can be shown that all algebraic operations are well-defined. If
z and y are real numbers, the statements z = y, x < y are 111, while z # y,
T <y are 2.

The set of real numbers is the completion of the countable dense sequence
Q. This definition can be generalized:

Definition 1.1.3 A (code for a) complete separable metric space A is pre-
sented as a nonempty set A C N together with a sequence of real numbers
A x A — R such that
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for a,b,c € A.

A point of A is a sequence {a, | n € N) such that d(a,,a,) < 2™ for
m < n. If a and b are two points in A, given as (an) and b = (by,), then
d(a,b) = lim,d(an,b,), and two points a and b are considered equal if
d(a,b) = 0, which makes d a metric. Each a € A is identified with the point
(a|neN) €A, and A is dense in A.

In other words, a complete separable metric space is the completion of
a countable dense subset A, and the elements of such a space are strong
Cauchy sequences of elements of A. This is a typical construction which
corresponds to the standard procedure of completing a metric space, and we
will see later that the definitions for Banach and Hilbert spaces are rather
similar to this one. Note that the set of real numbers does not formally exist
as an object in second-order arithmetic and neither does any metric space
A.

The name complete metric space is justified, because RCAg proves the
following: if (z,) is a sequence of elements of A with the property that
d(zn,Tm) < r(m) for m < n, where lim, r(n) = 0, then there exists an
element z € A such that d(z,z,) — 0.

Definition 1.1.4 A code for a (partial) continuous function ¢ : A — B
between two complete separable metric spaces A and B is given as a set of
quintuples ® C N x A x QY x B x Qt with the following properties (write

(a,7)®(b, s) to abbreviate In ((n,a,r,b,s) € )):

1. If (a,r)®(b,s) and (a,r)®(V,s") then d(b,b') < s+s' (all neighborhoods

of ®(z) intersect when x is within r from a).

2. If (a,r)®(b,s) and (a’,7") < (a,7) (meaning that d(a,a’)+1' < 1) then
(a',7")®(b,s) (consistency condition,).

3. If (a,r)®(b,s) and (b,s) < (V,s") then (a,r)®(V',s") (if ¢(z) is in an

open ball, it is also in all open balls containing it).

The formula (a,r)®(b, s) intuitively means that if z € B(a,r), then ¢(z) is
in the closure of B(b,s) (provided it is defined) and all such formulas give
enough information about ®(z).

A point z € A is said to be in the domain of ¢ if for all € there exists
(a,7)®(b, s) such that d(z,a) < r and s < e. It is provable within RCAg
that if z € dom(¢), there is a unique point y € B such that d(y,b) < s for
all (a,r)®(b,s) and d(z,a) < r.
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We will have little use for this definition. A much more important space
of functions will be the spaces C(X) defined in Section 4.1 on page 42, and
can be thought of as the space of all functions on a compact space with
moduli of uniform continuity.

Definition 1.1.5 A continuous function [ : A = B between two metric
spaces is uniformly continuous if for every € > 0 there exists § > 0 such
that whenever d(z,y) < ¢ then d(f(z), f(y)) < €. If there exists a function
h : N — N such that d(z,y) < h(n) — d(f(z), f(y)) < 27", the function h
is the modulus of uniform continuity.

Definition 1.1.6 (A code for) an open subset U of a complete separable
metric space is given as U C Nx Ax QT and a point x € A is said to belong
to U if

n Ja Ir (d(z,a) < T A (n,a,r) € U).

The formula encodes the open set which is the (countable) union of open
balls B(a,r) with rational radii, and centered at the points of A. It is
provable in RCAq that finite intersections and countable unions of open sets
are open. The formula z € U, where U is an open set, is ;.

A set is closed if it is the complement of an open set. A closed set C' is
represented with the same code as an openset U, and z € C iff z € U.

This representation of closed sets is not always useful, since it only pro-
vides negative information. Another definition will be given later (Defini-
tion 2.1.7, page 18), one that will be more convenient to work with. To
prove that the two notions coincide, stronger set existence axioms, (ACA)
and (II}-CA) are needed.

An important property that a set may have is locatedness. It will pro-
vide additional information about the set in question, as will be shown in
Section 2.2. The definition applies to all sets, though for our purposes, the
only relevant case is when C is closed.

Definition 1.1.7 A subset C of a complete separable metric space X is said
to be located if there exists a continuous function f such that f(x) = d(z,C)
for all x € X The function f is called a locating function.

The Heine-Borel characterization of compactness and sequential compact-
ness are both inconvenient from the point of view of second-order arithmetic,
as the former is equivalent to (WKL) and the latter to (ACA) over RCAq,
which means that having one or the other would be the same as having
weak KoOnig’s lemma or arithmetic comprehension, respectively, available in
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RCAg, which is obviously undesirable. The definition below coincides with
that used by Bishop.

Definition 1.1.8 A compact metric space is a complete separable metric
space A such that there is an infinite sequence of finite sequences (x;; | i <
nj,j € N) of points from A with the property that

Vze AVjeN3i< n; (d(zij,2) < 277).

1.2 Some Useful Facts

The results in this section were established earlier. Proofs of the first two
can be found in [2], as well as the proof of Proposition 1.2.3, except for
(1) — (2), which is given in [26]. They are simple facts with straightforward
proofs that will be used throughout.

Lemma 1.2.1 (RCAg) Let o(x,y) be any X1 formula, possibly with set and
number parameters other than the ones shown. Then

Vo Iy p(z,y) = 3f Vo o(z, f(x)).

We will also make use of least element principles. The following claim
states that in RCAg the least element principle is available for ¥; (and II;)
formulas. The class of Ag(2;) formulas is defined to be the smallest class of
formulas containing the ¥; formulas and closed under Boolean operations
(including negation) and bounded quantification.

Proposition 1.2.2 (RCAg) The following induction principles are deriv-
able:

1. Ordinary induction for Ag(X1) formulas.
2. Complete induction for Ay(X1) formulas.

3. The least-element principle for Ag(X1) formulas.

Reversals are always proved using one of the following equivalent char-
acterizations.

The Turing jump of Z C N is defined as the set {z | Jy 0(x,y, Z)}, where
0 is Ag and Jy 0(z,y, Z) is a complete X; formula.

Proposition 1.2.3 (RCAg) The following statements are equivalent:
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. If (cn) is any sequence of reals such that for each n,
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. Every increasing sequence (a,) of real numbers in [0,1] has a limit.

. If (by) is any sequence of nonnegative reals such that for each n,

Yienbi <1, then Y by, exists.

¢? <1, then

.y i<n i
> o, Cn emists.

. If (dy,) is any sequence of real numbers, the set D = {i € N | d; # 0}

exists.

. For every Z C N, the Turing jump of Z exists.
. (ACA)

Brief Overview of Ergodic Theory

The original motivation for ergodic theory comes from the following problem
from physics:

Consider a mechanical system with n degrees of freedom. ... the
system consists of k particles in a vessel in three-dimensional
space. Assuming that the masses of these particles are com-
pletely known, the instantaneous state of the system can be de-
scribed by giving the values of the n coordinates of position
together with the corresponding n velocities.. . . The state of the
system becomes from this point of view a point in 2n dimen-
sional space. As time goes on, the state of the system changes in
accordance with the appropriate physical laws....In accordance
with classical, deterministic, mechanics, that entire trajectory
can, in principle, be determined, once one point of it is given.
In practice we almost never have enough information for such a
complete determination.. .. Instead of asking “what will the state
of the system be at time ¢7”, we should ask “what is the prob-
ability that at time ¢ the state of the system will belong to a
specified subset of phase space?”. The questions of greatest in-
terest are the asymptotic ones: what will (probably) happen to
the system as ¢ tends to infinity? (Halmos, [16, p.1-2])

To simplify matters, instead of considering continuous time flow in the
problem above, the system is observed at discrete moments. To rephrase
the last question: what do we know about the convergence of S,(z) =
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%ZZ;& f(T*(z)), where f represents “any numerical quantity determined
by the momentary state of the mechanical system (for instance, the force ex-
erted by the given system, assumed to be a large collection of gas molecules
contained in a vessel)” (Dunford and Schwartz, [12, p.657]). Based on a the-
orem by Liouville, “if the coordinates used in the description of the phase
space are appropriately chosen, then the flow in phase space leaves all vol-
umes invariant. In other words, the transformations that constitute the flow
are measure preserving transformations...” (Halmos, [16, p.2]). It is there-
fore reasonable to suppose that u(T~1(E)) = u(E) if E is a measurable set.
If f is a characteristic function of a set E, the limit of the average above (if
it exists) can be thought of as the mean amount of time the point z spends
in E.

This question occupied physicists at the end of the 19*" and beginning of

the 20*" century: as its appeal to them began to wane, it became increasingly
interesting to mathematicians. Ergodic theory especially flourished between
1930 and 1960. Two of the earliest results in ergodic theory were mean and
pointwise ergodic theorems, the subject of this treatise. The mean ergodic
theorem was proved first, by von Neumann in 1931 [28], but he did not
publish it until the following year. It established convergence in the mean
of the aforementioned sequence of averages (S,f | » € N) for all square
integrable functions. The pointwise ergodic theorem (also referred to as
Birkhoff’s, or sometimes as Birkhoff-Khinchine’s ergodic theorem) the more
“prestigious” result (von Neumann’s biographer refers to the mean ergodic
theorem as the “naive” version of the pointwise) was proved and published
by Birkhoff [4] in 1931. It showed almost everywhere convergence of the
sequence (S, f) for every integrable function f. Proofs of both theorems
considered standard today are due to Riesz [23].

Ergodic theory has become a prominent area of mathematics. Require-
ments on the systems considered have been altered and weakened and there
are many modifications and variations of the theorems. Physicists are mostly
interested in ergodic transformations, those in which the only invariant sets
have measure 0 or 1, and much research has been done in finding necessary
and sufficient conditions for ergodicity.

This dissertation is only concerned with the two main theorems in their
most basic form. The sources used can be divided into two groups: classical
and constructive. The relevant classical sources, apart from [16] are [3, 12,
21, 29]. The most important constructive sources for the ergodic theorems
are [6, 5, 7, 20] and especially [27]. An extensive historical introduction into
the subject (and the controversies connected to it) is given in [13].
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1.4 Challenges of Reverse Mathematics

The goal of a reverse mathematician is to code as large a portion of math-
ematics as possible within second-order arithmetic, utilizing only natural
numbers and sets of natural numbers. This endeavor begins with Godel’s
sequencing function, which allows us to code sequences of natural numbers
(hence integers and rationals), and consequently more complicated objects
we will deal with, with natural numbers. In the construction every finite
object is assigned a single natural number, its code. It is to be expected that
this alters and limits discourse, even if we are only interested in countable
mathematics. A consequence of this limitation is that, because quantifica-
tion is permitted only over numbers and sets, it is not possible to consider
equivalence classes of infinitary objects, so for example, a real number is not
the equivalence class of all Cauchy sequences convergent to that number.
Instead, any such sequence represents that number. Similarly, an integrable
function has different representations. For our theory to be sound, it is
crucial that results do not depend on representations of objects. For most
considerations, this issue does not come up or it is trivial to resolve it. The
only nontrivial occurrence of this concern we will come across here is when
dealing with integrable functions, more specifically with their products and
powers, and we will deal with it accordingly.

The greatest challenge, however, lies in formalizing familiar concepts in
this restricted language. How do we choose definitions? Set theory often-
times provides a number of classically equivalent definitions for a term, some
of which are not compatible with the countability requirement, and even if
they are, it may not be clear which one to use. How is this decided? How
do we know that the definition we end up choosing is the best one? And
which criteria are used to decide what “best” means?

For example, there are multiple ways to introduce the real numbers. We
will opt for Cauchy sequences with a fixed rate of convergence. What would
happen if another definition was chosen? Would the results obtained be
different? Most of the time these questions can be answered and different
approaches can be compared. In the example of compact spaces (and more
generally), we want definitions with least logical strength. Choosing a differ-
ent definition of compactness from the one we have would change the results
associated with it. Or, consider closed sets. By choosing different defini-
tions, we will have different outcomes regarding orthogonal projections. If
the set under consideration is closed in the sense given in Section 1.1, it is
not even clear if projection exists as an operator. Sometimes the question
is not which definition is preferable, but whether it can be used at all. For
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example, it is not possible to define an arbitrary function; and even when
we restrict our attention to continuous functions, they are still not given via
the usual epsilon-delta characterization, but in terms of countable represen-
tations. Though counterintuitive, this definition is consistent with the goal
of assigning every object its code.

In reverse mathematics, as in the study of constructive and re-
cursive mathematics, it is common to insist that objects come
equipped with such additional information, especially when such
information is typically available. In the prolog to Bishop and
Bridges’ Constructive Mathematics, Bishop refers to this practice
as the “avoidance of pseudogenerality.”

Of course, in many instances, the choice of formal definition
is more-or-less canonical, or various natural definitions can be
shown to have equivalent properties in a weak base theory.... We
contend, however, that in situations where there are a plurality of
inequivalent “natural” representations of mathematical notions,
this should not be viewed as a bad thing. Indeed, the nuances
and bifurcations that arise constitute much of the subject’s ap-
peal! Set theoretic foundations provide a remarkably uniform
language for communicating mathematical concepts, as well as
powerful principles to aid in their analysis; but from the point
of view of the mathematical logician, this uniformity and power
can sometimes obscure interesting methodological issues with re-
spect to the way the concepts are actually used. (Avigad and
Simic, [2, p.3])

It is to be expected that difficulties will arise with respect to the proofs
of both ergodic theorems. Here are some of the problems:

(Mean ergodic theorem) Classically, each Hilbert space can be decomposed
into subspaces M and N (defined later) which are orthogonal to each
other. The limit of the sequence of operators (Sy) is the projection
operator on M (denoted as Pjs) and (classically) the existence of Py,
implies the existence of the limit. Showing that N is the orthogonal
complement of M is not trivial (or, generally, provable in RCAg), and
the existence of Pj; may not imply convergence of (S,,) at all.

(Pointwise ergodic theorem) Classically, the measure preserving transfor-
mation T is defined on the points of the space X. For a number



1.5. PARALLELS WITH CONSTRUCTIVE MATHEMATICS 11

of reasons, we are unable to do the same. Instead, we consider the
transformation that 7" induces on the space L;(X).

(Pointwise ergodic theorem) It may not be clear which properties the in-
duced transformation need have. Classically, it is multiplicative, non-
negative, preserving Ly and Ly, norm. With our definition it will turn
out that some of these properties imply others, and that the assump-
tions made also depend on the proof.

(Pointwise ergodic theorem) The standard proof of the pointwise ergodic
theorem is more difficult to formalize than the other two. This proof,
first given by Riesz, is classically short and simple. However, it requires
the knowledge that a certain set is invariant, which is the main source
of difficulties for us, because second-order arithmetic for the most part
takes a point-free approach to measure. Talking about invariant sets
in our framework is difficult, and showing that a set (or function) is
invariant requires using methods borrowed from the classical theory of
integrable functions, so the proof ends up being less natural than the
other two.

These issues will be discussed in more detail in the appropriate chapters.

1.5 Parallels With Constructive Mathematics

There is a close connection between mathematics formalized in subsystems
of second-order arithmetic and constructive mathematics, especially between
RCAg and Bishop-style mathematics. Though the similarity between RCAq
and computable mathematics is probably even more pronounced, we con-
sider the work of Bishop and Bridges, as it is more complete and covers all
topics we will discuss. Furthermore, a number of their proofs have been
invaluable in my work.

Simpson pointed out the main differences between the two approaches
in [26, p.31]. Apart from the immediate difference that constructivists pre-
suppose intuitionist logic (which is why, for example the intermediate value
theorem fails constructively, but is provable in RCAg), the main distinction
is that Bishop never specified a formal system to work in. There are no
restrictions in the complexity of formulas used, induction is not restricted,
and sets are defined somewhat vaguely. According to Bishop [6, p.7],

A set is defined by describing exactly what must be done in or-
der to construct an element of the set and what must be done
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in order to show that two elements are equal.. .. There is always
ambiguity, but it becomes less and less as the reader continues
to read and discover more and more of the author’s intent, mod-
ifying his interpretations if necessary to fit the intentions of the
author as they continue to unfold.

Bridges [9, p.5] states “Thus, if P(z) is some property of z, we can form
the class {z € A | P(z)} of those z in A for which P(z) holds.” He then
concludes “Some people find it hard to accept our freedom of construction of
subclasses by abstraction.” In other words, constructivists allow themselves
freedom in definitions of sets that we do not have. The maximal ergodic
theorem is an example of a theorem that is constructively valid, but needs
to be proved in ACAq in our framework. Similarly, Bishop defines closures
of sets without hesitation. For us, even the statement that an open set in a
general metric space has a closure is equivalent to (II]-CA4y) .

The other cause for discrepancies comes from difference in definitions.
To state just one example, a uniformly continuous function in [8] always
comes equipped with a modulus of uniform continuity, whereas we need
WKLg to show that a uniformly continuous function has a modulus. More
often than not, though, definitions in the two frameworks coincide, like
that for a real number or a compact space, and most constructive proofs
are easily translated, for example existence of orthogonal projection or the
Riesz representation theorem. In fact, encountering a result of Bishop and
Bridges which cannot be translated directly into RCAq is an anomaly. For
this reason, the question of differences between the two frameworks is more
interesting than that of similarities.

Either way, the exploration of these issues is a worthy task, but one that
would require much time and space. We will instead only look into some
questions concerning measure theory and the pointwise ergodic theorem, and
we will do so only in passing. An interesting situation occurs with respect to
measure theory. Bishop and Bridges call a set that contains the domain of
an integrable function full and are able to show that the complement of a full
set has measure 0, which is quite similar to the statement that an integrable
function is defined almost everywhere. In comparison, Simpson and Yu
showed (see [30, 11]) that to show this fact in our framework, one needs
to presuppose (WWKL). More precisely, RCAg proves that an integrable
function is defined outside of a G set, while with (WWKL) it can be shown
that this set is null. Where does this difference stem from?

Both approaches to integrability are based on the classical Daniell in-
tegral. In particular, Bishop lists axioms that every integration space need
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satisfy and proves that C'(X) (the space used to build integrable functions)
satisfies them. Once this fact is established, it is easy to show that a com-
plement of a full set has measure 0. What about our framework? It cannot
be shown in RCAj that C'(X) satisfies the classical definition of an integra-
tion space and Appendix A will contain a proof of this fact, but it is still
unclear whether the proof by Bishop and Bridges that C'(X) satisfies the
constructive definition can be formalized. It is likely that it cannot be used
directly, as it relies on properties of sets that we do not have. The other
discrepancy is in the definition of complements: they replace the notion of
the complement of a set with that of complemented sets, pairs of sets that
do not intersect. They do not prove that the domain of an integrable func-
tion is complemented, meaning that it may not always have a characteristic
function. Before giving any definite answers, however, a much more careful
analysis of the two approaches needs to be conducted.

The ergodic theorems are not provable constructively. In [6], Bishop
gives an example of two equal tanks, with T representing the motion of the
fluid inside them. Depending on whether there is a leak between the tanks or
not, the system will exhibit perceptibly different behavior after a sufficient
amount of time. We do not know beforehand if there is a leak or not, so
different limits of the sequence (S, ) as defined in the previous section imply
the law of the excluded middle (we will see later that even assuming the law
of the excluded middle does not save us, and that proofs of both the mean
and pointwise ergodic theorem require arithmetic comprehension). Bishop
gave three different proofs (all equally complicated) of the pointwise ergodic
theorem. Each used upcrossing inequalities and provided what is called an
equal hypothesis substitute for the pointwise ergodic theorem, meaning that
the conclusion is classically equivalent to the conclusion of the ergodic theo-
rem, but is constructively weaker. Nuber [20], his student, provided a proof
which obtained the classical result, but with stronger assumptions. The
proof relied heavily on functional analysis, and was almost equally compli-
cated. Finally, Spitters [27] provided a comprehensible constructive version
of the ergodic theorems. His proof of the mean ergodic theorem is similar to
the standard one and in a number of cases his results provided a foundation
for my proofs.
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Chapter 2

Banach and Hilbert Spaces

2.1 Preliminaries

Many of the relevant definitions were given in the introduction. Concepts
introduced below pertain to Banach and Hilbert spaces that will be used in
this and the next chapter. As before, all definitions are made in RCAy.

Definition 2.1.1 A countable vector space A over a countable field K con-
sists of a set |A| C N with operations + : |A| x |A| — |A| and - : |K| x|A| —
|Al, and a distinguished element 0 € |A| such that (|A|,+,-) satisfies the
usual properties of a vector space over K.

Definition 2.1.2 A (code for a) separable Banach space A consists of a
countable vector space A over Q together with a sequence of real numbers
|- : A — R such that

1. llg-all = lal lall for all g € Q and a € 4,

2. |la+ 0| < |la|l + ||b]| for all a,b € A.

The construction is similar to that of a complete separable metric space. A
point of A is a sequence (a, | n € N) of points in A such that ||am, — an| <
27™ for all m < n. The function d(a,b) = ||a — b|| is a pseudometric on A.
The norm and metric can be extended to all of A and the resulting space is
a complete separable normed space.

Definition 2.1.3 A code for a bounded linear operator between sepamble
Banach spaces A and B is a sequence F' : A — B of points of B indezed
with elements of A, such that

15
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1. F(qia1 + qea2) = q1F(a1) + g F (az) for all g1,q2 € Q and a1, as € A,
2. There exists a real number « such that ||F(a)|| < alla|| for all a € A.

Then, for z given as (an € N) define F(z) = lim, F(apn) (limit ezists in
RCAq by virtue of boundedness of F) and for x € A, |F(z)| < o||z||.

If continuous linear operators are defined as total continuous functions which
are further linear, RCAg proves that the two notions coincide: a linear op-
erator is bounded if and only if it is continuous.

The definition of a Hilbert space differs little from that of a Banach
space.

Definition 2.1.4 A real separable Hilbert space H consists of a countable
vector space A over Q together with a function (-,-) : A x A — R satisfying

1. (z,z) >0,

2. {z,y) = (y, ),

3. {az + by, z) = a(z,z) + bly, z),
for all xz,y,z € A and a,b € Q.

Given a Hilbert space H as above, define a function d(z,y) on A by d(z,y) =
(x —y,z —y)'/2. As before, d is a pseudometric and H is the completion
of A under this pseudometric, which is often written as H = A. The inner
product is extended to the whole space by letting (z,y) = lim,(z,,,y,) for
x and y represented as (z,) and y = (y,) respectively. The inner product
can be shown to be continuous. Once again, define x = y to mean that
d(z,y) = 0, making d a metric. The space H is separable and Cauchy
complete.

The norm function on a Hilbert space is defined by ||z| = (x,x)% =
d(z,0), so every Hilbert space gives rise to a Banach space, in the sense of
reverse mathematics.

Clearly, every statement that holds for all Banach spaces will hold for
Hilbert spaces as well. Because Hilbert spaces have a richer geometric struc-
ture, however, the reverse is not true. There exist plenty of results that are
valid specifically for Hilbert spaces.

To prove the reversal of the mean ergodic theorem, complex Hilbert
spaces need to be introduced. Although we haven’t explicitly defined what
a complex number is, it should be clear that it can be defined as an ordered
pair of reals, with operations defined in the standard way. Just as the
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real numbers are the completion of the rationals, complex numbers are a
completion of complex rationals, the countable set (Y(), which can also be
thought of as the set of all ordered pairs of rational numbers. The definition
of a complex Hilbert space is as then follows:

Definition 2.1.5 A complex separable Hilbert space H consists of a count-
able vector space A over Q(i) together with a function (-,-) : Ax A - R
satisfying

1. (z,z) >0,

2. (z,y) = (y,z),
3. {az + by, z) = a(z, z) + by, 2),
for all x,y,z € A and a,b € Q(i).

The notion of a bounded linear operator can be lifted accordingly.

The standard examples of separable infinite dimensional Hilbert and Ba-
nach spaces can be developed in RCAq. Examples of Hilbert spaces include
the space Lo(X) of square-integrable real-valued functions on any compact
separable metric space X, and the space [y of square-summable sequences
of reals. An example of a complex Hilbert space is the space of square-
summable sequences of complex numbers [5(C). Standard examples of Ba-
nach spaces are the space of uniformly continuous functions with a modulus
of uniform continuity C'(X), and L;(X), the space of integrable real-valued
functions over X. All of these spaces will occur in later chapters.

The mean ergodic theorem is usually stated for a transformation on a
Hilbert space which is an isometry, but it is enough that it be nonexpan-
sive. An isometry is a bounded linear operator that preserves norm, so the
definition is analogous to that of a bounded linear operator.

Definition 2.1.6 An isometry on a Banach (Hilbert) space H = A is a
mapping T : A — H such that

1. T(ax + By) = oT(x) + BT (y) for o, € Q and z,y € A,
2. |Tz|| = ||z|| for all z € A.

A transformation is nonexpansive if | Tz|| < ||z|| holds for all z € A instead
of clause 2. above.

Since we will be looking at iterations of the transformation T', we will
need to know that 7™ is also an isometry (or nonexpansive) for all n. Using
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Lemma 1.2.1 we can make sense of the sequence of iterations T™, and hence
of the partial averages (S,). For every z and y the following holds:

1Tz =Tyl = IT(z = y)ll < [lz -yl

Since T is a continuous function, the identity is a modulus of continuity for
T. It is shown in [14] that if a function has a modulus of uniform continuity,
then T™ is continuous for all n. Since the statement that 7™ is linear (resp. an
isometry, nonexpansive operator) is IT;, and since II; induction is equivalent
to X1 induction, it can be proved by induction in RCAg that if T is linear
(resp. an isometry, nonexpansive linear operator) then so is 7" for each n.
Let us now return to closed sets. As was already mentioned, there is
more than one notion of closed to consider. A more useful concept from a
closed set being the complement of an open is that of a separably closed set.

Definition 2.1.7 The code for a separably closed subset S of a metric space
X = A is given as a countable sequence (z, | n € N) of points in A.

The set S is the completion of the sequence (z,), therefore x € S means
Vm In (d(z,z,) < 27™).

Definition 2.1.8 A closed subspace of a Hilbert (resp. Banach) space is a
subset of the space which is a Hilbert (resp. Banach) space in itself.

Note: Upon inspection, it can be seen that a separably closed subset of a
Banach or Hilbert space is a closed subspace of the space and conversely,
i.e. the two definitions are equivalent and can be used interchangeably.

For orthogonal projection onto a set to exist, the set in question needs
to be linear. Consider the following four notions for a Banach space X.

1. A closed linear set is a closed subset of X that is further linear.

2. A closed subspace is a subset of X which is a Banach space in itself.
3. A located closed linear set is a closed linear set with a locating function.
4. A located closed subspace is a closed subspace with a locating function.

These definitions are not vacuous, nor are the relationships among them
trivial. We showed in [2] that the third and fourth notion in the above
definition coincide in RCAp. All others are distinguishable in RCAgy and
occur in practice. For example, if f is a bounded linear functional, its kernel,
ker f, is a closed linear set; it is provable in RCAq that it is also a subspace,
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and that it is located if and only if the norm of f exists. In the proof of
the mean ergodic theorem we will consider the set {z | Tz = x}. This set
is closed and linear. However, for an appropriately chosen T', (ACA) will
be required to show that it is a closed subspace. Similarly, the set spanned
by {zx — Tz | x € A} is a closed subspace, but, as above, (ACA) may be
necessary to prove it is a closed set.

Definition 2.1.9 Let M be a closed subspace of a Hilbert space H. Let x
and y be elements of H, with y in M. If d(z,y) < d(z,z) for any other
point z in M, y is said to be the projection of z on M. Let P be a bounded
linear operator from H to itself. If for every x in H, Pz is the projection
of £ on M, P is said to be the projection function for M.

Although existence of orthogonal projections is typically associated with
Hilbert spaces, there are certain Banach spaces that have this property, for
example, uniformly convex spaces. Classically, a Banach space is uniformly
convex if it has the additional property that for every two sequences of
vectors (z,) and (yn), if ||zn]] = 1, ||yn]| = 1 and ||y + ynl| — 2, then
|zn, — ynl| — 0. For our purposes, a modulus of convezity is needed, giving
the rate of convergence of the norms. The modified definition is:

Definition 2.1.10 A Banach space is uniformly convex if there exists a
function § : Q — Q such that whenever ||u|]| < 1, |[v]] <1 and |ju + v| >
2 —4§(e), then ||lu —v|| <e.

This property is a substitute for the parallelogram identity, which does not
hold in Banach spaces without an inner product.

2.2 Properties of Banach and Hilbert Spaces

In [2] we showed that every Hilbert space has an orthonormal basis in RCAq.
Since it has no bearing on the proof of the mean ergodic theorem, this proof
is omitted.

Let us now establish the relationship between the notions of “closed”
and “separably closed”. In the case of metric spaces, the work has been
done by Brown [10].

Theorem 2.2.1 (RCAg) Each of the following statements is equivalent to
(ACA):

1. In a compact metric space, every closed set is separably closed.
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2. In [0,1], every closed set is separably closed.

3. In an arbitrary separable metric space, every separably closed set is
closed.

4. In [0,1], every separably closed set is closed.

Each of the following statements is equivalent to (II} -CA):
1. In an arbitrary space, every closed set is separably closed.
2. In Baire space (NV), every closed set is separably closed.

The following theorem collects some of the results obtained in [2]. In a
sense, it is the analogue of Theorem 2.2.1 for Banach (and Hilbert) spaces.

Theorem 2.2.2 (RCAy) With respect to Banach spaces, the following hold:

1. The statement that every closed subspace is a closed linear set is equiv-
alent to (ACA).

2. The statement that every closed linear set is a closed subspace is im-
plied by (I} -CA) and implies (ACA).

3. Ewvery located closed subspace is a located closed linear set and con-
versely.

4. The statement that every closed subspace is located is equivalent to

(ACA).

5. The statement that every closed linear set is located is implied by
(IT{-CA) and implies (ACA).

Notice that the exact strength of 2. and 5. is not known. This question,
along with a number of others, remains open. See also Chapter 6 or Section
16 of [2].

The above theorem also shows that proving that a certain set is located
usually requires strong set existence axioms. The following results hold for
metric spaces and are available in [10].

Theorem 2.2.3 (RCAg) Each of the following statements is equivalent to
(ACA):

1. Every nonempty closed set in a compact space is located.

2. Ewvery nonempty closed set in [0,1] is located.
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3. Every nonempty separably closed set in an arbitrary space is located.
4. Every nonempty separably closed set in [0, 1] is located.
5. Every nonempty open set in an arbitrary space is located.
6. Every nonempty open set in [0,1] is located.
Each of the following is equivalent to (IT{ -CA):
1. Every nonempty closed set in an arbitrary space is located.

2. Fvery nonempty closed set in Baire space is located.

Note: It was mentioned earlier that the code for a closed subspace pro-
vides more information than the code for a closed set. The previous theorem
justifies that claim, as proving that a separably closed set is located requires
weaker axioms than proving the same for a closed set ((ACA) vs. (IT{-CA)).

In [2]) we were able to provide an improvement to the above theorem,
showing that even existence of distances for individual points requires strong
axioms; more precisely, all relationships remain the same when the require-
ment that a set is located is replaced with existence of distance from any
point to that set.

Theorem 2.2.4 (RCAg) Each of the following is equivalent to (ACA):

1. In a compact space, if C is any nonempty closed set and x is any point,
then d(z,C) exists.

2. If C is any nonempty closed subset of [0,1], then d(0,C) exists.

3. In an arbitrary space, if O is a nonempty open set and x is any point,
then d(z,O) exists.

4. If O is any nonempty subset of [0, 1], then d(0,O) ezists.
Each of the following is equivalent to (IT{-CA):

1. In an arbitrary space, if C is any closed set and x is any point, then
d(z,C) ezists.

2. In any compact space, if S is any Gs set and = is any point, then
d(z,S) exists.

3. If S is a Gs subset of [0,1], then d(0,S) exists.
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We now restrict our attention to Hilbert spaces and uniformly convex
Banach spaces and look into orthogonal projections. The notion of projec-
tion makes sense for both separably closed and closed linear sets. We will
attempt to determine the strength of the statements “orthogonal projection
of x onto M exists” and “orthogonal projection onto M exists” in both
cases.

Proposition 2.2.5 (RCAq) If the projection of x on M exists, it is unique
(up to equality in the Hilbert or Banach space).

Proof. Note that if y is the projection of z on M, then ||z — y|| = d(z, M).
The claim is proved using the parallelogram identity

Iz + yll* + llz — ylI* = 2llz]* + 2yl

Suppose y and y' are both projections of z on M. Then ||z —y|| = ||z — ¢/,
and by linearity %(y +9/) is also in M. But then

1 1 1
ls—yl < llo—5+v)l =56y + 5@ -1

IA

1 1
R el
= lz—yl,

hence all inequalities are actually equalities. Let d = ||z — y||. The previous
paragraph and the parallelogram identity imply

4> = |z—y)+ (@@ -y
= 2|z —yl*+ Iz -y I”) = ly— ¥
= 4d® — [ly — /|,
so|ly—y'|=0andy =1y’ O

The following criterion will be useful later:

Lemma 2.2.6 (RCAg) An element y is the projection of x on M if and
only if y is in M, © — vy is orthogonal to M and vy is the unique vector with
these properties.

Proof. If y is the projection of z onto M, then z — y is orthogonal to M.
For, suppose that y = Pz and = — y is not orthogonal to M. Let z € M,
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such that (z —y, z) # 0. Then for every a € R, y — az is also an element of
M, and
(x—y+az,z—y+az) >dz,M)? = (z—y,z—y),
therefore
lal?(|2]1 + 2a(z — y,2) > 0.

By taking a with sufficiently small absolute value the last inequality can be
contradicted, so (z —y,z) = 0.

To show there can be at most one point y such that z —y 1L M, assume
for the sake of contradiction that there is a 3’ with the same property. Then

Therefore, (z,y) = (z,vy") = (y,9) = (v,¥") = (¥',y') and
(v—vy—v) =Wy —2y,y)+ (,y) =0,

!

soy=1".
Conversely, if y is any vector in M with (z — y,z) =0 for all z € M, for
any other vector y' € M,

lz —y'II* =z = ylI” + lly — 'II* > [l — ylI*,
and y is the closest point in M to x; hence y = Px. O

We will use the notation Py to denote the projection function for M, so,
for example, the statement “Pjs exists” is shorthand for the statement “there
exists a projection function for M.” The next theorem demonstrates the
relationship between distances and projections in the context of a subspace.

Theorem 2.2.7 (RCAg) Let H be a Hilbert space, let M be a closed sub-
space of H, and let x be any element of H. Then the following are equivalent:

1. The distance from x to M exists.
2. The projection from x to M exists.
Moreover, for any closed subspace M, the following are equivalent:

1. M is located.
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2. The projection function, Py, exists.

Proof. In both cases, the direction (2) — (1) is immediate, since if y is the
projection of z on M, then d(z, M) = d(z,y).

For the first implication (1) — (2), suppose M is a closed subspace
with (w.,) a dense sequence of points in M. By assumption, d(z, M) =
inf{d(z,y) | y € M} exists.

The definition of infimum implies that

Vo 3Im (d(z, wn,) < d(z, M) +27").

By Lemma 1.2.1 there is a sequence of points y,, from (w,,) such that for
every m,
d(z, M) < d(z,yn) < d(z,M)+27".

It is enough to show that (y,) is a Cauchy sequence, because this implies
that d(z,lim, y,) = d(xz, M). Using the parallelogram identity,

lz +ylI? + llz = ylI* = 2)|z]|” + 2lly|”*,

we have

Hyn - ym||2 = ||yn — T — (ym - x)HQ

1
= 2lyn — 2[” + 2llym — 21 = 415 (Wn + ym) — =|”
< 2(d(z, M) +27)% + 2 (d(z, M) +27™)? — 4d?
= (272 4272 d(z, M) + 27,

The inequality follows from the fact that 3(y, + ym) € M and d(5(y, +
Ym), ) > d(x, M). A more careful algebraic manipulation of the last quan-
tity would show that, given that m < n, (27 "24+2"™%2) d(z, M)+2 "™ <
r(m), and r(m) — 0 when m — oco. In RCA( this is enough for (y,) to be a
convergent sequence.

The second implication (1) — (2) is just a uniform version of the preced-
ing argument. To define the code of P as a bounded linear operator define
its value at each element of the countable dense subset A of H, as above. It
remains to check that P is linear and bounded. For linearity, given a,b € Q
and z,y € A,

(ax + by — (aPz + bPy),2z) = a{x — Pz, z) + b{ly — Py,z) =0,

so by Lemma 2.2.6
aPz + bPy = P(az + by),
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and P is linear. For any x € H,

||31”||2 = (z,z) = (x — Pr+ Pz,z — Pz + Px)
= |z — Pz|? + || Pz|?,

and |Pz|| < ||z||. Therefore, |P|| < 1. O

Note that if there is a nonzero element y in M, then Py = y so ||P|| = 1.
If in Theorem 2.2.7 “closed subspace” is replaced by “closed linear sub-
set,” the situation changes. The uniform case stays the same: the existence
of a locating function is equivalent to the existence of a projection function.

Theorem 2.2.8 (RCAg) Suppose M is a closed linear subset in a Hilbert
space and T is a point in the space.

1. If Pyrx exists, then so does d(x, M).
2. M is located if and only if Py exists.

Proof. As before, it is easy to see that if Pyx exists, then d(z, M) = ||z —
Pyrz||, and similarly, if Py exists then f(z) = ||z — Puz| is a locating
function.

It remains to show that if M is located, the projection y of z on M can
be obtained uniformly. The construction is similar to the preceding one, but
instead of choosing 3., in a dense subset of M, we choose it from the dense
subset A of H, ensuring that y,, is close enough to M.

Let d be the locating function. By definition, for every n € N there is
Tn € M such that

d<d(z,z,) <d+27""L

By density of A in H there is 3y’ € A with
d(zn,y') <277,
which means that 3’ is such that
d—27"<d(z,y') <d+27".
Thus we have
Vn Iy (d—2"" < ||y —z|]| <d+27" Ad(y', M) < 277). (2.1)

By Lemma 1.2.1 there is a sequence (y,) such that for each fixed n, y,
satisfies (2.1).
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The proof that (y,) is a Cauchy sequence is similar to that in the case
of a closed subspace.

1
Hyn - ym||2 2”?/71 - .’E||2 + 2||ym - 3"”2 - 4||§(yn + ym) - 3"”2

B B 1
< @27+ (427 — 45 (g + ym) — 2.

The only difference is in finding the lower bound for ||3(yn + ym) — z||, as
yn and y,, are not necessarily in M.

Since d(y,, M) < 27", there is a w' € M such that ||y, — w'|| < 2=,
and similarly there is a w"” € M such that |y, — w"| < 2=(™=D. Then
(W' +w") € M, so ||3(w' 4+ w")) — z|| > d. Thus we have

1 1 1 1
130n +ym) =2l > 150 +0") = 2] = 5 +ym) — 3@’ +0")]

Y

II||

1 1
d— §||yn —UJIH - §||ym —w
> d-27"-27™,

The rest of the proof remains the same: (y,) is a Cauchy sequence that
converges to a point y € H. Since for each n, d(y,, M) < 27", this means
d(y, M) = 0, and since M is closed, this implies y € M. Furthermore, this
1y is the projection of z onto M. O

The strength of the statement “if d(z, M) exists then so does Ppsz”
remains open. It is implied by (/T}-CA): this follows from part 2 of the above
theorem, since, by Theorem 2.2.3, (II}-CA) suffices to prove the existence
of a locating function. Whether I} comprehension is also necessary is not
known.

We can use projections to give an alternative proof of one of the claims
made in Theorem 2.2.2 above:

Proposition 2.2.9 (RCAg) Suppose M is closed linear set in a Hilbert
space, and either M is located or Pyr exists. Then M is a closed subspace.

Proof. By Theorem 2.2.8, saying M is located is equivalent to saying that
Py exists. If A = (z,), then (Pyx,) is a countable dense subset of M. [

Now that the relationship between distances and projections is known,
we can ask the question of what it takes to show the existence of either. For
closed subspaces of Hilbert spaces, it requires exactly (ACA):
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Theorem 2.2.10 (RCAg) The following are equivalent:
1. Every closed subspace of a Hilbert space is located.
2. For every closed subspace M, the projection on M exists.

3. For every closed subspace M and every point x, the projection of T on
M exists.

4. For every closed subspace M and every point z, d(z, M) exists.
5. (ACA).

Proof. By Theorem 2.2.7 1 and 2 are equivalent, as are 3 and 4, 2 clearly
implies 3 and by Theorem 2.2.3, 5 implies 1. To close the chain it suffices to
show that either 2 or 4 implies 5; this will be a consequence of Theorem 3.1.3
(page 36). O

If we replace “closed subspace” by “closed linear subset,” the answer is
less precise:

Theorem 2.2.11 (RCAg) Each of the following statements is implied by
(IT} -CA) and implies (ACA):

1. For every closed linear subset M of a Hilbert space, the projection on
M exists.

2. FEwery closed linear subset of a Hilbert space is located.

3. For every closed linear subset M and every point x, the projection of
x on M exists.

4. For every closed linear subset M and every point x, d(x, M) exists.

Proof. Again, we have seen that 1 and 2 are equivalent, and it follows from
Theorem 2.2.3 that they are implied by (II/-CA). Also, each of 1 and 2
implies 3, which in turn implies 4. The fact that 4 implies (ACA) is given
by Corollary 3.2.2 below (page 39). O

What can we say about Banach spaces? If B is a uniformly convex
Banach space, one can still consider the projection of £ on M. It will be
the closest point to z in M. The non-uniform part of Theorem 2.2.7 holds
more generally for uniformly convex Banach spaces. The uniform convexity
is needed in showing that (y,) is a Cauchy sequence, as the parallelogram



28 CHAPTER 2. BANACH AND HILBERT SPACES

identity does not hold in Banach spaces. We cannot, however, construct a
bounded linear projection operator on a Banach space. The construction in
Theorem 2.2.7 cannot be paralleled: defining Pyz as the closest point to z
in M when z in the dense countable subset of B does not work because to
show linearity of P, an inner product is necessary — it cannot be replaced
with uniform convexity.

2.3 Bounded Linear Functionals

A bounded linear functional on a Banach space is a bounded linear operator
from the space in question to R. Recall that in RCAg, every bounded linear
functional on a Banach space is equivalent to a linear continuous function.
If f is a bounded linear functional, ker f is a closed linear set, since it is the
inverse image of the closed set {0}. It was mentioned above that it is also a
closed subspace, provably in RCAp, and that it is located if and only if the
norm of f exists. These facts are proved in the following section.

Unless specified otherwise, assume that B is the underlying Banach
space, spanned by the countable set A = (z,,).

Proposition 2.3.1 (RCAg) The kernel of a bounded linear functional in a
Banach space is a closed subspace of that space.

Proof. If f is the constant zero function, the statement is trivial. Thus it
can be assumed that there is a y € B such that f(y) # 0. Replacing y by
y/ f(y) if necessary, consider y such that f(y) = 1.

Define the sequence (ay) by a, = z, — f(z,)y. Then for each n

flan) = f(zn — f(zn)y) = f(zn) — f(z0)f(y) =0,

S0 ay, is in the kernel of f. It suffices to show that the sequence a,, is dense
in the kernel, that is, for every n and every x such that f(z) = 0, exists
ZTm € A such that ||z — (zm, — f(zm)y)|| <27

Because A is dense in B, choose z,, € A such that ||z — z,,,|| < € (which
will be specified later). Then, since f is bounded, |f(zm)| < Me (for all
z € B, |f(z)| < M||z||). Therefore,

2 = (@m = f(@m)y)|| < [l& = 2| + [ (@m)llyll < e + Mllylle.

The choice for € is now clear: ¢ = min{#, 2“++Mlly\|} O

When is the kernel of a functional located? The answer to this question
is provided by the next theorem. Its proof has been adapted from [8].
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Theorem 2.3.2 (RCAg) Let f be a bounded linear functional. The follow-
ing are equivalent:

1. f has a norm.

2. kerf is located.

Proof. (1) — (2): Let f be a bounded linear functional whose norm is known.
If f = 0 then d(z, kerf) = 0 for all z, so suppose f is not identically 0, in
which case ||f|| > 0. We will show that for every z € B,

|f ()]
I

d(z, kerf) =

On the one hand, if f(z) =

|f (@) = |F(z = 2)] <[ £l[([[z = 2],

and |z — z|| > |||f||)‘ so d(z, kerf) > “ﬁ( ”‘

On the other hand, since || f|| > 0, there is ¢’ such that || f|| > &’. Because
f is normable, the quantity

1l = {'”(”)'| € Hy = {|||(||)|' c A)

exists. Fix ¢ < €/. By definition of supremum, there exists y € A such that

IF @) > (£ = )llyll-

Let z = ff(f;)y Then, f(z) =0 and
Iz — 2|| = If@lliyll o F @Iyl 1f(@)]

F@l A =alyll Il =€

/()]
¥l
distance: d(z, ker f) = inf{d(z, z) | f(z) = 0} = |f w)‘ and it is a continuous
function, so the kernel is located.
As for (2) — (1), because f is nonzero, there exists xg such that f(zg) =
1, and, as f is continuous, d(zg, ker f) > 0.

d(xo, ker f) = inf{||zo — || | 2 € ker f} = inf{|ly[| | f(y) = 1}.

(If y = zo — 2, then f(y) = f(zo) — f(z) = 1; on the other hand, if f(y) =
it can be written as y = zy — z, as in the proof of (1) — (2) above.)

Since € can be made arbitrarily small, is an upper bound for the
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However,
Il = sup{|f ()| | [l=]| =1}
= su -1 y:i,le,fxyé():
p{llyll~" | @) ] (z) # 0}
= sup{lly| " | f(y) = 1} = d(wo, kerf) ",
and, as the kernel is located, the norm of f exists. d

For Hilbert spaces the following theorem holds. Note that clause 3 is
one form of the Riesz Representation Theorem.

Theorem 2.3.3 (RCAg) Let f be a bounded linear functional on a Hilbert
space H. The following are equivalent:

1. f has a norm.

2. kerf is located.

3. There is a y in H such that for every z, f(z) = (z,y).

Proof. The equivalence of statements 1 and 2 has just been proved. It
remains to show (2) — (3) and (3) — (1).

(2) — (3): If f =0, simply take y = 0. Otherwise, there is an z such
that f(zg) # 0. By Proposition 2.2.9 kerf is a closed subspace of H, and by
Theorem 2.2.7 the projection Pz of xg on kerf exists. Let z = x¢o — Pxy,
and recall from Lemma 2.2.6 that (z, z) = 0 whenever f(z) = 0. Finally, let

y = ﬂ{:n)f . We will show that this v has the required property.

Note that every z € H can be written as z = u + ay, where f(u) =0
and a € R, since
f(z) f(z)

T=(z - my) + my

and f(a)
f( ~ i )= f(z) = f(z) =0
Then,
(r,y) = (u+ay,y) = (u,y) +allyl
_ alyf? = QMO
= alylI* = Pk
| (2)?

12112
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and

2 2
f(2) = olu+ ay) = f(u) + af(y) = af(y) = a%

so for all z € H, f(z) = (z,y). It is not hard to show that this y is unique.
(3) = (1). If f(z) = (z,y) for every =z, it is straightforward to show that

1F1 = Tlyll- O

The following theorem is the uniform version of the previous one and
also holds particularly for Hilbert spaces.

Theorem 2.3.4 (RCAg) The following are equivalent:
1. Every bounded linear functional has a norm.
2. For every bounded linear functional f, kerf is located.
3. Ewvery bounded linear functional is representable (Jy Vz f(z) = (z,y)).
4. (ACA)

Proof. By the preceding theorem, 1-3 are equivalent. Thus it suffices to
show that 4 implies 1, and that 3 implies 4.

(4) — (1): Ifll = sup{'{(jf‘ | z € A}. As ('{ffnﬂ | z € A) is a bounded
sequence of real numbers it has a least upper bound in ACAy.

(3) — (4). Let (ay) be a sequence of real numbers; we may assume that
for all n, 0 < a, < 1. Next, let H be [? (as defined in [26]). H has an
orthonormal basis: e, = (0p,m)-

Let b; = y/a;+1 — a;, and define a functional f on the orthonormal basis
by f(e;) = b; and extend linearly to all of H. Show that it is bounded.

For each fixed n,

11O e = 1> bl < (3 22)2) (Y 1))2).
=1 =1 =1 1=1

The last inequality uses Holder’s inequality for sums in R™, which is easy to
formalize in RCAq. Since
n
Z bZ2 =a, <1
i=1

for all n,

17O e < (3 22)7) < Jlz| < oo
=1 1

i=
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In particular, for every z € A (the space of all finite sequences of rational
numbers; [? is the completion of A under the 12 norm), f(z) is well-defined,
f is linear, and |f(z)| < ||z|| so f is a bounded linear functional.

By assumption, the Riesz representation theorem holds. Let y be the
vector guaranteed to exist by the theorem. Then b; = f(e;) = (y,e;) = y;-
Because the theorem also tells us that ||y|| exists, since ||y||? = lim,, a,, the
theorem is proved. O

In case of a Banach space the following holds.
Corollary 2.3.5 (RCAg) The following are equivalent:
1. Every bounded linear functional on a Banach space is normable.

2. For every bounded linear functional f, kerf is located.

3. (ACA).



Chapter 3

The Mean Ergodic Theorem

3.1 Proof of the Main Theorem

The mean ergodic theorem was initially stated and proved (by Von Neu-
mann) for the space Ly(X) of square integrable functions. In this form, the
theorem was closely related to Birkhoff’s pointwise ergodic theorem.

In the original statement of the mean ergodic theorem, the transfor-
mation whose average effect on the system is examined acts on the space,
i.e. the measure preserving transformation U is defined on the measure space
X. This transformation induces a transformation 7" on Ly(X), defined as
(Tf)(z) = f(U(z)) (see [16]). The induced transformation is an isometry on
Ly(X). This motivated Riesz, who was the first to consider a more general
case, to replace Ly(X) with an arbitrary Hilbert space and to consider an
isometry on that space. It is in this form that the mean ergodic theorem is
stated and proved in standard sources today.

The statement of the theorem is:

Let T be an isometry of a Hilbert space, let £ be any point, and
consider the sequence (S,x) given by

1
Spr==(x+Tz+...+T" z).
n

Then the sequence converges.

The classical proof of the mean ergodic theorem hinges on the fact that the
Hilbert space can be represented as a direct sum of two subspaces. Given
T as above, let M = {z | Tz = z} be the set of fixed points, and let N be
the closure of the set {Tz —z | z € H}. Classically, M and N are closed

33
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subspaces and each other’s orthogonal complements, so H = M & N. The
proof of the mean ergodic theorem examines the behavior of elements in
both subspaces with respect to T' and shows that S,z, as described above,
converges to the projection of z onto M.

Some of the difficulties connected to proving the mean ergodic theo-
rem in weak subsystems of second-order arithmetic in were mentioned in
Section 1.3. We will now continue that discussion. A number of interesting
problems arise when one tries to translate all these facts into our framework.
There is no suitable definition for closure of a set so N is represented with
the code (z — Tz | € A), with the understanding that this is a code for
a closed subspace of H and every point of N is represented with a Cauchy
sequence (x, —T'z,). Since A is dense in H, the set thus defined is precisely
N. Next, as was mentioned before, one can only conclude that M is a closed
linear set (it is the kernel of the continuous function f(z) = || Tz — z||), not
that it is a closed subspace. Similarly, it cannot be deduced that N is a
closed set. Finally, though it is not difficult to show that M = N (this will
be done below), it is not possible in RCAg to show the converse to this state-
ment. In order to show x L M — z € N, one needs to exhibit an element of
N that z is equal to, which may not be possible.

The main result is that the mean ergodic theorem is equivalent to (ACA):

Theorem 3.1.1 (RCAg) The following statements are equivalent:

1. For every Hilbert space H, nonexpansive linear operator T', and point
x, the sequence of partial averages (Spx) converges.

2. For every Hilbert space H, isometry T, and point x, the sequence of
partial averages (Spx) converges.

3. (ACA).

Clearly 1 implies 2. That 2 implies 3 is proved in the next section, and
3 implies 1 is Corollary 3.1.3.

The proof of the statement presented below is constructive. Significant
parts of it were adapted from [27]. It establishes the mean ergodic theorem
and gives a finer analysis of conditions needed for it to hold.

Theorem 3.1.2 (RCAg) Let T be any nonezpansive linear operator on a
Hilbert space and let x be any point. With the notation above, the following
are provably equivalent in RCAq:

1. Pyx exists.
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2. x can be written as * = xp; + N, where xpy € M and xy € N.
3. lim, S, (z) ezists.

Furthermore, if these statements hold, then the decomposition in 2 is unique
and Pyx also exists. In fact, the following equalities hold:

lim S, (z) = Pyz = zpr =z — Pyx.
n

Proof. First, let us show that M NN = {0}. If zx € M N N, then Tz = z
(and so Spz = z for all n), and for every ¢ there is some y such that
|z — (y — Ty)|| < e, which implies that ||S,z — S,(y — Ty)|| = ||z — Sn(y —
Ty)|| < e. But ||Sp(y — Ty)|| = 0 (proved in more detail below) so ||z| < €
and consequently, ||z|| = 0.

Next, show that if an element y € H is orthogonal to N, it is in M. Let
yLN. Then (y,z — Tz) = 0 for all z € H. In particular, (y,y — Ty) =0, or

(v, Ty) = (v, v) = lly|l*,

SO

(Ty —y, Ty —y) = [|Ty|* — 2(Ty,v) + |ly||”
lyll> = 2[lylI* + llyl|* = 0.

1Ty — y|)?

IA

Therefore, y = Ty, and y € M, as required.

Let us now prove the three statements above equivalent.

(1) — (2): Write z = (z — Pyz) + Pyz. Clearly, Pyz is in N. It
remains to show that x — Pyx € M. Since z — Pyz is orthogonal to IV, the
argument above shows that x — Pyx € M, as required. Note that the fact
that M NN = {0} implies moreover that this decomposition is unique.

(2) - (3): If z € H and z = zps + zn then Sy(za) = zp for all n, so
lim, Sy (xzpr) = zps. Since zy € N, for every m exists u,, € A such that

len = (um — Tum)|| <277

Then
Sp(ty — Tuy) = l i Ty, — um) = l (U, — T™ )
n “— n
and
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Also,
1SN — Sn(um — Tum)|| = [|Sn(zy — (um — Tum))|| <
< ey = (um — Tum) ||
< 27

and therefore S,(zy) — 0 as well. Finally, S,(z) = Sp(znm) + Sn(zn) —
Ty +0=21xp.

(3) — (1): If lim, S,(z) exists, then we expect it to be z — Py(x), so
define Pyx : A — H by

Py(z) =1z — liT{n Sn(z)

and show that this works.

Use Lemma 2.2.6. Let lim, S, (z) = y. We need to show that z —y € N
and that z — (z — y) = y is orthogonal to N.

Let yp, = (2T 4+ 22T + ... + LT 1)z Note that (I — T)y, =
(I —S,)z — x —y which shows that z — y is in N. For the second part, first
show that y € M, i.e. Ty =y, which is true by the following argument:

1
TSpz =

1
—(Tz+...T"z) = Spz + — (T"z — x),
n n

and lim, T'Spz =lim S,z or Ty = y. Sincey € M if z € N, (y,z) =0. O

Corollary 3.1.3 (ACAg) The mean ergodic theorem holds, i.e. for every
Hilbert space H and nonexpansive mapping T, for every x € H, (S,z)
converges.

Proof. Since N is a closed subspace, by Theorem 2.2.7 ACAg proves that Py
exists. It was shown above that for all z, S,z converges to (I — Py)z. O

Just as knowing that N = M~ does not help us conclude that M = N+,
the hypothesis that Pys exists provides no help at all in proving the mean
ergodic theorem. These two facts are closely related. If Py exists, it is
provable in RCAq that Py; = I — Py. The other direction, however, is not
true. Therefore, knowledge of Py; does not provide us with Py, or with
the decomposition in the second item of the previous theorem, or for that
matter, with the proof of convergence of (S,z), even though the limit, if it
exists, is equal to Pyx.
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3.2 Reversal

This section will provide the conclusion to the proof of Theorem 3.1.1 and
tie some other loose ends.

We will begin by listing two direct and simple reversals: one for the case
of nonexpansive transformation 7' and the other for an isometry. Naturally,
the second reversal would suffice, but both are given for illustrative purposes.

First suppose (a;) is a sequence of reals in [0, 1], and let H be the space l5.
Define an operator T on Iy by T'(e;) = (1 —a;)e;. Then T is a nonexpansive
mapping because 0 < a,, < 1 for every n, and S,e; = e; if a; = 0, while

1 & 1 1—(1-g;)"tt
Sneizﬁz(l_ai)meizﬁ'—( 2 €;

Q;
m=0 ?

otherwise, which clearly converges to 0. Let z = )_,(1/2%)e;, and let y =
lim,, Spz. Then for each 4, (y,e;) # 0 if and only if a; = 0, providing a ¥;
equivalent to the II; assertion a; = 0. By Lemma 1.2.3, this shows that
the mean ergodic theorem for nonexpansive mappings implies arithmetic
comprehension.

The reversal when T is an isometry is somewhat more involved. If we still
want to consider square-summable sequences and use a similar argument,
the question arises of how to define T so that it preserves norm. If [ is
treated as a real Hilbert space, this cannot be done. Instead, consider l5(C).

Given any sequence of real numbers a, in [0,1], define the sequence of
complex numbers

1+ ay,t
2= .
"1+ agi
So |z,| = 1 for each n and z, = 1 if and only if a,, = 0. Define a linear

operator T" on l3(C) by T'(ex) = zxer. The fact that |zx| = 1 for each k
implies that 7" is an isometry. If 2y = 1, then Spe; = ex; otherwise,

1
Sper = ﬁ(1+zk+z§+...+z2*1)ek
1 — »n
= % €k,
n(l — z)

which converges to 0 as n increases, since

11—z
n(l — z)

1] + |2£]

n|l — zg)|
= 2/(n|1 — 2).
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As above, if 7 = Y, (1/2%)e), and y = lim,, Sz, then (y, ex) # 0 if and only
if zp = 0, i.e. if and only if a; = 0. Once again, by Lemma 1.2.3, this implies
arithmetic comprehension.

The results stated below provide strengthenings for the reversal. The
remainder of the section contains results proved for the most part by Jeremy
Avigad, presented here for completeness. The proof of the next theorem and
the corollary that follows it has been taken from [2], while 3.2.3 is stated
without proof.

Theorem 3.2.1 (RCAg) Each of the following statements is equivalent to
(ACA):

1. For any nonezxpansive mapping T on a Hilbert space, M 1is a closed
subspace.

2. For any isometry T on a Hilbert space, M 1is a closed subspace.

3. For any nonezpansive mapping T on a Hilbert space, N is a closed
linear set.

4. For any isometry T on a Hilbert space, N is a closed linear set.

5. For any nonezrpansive mapping T on a Hilbert space and any x, the
projection Pyrx exists.

6. For any isometry T on a Hilbert space and any x, the projection Pyx
exists.

7. For any nonexpansive mapping T on a Hilbert space and any x, the
distance from x to M exists.

8. For any isometry T on a Hilbert space and any x, the distance from x
to M ezists.

Proof. By Corollary 3.1.3, (ACA) implies that both Py; and Py exist for
any nonexpansive mapping 7. This implies 5 right away. Also, by Theo-
rems 2.2.8 and 2.2.7 respectively, it implies that M and N are both located;
and since under the assumption of locatedness, a set is closed if and only if
f it is separably closed, this, in turn, implies that M and N are separably
closed and closed, respectively. Hence (ACA) proves 1, 3, and 5. Clearly 1
implies 2, 3 implies 4, 5 implies 68, 6 implies 8, and 7 implies 8. Thus we
only need to establish reversals from each of 2, 4, and 8 to (ACA).
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Let us first show that 2 implies (ACA). We will use statement 3. in
Lemma 1.2.3. Given a sequence of real numbers (ay | k£ € N) in [0, 1], define
an isometry 7' as described just before the statement of the lemma. By 2,
the set M = {z | Tz = z} is a closed subspace, with a countable dense
sequence (yi | k € N). But then for every k we have

ar =0 & e €M
< 3j (llex —y;ll < 1),

providing a 3; definition of {k | a;, = 0}. (To see that 3j (|lex — y;|| < 1)
implies that ey € M, note that if e, ¢ M we have (e,y;) = 0 for every y;.
But then |lex, — y;1|* = (ex — yj, ex — y3) = llexl” + [ly51> =1+ [ly;[* > 1.)
To show 4 implies (ACA), given (a;) we use the same 7. Assuming 4,
N is a closed set. But then ay = 0 <> e € N again provides a ¥; definition

of {k | ax = 0}.
The reversal from 8 to (ACA) is omitted and can be found in Section 15
of [2]. O

Corollary 3.2.2 (RCAg) Each of the following implies (ACA):

1. If S is any closed subspace of a Hilbert space, then S is a closed linear
set.

2. If S is any closed linear set in a Hilbert space, then S is closed subspace.

3. If S is any closed linear set in a Hilbert space and x is any point, the
projection of x on S exists.

4. If S is any closed linear set in a Hilbert space and x is any point, the
distance from x to S exists.

The second implication completes the proof of Theorem 2.2.2. The third
and fourth implications complete the proof of Theorem 2.2.11.

Theorem 3.2.3 RCAq proves that the following are equivalent:

1. For every x in a Hilbert space and isometry T, if Pyx exists, then
lim,, S,z exists.

2. For every x in a Hilbert space and isometry T, if Pyyx = 0, then
lim,, S,z ezists.
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3. For every x in a Hilbert space and isometry T, if Pyx = 0, then
lim,, S,z = 0.

4. (ACA)

Of the 4 statements listed, statement 4 implies 1 by Corollary 3.1.3,
clearly 1 implies 2, and 2 implies 3 by Theorem 3.1.2. So, the only part
remaining to be shown is that 3 implies 4. The construction is based on
a strategy employed in a different context by Pour-el and Richards ([22]).
Once again, for details see [2].



Chapter 4

Aspects of Measure Theory

4.1 Preliminaries

The classical theory of measure is highly nonconstructive. Bishop and
Bridges state in [8]:

Any constructive approach to mathematics will find a crucial test
in its ability to assimilate the intricate body of mathematical
thought called measure theory, or the theory of integration.

Simpson writes in ([26], X.1):

Historically, the subject of measure theory developed hand in
hand with the nonconstructive, set-theoretic approach to math-
ematics.. . . Although Reverse Mathematics is quite different from
Bishop-style constructivism, we see that Bishop’s remark raises
an interesting question: Which nonconstructive set existence az-
ioms are needed for measure theory?

In their work in measure theory, Simpson and his students (principally Yu),
have utilized an approach similar to Bishop’s, modifying the axioms for the
Daniell integral. The basic objects are functions, not sets. Just as metric,
Banach and Hilbert spaces are presented as completions of certain countable
sets, the space of integrable functions is given as the completion of the space
of simple functions under the L1 norm: it is, in fact, a Banach space. All
spaces considered are compact probability spaces. Every measurable set is
identified with its characteristic function, so a set is measurable if and only
if the characteristic function is measurable. In order to remain consistent
with the standard practice of measure theory, I am going to diverge from
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the terminology in [26] and call functions in L;(X) integrable, not measur-
able. Similarly, a set whose characteristic function is integrable will itself
be called an integrable set. The classical notion of a measurable function
will not occur in what follows. Classically, a measurable function that is not
integrable has infinite measure, which will never be the case in our setup.

ACA is a natural system to work with in measure theory, as it provides
us with least upper bounds and greatest lower bounds of sequences, assuring
existence of measure for countable unions and intersections of integrable sets.
However, WWKL( turns out to be sufficient for a large portion of discourse
about integrable functions, as it proves some of their relevant pointwise
properties. Yu points this out in [31]:

These results are expected, if we recall that Littlewood’s three
principles are centered at the idea of “nearly.”...the weak-weak
Konig’s lemma provides means of doing things “nearly” contin-
uous. The weak version of Heine-Borel theorem, which is equiv-
alent to weak-weak Konig’s lemma, gives finite “subcovers” with
small errors for any open covering. Hence it is reasonable to
expect to develop the theory of integration in the subsystem
WWHKLy.

If one is careful with definitions, it is possible to talk about these things
even in RCAg. It is usually possible to formalize standard definitions or
find equivalent ones in RCAg. Though it can sometimes be shown that
desired properties of these definitions hold in RCAg, those proofs are usually
more complicated and circuitous. Oftentimes it is necessary to reason about
pointwise properties of functions, and in those cases stronger axioms, like
(WWKL) or (ACA) are employed.

Relevant definitions and facts about measures are listed below. More
information can be found in [32, 31, 26, 11]. These sources provide an
in-depth treatment of measure theory in second-order arithmetic. Unless
specified otherwise, all definitions are stated in RCAg.

The Banach space C(X), elements of which are functions with a modulus
of uniform continuity, is the completion of the countable set S(X) of simple
functions over X under the sup norm. More precisely:

Definition 4.1.1 Let X = A and d a metric on X. Let B= Ax Q" xQt.
Each b = (a,r,s) € B is intended to represent a function ¢y as follows:

1 d(a,z) <z
bu(z) = 77_;199’:”) s<d(a,z)<r

0 d(a,z) > .
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Define C = Qx B. Ifc={(q1,b1),...(gn,bn)} is a finite subset of C, define
bot X = R by ¢ela) = Y, auso, ). A

Let S(X) = {c| c is a finite subset of C}. Finally, C(X) = S(X) under
the sup norm given by ||c|| = sup,e x |¢c(z)].

The elements of S(X) will be referred to as simple functions, disregarding
the distinction between functions and their codes, as is customary when
working in second-order arithmetic. Bishop and Bridges refer to elements of
C(X) as test functions, which is terminology we will also occasionally use.
Notice that test functions are bounded, i.e. if f € C(X), then there is some
constant My € R such that |f(z)| < My for all .

Definition 4.1.2 If X is a compact metric space, a Borel measure u is a
nonnegative bounded linear functional pn: C(X) — R such that u(l) = 1.

In the case X = [0, 1], a natural interpretation for 4 is the Lebesgue measure,
where for f € C([0,1]), u(f) = fol f(z)dz. Measure of open and closed sets
is defined via test functions.

Definition 4.1.3 If U is an open set, and p a Borel measure on C(X),
then define

u(U) =sup{u(g) |g € C(X),0<g<1,g=00n X\U}

The definition in the case of closed sets is dual: p(C) = inf{u(h) | h €
C(X),0<h<1,h=1o0nC}.

These suprema may not exist; in fact, it is not difficult to show that the
statement that every open set has a measure is equivalent to (ACA). More
properties of this measure can be found in [31]. For example, it is provable
in RCAq that it is regular on open and closed sets.

The definition of almost everywhere (a.e.) convergence, which will be
used in the statement of the pointwise ergodic theorem, requires the concept
of a null G5 set. A Gy set is coded by a sequence of open sets (meaning that
it is the intersection of this sequence). It can be assumed that this sequence
is decreasing. Let G be a G set coded with a sequence (Uy,). If u(U,) < 27"
for all n, then G is a null G5 set. The complement of a null G5 set is a full
F, set. Almost everywhere convergence is defined as convergence outside of
a null G5 set (or equivalently, convergence on a full F, set).

Definition 4.1.4 Let p > 1 be a real number and X a compact metric
space. The separable Banach space L,(X) is the completion of S(X) (the
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space of simple functions) under the L, norm: ||f|, = u(|f|P)/?. A function
[ € Ly(X) is a strong Cauchy sequence with respect to the norm of functions
in S(X). In other words, f = (fn |n €N) and || fr—fullp < 27™ forn > m.

Notice that the definition implies that if (f,) is a representation of f €
Ly(X), then [|full, = |1 £ll, in R

The definition works for all real p > 1, though this fact is not obvious:
it is not obvious how to define |f|P when p is not a natural number, but it
can be shown, using the definition of power functions given in Appendix B,
that if f € S(X), |f|P € C(X) so the definition above makes sense. The
case of special interest is when p = 1. The elements of L;(X) are called
integrable functions. We sometimes write u(f) = [ fdu and usually omit
the subscript in the norm. It is important to point out the following result,
which can be found in [30] and [11].

Proposition 4.1.5 (WWKLgy) If f is an element of L1(X), represented as
(fn), then f(z) is defined a.e. and is equal to lim fy(z).

It will later be shown that L,(X) C L;(X) for all p > 1, so elements of all
L, spaces are pointwise defined in WWKLy. It is important to keep in mind
that functions in L,(X) are elements of a Banach space. Their pointwise
properties are not known in RCAp and f = g means, by definition, equality
in the normed space: f =g < || f — gl =0.

Note: It is sometimes convenient to presuppose that if f € L,(X), then
(fn) is a sequence of test functions instead of simple functions.

If f,g € Lp(X), then it is possible to define max(f, g) and min(f, g). The
former is represented as la max(fy, gn)) and the latter as (min(f,,g,)) and
it is easily shown that they are elements of the space L,(X). Furthermore, if
f=f"and g = ¢', then max(f,g) = max(f’,¢') and min(f, g) = min(f’,g’).
In particular, for f € L,(X), we can define f* = max(f,0), represented as
(max(fy,0)), and f~ = max(—f,0), with the representation (max(—fy,,0)).
It immediately follows (in RCAg) that f*, f~ € Ly(z) and f = fT— f~. As
|fl=fT+ f~, |f| is integrable whenever f is.

The following definitions are substitutes in RCAq for the usual, pointwise
definitions of properties in question.

Definition 4.1.6 (RCAq) A function f € L,(X) is nonnegative if |f| = f
in Ly(X).

Note: Equivalently, f is nonnegative if and only if f = f7 if and only if
f=0.
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Fact [RCAg]: It can be assumed that if (f,,) is a nonnegative function,
then f,(z) > 0 for all n and all z, because otherwise f, can be replaced by
fi.

Fact [WWKLg]: A function f is nonnegative in the sense defined above
if and only if f(z) > 0 a.e.

Similarly, the > relation between two functions in L,(X) can be intro-
duced in RCAg,

Definition 4.1.7 (RCAq) Given two functions f and g in L,(X), f > g if
and only if max(f,g) = f.

Note: Equivalently, f > g if and only if min(f,g) = g.

Fact [RCAq]: f > gifand onlyif |f —g| = f—gifand only if (f —g)" =
(f —g)ifand only if (f —g)” =0since f > g+« f—g > 0.

Fact [WWKLg]: The ordering defined above coincides with the usual,
pointwise ordering a.e.

It is also possible to define f < g as =(f > g).

To discuss products of functions it is necessary to consider a class of
functions that is closed under products and powers: these are essentially
bounded functions. They correspond to the classical space Ly whose ele-
ments are measurable functions such that for some M € R, [f(z)] < M
a.e. As there is no natural analogue of the concept of measurable function
in reverse mathematics, here, as in a few other places, we will find a sensi-
ble substitute for the stipulation of measurability. In fact, for our purposes
measurable functions can be avoided all together. In this particular case,
instead of the entire space Lo (X), we are only interested in the functions
in Lp(X) N Ly (X) which can be characterized with the following definition:

Definition 4.1.8 (RCAq) A function f € Ly(X) is said to be essentially
bounded if |f| < M for some M € RT.

Note: We think of M above as the constant function M, and then interpret
|f| < M in the sense of the definition of the < relation.

Another convenient characterization is this: f is essentially bounded if
and only if f = max(min(f, M), —M) for some M € R*.

We are also not interested in considering Ly, ; 1, (X) as normed spaces,
since we only look at individual essentially bounded functions. It is worth-
while pointing out, however, that L «, corresponds to the classical Lo (X),
since X is a finite measure space, and for any p, every f € Ly in s,y (X) is in
Li(X).
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Proposition 4.1.9 (RCAg) The function f is essentially bounded if it is
represented as (f,), where each fy is a simple function and there exists a
constant M such that |f,| < M for all n.

Proof. Let f be represented with (f,). Let M be the bound for f. Then
f = max(min(f, M),—M), and the right-hand side of this expression is
represented as (max(min(f,, M), —M)). This exactly means that every |f,|
is bounded by M, as required. O

Fact:[RCAg] If one representation of a function is essentially bounded,
all representations are, and with the same bound, since if f = g, then
max(f, M) = max(g, M) and min(f, M) = min(g, M).

Fact [WWKLg]: The definition above implies the usual characterization
of essential boundedness, since

Vn |fol < M = Vn |fo(z)] < M — |f(z)| < M

for almost all z.

We will write “f € Lp(X)” to mean “f is an essentially bounded
function in L,(X).”

Although this is a natural place to define products and analyze their
integrability, the discussion about these issues is complex enough to merit
a section of its own, and is therefore postponed until Section 4.2. The next
order of business is instead to define characteristic functions and integrable
sets, though this also needs some results from the next section. The defini-
tion found in [26] is made in WWKL( because it presupposes that functions
are defined a.e. We first give this definition, and then show how it can be
modified to make sense in RCAy.

Definition 4.1.10 (WWKLo) A function f € Li(X) is a characteristic
function if f(z) € {0,1} a.e. A code for an integrable set E with respect to
the measure pu on X is defined to be a corresponding characteristic function

and p(E) = p(f)-

Fact [WWKLg]: A characteristic function defined in such a way is es-
sentially bounded: 0 < x4 < 1. Because of this, x4 € L;(X) (this will be
proved in Lemma 4.2.5); also, x%(z) = xa(z) for every z in the domain.
Moreover, if f is any function such that f2 = f, then f > 0 and it follows
that (1 —f)2=1—f,s01—f>0,0r f <1.

This motivates the following definition:
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Definition 4.1.11 (RCAg) A function f € L1(X) is a characteristic func-
tion if f2 = f.

The definition of integrable set remains the same as in 4.1.11.

Fact [WWKLg]: The two definitions coincide.
Proof. One direction is the previous fact. The other follows from Proposi-
tion 4.4.1: f? = f if and only if f?(z) = f(z) a.e. The latter means that
there is a an F, set F' = U,C, on which f2(z) = f(z), which is equivalent
to saying f(z) € {0,1} for all z € F.

If E = (a,b) is an open interval in [0, 1], its characteristic function can be
coded with the sequence (p,,) of simple functions, where p,, = (“T‘H’, “T_b, (1—
2 )%=ty RCAg proves that (p,,) satisfies both definitions of a characteristic
function, and p(E) = lim, u(py) (compare to [30]).

Note: We are not interested in general Borel sets, and for this reason
entirely skip the definition and discussion of Borel codes. All the sets appear-
ing in the theorems that follow are simple enough: they can be expressed
with up to four quantifiers. Just as a Gy set can be coded as a sequence
of open set, with the understanding that it is an intersection of these sets,
so can, for example, an infinite union of G5 sets be coded as a sequence of
sequences of open sets. A similar procedure applies for all sets we will be
considering later.

Integrable sets are identified with their characteristic functions. When
working in WWKLy, where integrable functions are pointwise defined a.e,
given a characteristic function f, we can define membership in the corre-
sponding set A: x € A < f(z) = 1. Notice that there is no discrepancy
between this definition and the previous definition of measure for open sets:
in general, to define the characteristic function of an open set, arithmetic
comprehension is necessary.

The complement A of an integrable set A is integrable, since if f is a
characteristic function of A, then a characteristic function of 4 is 1 — f.
Similarly, if A and B are integrable sets with characteristic functions f; and
f2, characteristic functions for AU B and AN B are respectively max(f1, f2)
and min(f1, f2). It is not difficult to show that the characteristic function for
AN B can equivalently be written as f;- fo and the characteristic function for
AUB as fi + fn— f1- f2- To show that these functions really correspond to
complements, unions and intersections, (WWKL) is needed. Finite unions
and intersections can be shown to be integrable in RCAq, but (ACA) is
needed for the infinite case. If f, is the characteristic function of A,, then
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the characteristic function of U, A,, is sup,, f,, and the characteristic function
of N, A4, is inf,, f,. A proof that suprema and infima of integrable functions
are integrable is provided in Proposition 4.5.4, and it is not difficult to show
(in WWKLy, provided they exist) that suprema and infima of characteristic
functions are characteristic functions themselves. In particular, in ACAg, Gy
and F, sets, as well as their unions and intersections, are integrable, or, for
that matter any set at a very low level in the Borel hierarchy. If M is a Borel
set of finite rank, ACA( proves that there exists a Gy set G such that M C G
and p(G\ M) = 0. This implies that every null set that is “simple enough”,
that is, at a low level in the Borel hierarchy, is contained in a null G set. This
will allow us to prove a.e. convergence of a sequence of functions even if the
set on which the sequence converges is not F;;,. The fact follows immediately
from Yu’s observation in [30] that ACAy proves measure for Borel sets of
finite rank to be well-defined and regular (this fact requires ATRg in the
general case). For, if u(M) = inf{u(U) | M C U and U is open}, then there
exists a sequence U, of open sets such that M C U, and u(U,) < u(M)+2™"
for all n. The set G = N, U, is the required Gy set.

In some cases it is possible to build a theory of measure and integration
from sets. When X is [0,1]" or the Cantor space, there is a simple repre-
sentation of measurable sets, as the completion of the Boolean algebra of
clopen sets with respect to symmetric differences (see [11]). In this case,
the definitions are made in RCAg and the equivalence between this and the
functional approach is provable in WWKLg. If there is no suitable Boolean
algebra of sets whose completion yields measurable sets, the situation be-
comes more complicated and the question of whether a similar procedure
exists for arbitrary metric spaces still remains open.

4.2 Products and Powers in L, Spaces

Giving a meaningful, viable definition of products and powers of elements
of L,(X) may seem like an innocuous problem at first, but many difficulties
surround it, as we will show below. Even in classical measure theory, a
product of integrable functions is not necessarily integrable. It is not at
all obvious how to give a definition of this concept that will be natural in
second-order arithmetic, and at the same time capture classical properties
of products. Such a definition is necessary, as knowing the behavior of
T'(fg) for integrable functions f and g is necessary for proving the pointwise
ergodic theorem. More importantly, products and powers are essential if
we hope to emulate classical measure theory as closely as possible. For
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example, integrating a function f over a set A will require knowing that
fXxa is integrable, and to consider L, spaces, we will need to understand the
behavior of fP when p is a real number.

The goal is to develop as much theory as possible in RCAg, yet this
system, for the most part, cannot reason about pointwise properties of func-
tions. Worse yet, a natural definition of products can be sensitive to rep-
resentations. It is possible to construct a function f represented with the
sequence of simple functions (f,,) such that f = 0, but {f2), though point-
wise convergent to 0, does not converge in norm. Such a function can, for
example, be defined in the following way:

2ndz 0<x< #
fo(z) =< 2n —2nz # <z < n—12 (4.1)
0 otherwise

Each f, is nonzero only on an interval of length n—12 and peaks at x = %%,
with y = n. The measure of each f, is % and a simple computation shows
that (f,,) is a Cauchy sequence in L1 ([0, 1]) (converging to the zero function),
while (f2) is not.

This means that if one tries to define the product of two functions by the
products of their approximations, it can happen that f; = fo and g1 = go,
but figi # feg2. The question that the function defined with (4.1) raises
is this: do we want to structure the definition of products so that f? exists
and coincides with the pointwise product (0 in this case) or do we want
it to somehow reflect differences in representations? I have opted for the
first solution. After all, in classical measure theory products are defined
pointwise.

A measure of how good our characterization of integrable products is will
be based on the following considerations. Is it in accord with the classical
definition? It must not deem integrable products that classically are not.
On the other hand, the class of functions satisfying the definition must not
be too small. Ideally, the following should be accomplished: the product
should be unique and not depend on representations, WWKLy should be
able to show that the product obtained from the definition coincides with
the pointwise product when the latter is in L,(X), and ACAq should be able
to prove that if fg = h according to the definition, then fg = h pointwise
a.e.

It makes sense to start from the pointwise product of two functions.
Classically, if f, g, and h are elements of L,(X), h is said to be the product
of f and g if h(z) = f(z)g(z) a.e. This definition is meaningful in our frame-
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work, and it can be proved in WWKLg that the product of two functions,
if it exists, is unique and does not depend on representations. The problem
is that, though it is capable of determining whether A is the product of f
and g, the definition does not tell us how to obtain it. In addition, it uses
pointwise properties of functions. Nevertheless, it can be modified to make
sense in RCAy.

Definition 4.2.1 (RCAq) If f, g and h are elements of Ly(X), we say
that h = fg and call h the pointwise product of f and g if there exist
some representations (fn), (gn) and (h,) of f, g and h respectively, such
that h(z) = f(x)g(z) whenever f(x) = lim, f,(z), g(z) = lim, g,(x) and
h(z) = limh,,(z) all exist.

Although it makes sense, this definition does not seem to be very useful.
It guarantees that the pointwise product is independent of representations,
but not that it is unique: this fact requires WWKLy. For all we know, there
may be no points in the domains of the functions in questions. Because of
this, and because this definition provides no insight into the construction of
products as elements of L,(X), we consider instead the following, stronger
characterization.

Definition 4.2.2 (RCAq) If f,g and h are elements of L,(X) and if there
exist representations (fn) of f and (gn) of g such that ||h — fngn|lp — 0 with
a fized rate of convergence for some h € L,(X), then we say that h is the
strong product of f and g.

Notice that if the sequence (f,g,) is Cauchy with a fixed rate of convergence,
then the strong product fg exists.

Proposition 4.2.3 (RCAg) If fg = h in the strong sense, then fg = h
pointwise.

Proof. Assume (f,gy) converges to h in L, norm, and let = be such that
f(z),g(x) and h(z) are defined. Then, since ||h — frgnllp — 0 with a fixed
rate of convergence, one can construct subsequences (f.) and (g},) of (f,)
and (gn) such that ||h — f] g, ||, < 27" for all n.

Let f' be the function given by (f}), let ¢’ be the function glven by
(g1,), and let h' be the function represented as (hl). Then f' = f, ¢’ =g,
and h' = h, and whenever f'(z), ¢’(z), and h/(z) are all defined, h'(z) =

limy, f;,(z)gn (z) = (limy, f7,(2))(lim, g, (z)) = f'(2)g (2)- O
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Corollary 4.2.4 (WWKLgy) If fg = h in the strong sense, then f(z)g(z) =
h(z) a.e.

From now on, we are going to take Definition 4.2.2 to be the working defini-
tion of products: the remainder of the section will show why this is justified.
The strong product does not depend on representations of f and g. It is
also easy to show that the product, if it exists, is unique, since if hy = fg
and ho = fg, then

171 = hallp < |h1 = fugnllp + [l fagn — hallp,

which approaches 0 with a fixed rate of convergence. Notice that the def-
inition naturally takes care of our counterexample (4.1) above, as for the
representation of the zero function (0), its product with itself is also the
zero function, as required.

The main result of this section will be Proposition 4.2.7, which states
that the strong product of two functions, one of which is essentially bounded,
exists. First we show a weaker result.

Proposition 4.2.5 (RCAg) If f,g € Ly, then the strong product fg exists
and is also in Ly . In fact, for any choice of representations of f and g
the sequence (fngn) converges, and to the same function.

Proof. Let f be represented with (f,), such that for all n, |f,| < My and
g be represented with (g,), with |g,| < M, for all n. To show that the
sequence (fngn) is convergent, we show it is Cauchy with a fixed rate of
convergence. Let m < n.

||fngn_fmgm||p = ||fngn_fngm+fn9m_fmgm”p
< an(gn_gm)||p+||gm(fn_fm)”p
< Mp2™™ A+ M27™ =0,

Pulling out constants outside of the norm is justified, because all functions
in question are simple, and measure is monotonic on simple functions.

Showing that the product does not depend on the representations of
f and g is analogous. Let (f,) and (f]) represent f, and (g,) and (g},)
represent g. This means that for all n, || fn, — f1[l, < 27" and ||gn — g4l <
27"+ By assumption, ||h — fngnll, — 0 with a fixed rate of convergence.
Recall also that all representations of an essentially bounded function have
the same bound.

1B = fagnllp 1B — fagnllp + | fagn — fagnllp + 1fn9n — fronllp

17— fagnllpMg2™"+" + My27"*1,

IA A
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which implies that ||h — f}g.,|l, — 0 also (with a fixed rate of convergence).
It is immediate that |fg| < M;M,. O

In practice, however, it is easier to show that two functions satisfy the
following (stronger) condition (*):

Functions f and g are elements of L,(X), represented, respec-
tively as (f,) and (g,) and there exist a sequence of functions
(hn) as well as a function h in L,(X) such that f,gm, — h, when
m — oo and h,, = h when n — oc.

To be able to use this characterization, we need to show that it implies
Definition 4.2.2.

Proposition 4.2.6 (RCAp) If two functions f and g in L,(X) satisfy prop-
erty (%), then fg exists in the sense of Definition 4.2.2.

Proof. Assume f,gn — hy, —= h. For each n let m, be such that ||h, —
ngmallp < 27", Then it is clear that (f,) represents f and (g, ) represents
g and ||h = fugm, |, — 0. O

If another assumption is added, namely that one of the functions is
essentially bounded, then the other direction holds true as well. A sketch of
the proof is as follows. Suppose ||h — frgnllp = 0 for some representations
of f and g, and that f is essentially bounded. According to the first fact
below, for a fixed n, there always exists h,, such that ||k, — fugm|l, — O.
Then

||h - hﬂHLD ||h - fﬂgn“p + ||fngn - fngme + ||fngm - hnHP

<
< Hh - f’ngn“:ﬂ + Mf2_” + ”fngm - hn”p’

which, since m is arbitrary, implies that ||h — hyl|p < ||k — fagnllp + Mp27™.
Letting n — oo, it follows that ||k — hy||, — 0. This still does not conclude
the proof, because the conclusion should hold for any representation of f
and g. Lemma 4.2.7 will show that this is indeed the case.

Observe now some facts about products implied by (x):

Fact [RCAg]: The sequence of functions (hy) in the definition above
always exists, since || fngm — fngkllp < My, ||9m — gk||p, where |fn| < My, .

Fact [RCAp]: The definition is independent of the order in which the
limits are taken: if frgm —= hm — h and fogm — wp, — w, then
h = w. Furthermore, one limit exists if and only if the other does.



4.2. PRODUCTS AND POWERS IN Lp SPACES 93

This is because we have ||h—w||, < ||h—hm|lp+|Pm — fagmllp + | fagm —
Wnl|p + ||wn — wl|p for all n and m. For every k it is possible to choose m
and n large enough such that ||h — w||, < 27

The second part is proved by a slight modification of the argument, since
for example [|b— wallp < 15— bunllp+ lhen — Fugimllp+ L fgem — wnlly for all
m (by the previous fact the sequence (h,) always exists).

We now come to the promised main result of this section, which will
enable us to integrate over arbitrary integrable sets. Notice that (%) is
precisely the characterization needed to prove the claim.

Proposition 4.2.7 (RCAg) Let f and g be in Ly(X) for some p. If g is
essentially bounded, then fg ezists as an element of L,(X). Furthermore,
all representations of f and g yield the same product.

Proof. Let f be represented with (f,), and g with (g,). Assume that g is
essentially bounded with |g| < M,.

Fix n. Since f, € §(X), it is bounded, and there exists My, such that
|fn(z)| < My, for all z. Consider (fng; | k € N). Let m > k.

||fngk - fngme < an2_k.

Therefore, (fngx | k € N) is a Cauchy sequence that represents f,g.
Next show that the sequence (f,g | n € N) is strong Cauchy in L,(X).
For n > m

1fmg = faglly = [1(fm — fn) gllp
S Mg”fm_anP
< M2 ™.

The first inequality would be almost trivially true in WWKLq (compare
to Proposition 4.4.1). In RCAg, however, it requires some work. It follows
from these two facts:

| (fm — fn) gk“p < Mg”fm - anP’

which is true by monotonicity of measure for simple functions, and

1(fm = fn) gillp = [|(fm = f) gllp- (4.2)

That this is enough follows from the more general fact (with a simple proof)
that, if (z,) is a sequence of real numbers that converges to z, and if y is
such that for all n, z,, <y, then z < y as well. It remains to show (4.2).
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It is true that ||g — gxll, < 27 %. Furthermore,

||(.fm_fn)g_(fm_fn)gk||li = ||(g_gk)(fn_fm)||P
< (an-f—Mfm)?*k,

since f, and fp, are simple functions. This means that (f,, — fn)gx —
(fm — fn)g in Ly(X) for each fixed m and n when k — oo, which also
concludes the proof of the above claim.

Consequently, there exists h € L,(X) such that [|h — frgl[, — 0 as
n — oo. By property (%), h = fg.

To prove the second part, let f and ¢ be as above, such that f,gm —
hn — h for some representations of f and g (recall that, if one of the func-
tions is essentially bounded, then property (x) coincides with the definition
of products). We will show that if (f]) and (g/,) are different representa-
tions of f and g, there exists a sequence of functions (h},) in L,(X) such
that flg' — hl 5 h.

Recall that for each n, h], exists. Since each f] is a simple function, for
every n there exists a positive constant My, such that |f]| < My . Next,

|hn — h;z”p < |bn = fagmllp + [ fngm — fyngme
+ fngm = fagmllp + g — Pallp
< ||hn - fngm”p + M92_n+1
+ My 27 | g — gl

Since m is arbitrary, it follows that ||h, — h,|l, < My27""!. Furthermore,
1B = hplly < [1h = Rallp + lhn = Byllp < b = Rallp + Mg27 ",
which approaches 0 when n — 0o and with a fixed rate of convergence. U

The following corollary contributes evidence to the claim that essentially
bounded functions have particularly nice properties with respect to prod-
ucts.

Corollary 4.2.8 (WWKLg) If f or g is essentially bounded, and if fg =h
pointwise a.e., then fg = h in the strong sense.

Proof. Since the strong product in this case exists, and is unique, the two
have to coincide. O

Thus, when f or g is essentially bounded, Definition 4.2.2 provides a char-
acterization of the pointwise product that is useful in the absence of WWKL,,
but provably equivalent to Definition 4.2.1 in the presence of WWKL,.
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Let us recapitulate the results of this section.
In RCAy we have the following:

e Ifone of the functions is essentially bounded, the strong product exists,
is unique and does not depend on representations.

e The pointwise product, if it exists, does not depend on representations.

e The strong product, if it exists, is unique.

e Ifh is the strong product of f and g, then it is their pointwise product.
In WWKLg the following hold:

e The strong product, if it exists, does not depend on representations.

e The pointwise product, if it exists, is unique.

e If h is the strong product of f and g, then h = fg a.e.

e If one of the functions is essentially bounded, and h = fg a.e, then
h = fg in the strong sense.

The situation at hand is satisfactory: when one of the functions is essen-
tially bounded, we have all the necessary results in RCAg. In general, how-
ever, Definition 4.2.1 and Definition 4.2.2 are not equivalent for more general
functions; in other words, when neither f nor g is essentially bounded, they
may have a pointwise product that is not a product in the strong sense.

In light of these difficulties, we cannot safely say that the suggested
definition is necessarily the best one. The most important thing is that it
works, which it does, but it is not difficult to imagine that there is a more
natural, more elegant, more accessible (with respect to RCAp) way to deal
with products of integrable functions.

Defining powers of functions is also tricky. (Before continuing, note that
the discussion below makes sense only for nonnegative functions.) Even
defining powers of numbers is not trivial. We tend to forget that, while
defining z? is easy, :1:\/5, or even /2, requires some thought. All the defini-
tions and necessary properties of power functions are given in Appendix B.

As with products, we can give two definitions. The first is pointwise.
Definition 4.2.9 Let f € Ly(z) and let k € R. If there exists a represen-
tation (fn) of f and h € Ly(X) such that whenever x is in the domain of

h, and lim, f,(z) = f(z) ezists, and if f*(x) = h(z), we say that h is the
pointwise k" power of f.
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The other alternative is to consider convergence in norm.

Definition 4.2.10 Let f € L,(X) and let k € R. If there exists a represen-
tation (fn) of f such that |h — fX||, — 0 for some h € Ly(X), we say that
h is the strong k' power of f.

The relationships between the two definitions in RCAg and WWKLj are the
same as the ones for products.

Definition 4.2.10 is closely related to Definition 4.2.2, but is weaker.
Although we would hope that the two would coincide when considering f?
for some function f, it is not necessarily the case: if f? exists in the sense
just defined, then f - f exists as well. The reverse is still an open question:
it is conceivable that two different representations of f are taken to form
the product, whereas for no representation is (f2) convergent. As before,
this issue can be resolved in stronger systems. Also, as usual, if f is an
element of L, , the definitions do coincide. Assuming (f,), (f,,) and (f}))
are all representations of an essentially bounded function with bound My,
and there is some function h such that [|h — f) f||, = 0, the conclusion
follows from the fact that

Ih = f2llp b — fhfmlle + 1 fafr = fhfallp + 1fafn — F2llp
1B = frfnllp + Mp2 "t 4 M2 ",

IN N

For this reason, as in the case of products, it would be reasonable to restrict
the definition to essentially bounded functions only.

4.3 Further Properties of L, Spaces

The next task is to determine which of the standard properties of L, spaces
carry over to our framework, and for those that do, whether the same proofs
can be used and in which subsystem.

First we prove Holder’s inequality.

Lemma 4.3.1 (RCAg) If f € Ly(X) and g € Ly(X) (wherep > 1, ¢ >
1 and % + % = 1) are given with representations (f,) and (gn), then the
sequence (fngn) is strong Cauchy in L1(X), therefore fg is integrable and

1£glle < I 1lnllgllq-

Proof. In the standard proof, integrability of fg is not established separately,
as it is a consequence of Holder’s inequality: [ fg < oo, which is enough
in the classical setup. We cannot follow this reasoning, since fg cannot be
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integrated without the knowledge that it is integrable in the sense of one of
the definitions of products.
We are able to show, however, that for every n

[fngnlls < Ifallo lignlla; (4.3)

using the standard argument. The inequality ab < %p + % holds for all
nonnegative real numbers a and b is provable in RCAg, since a basic theory
of differentiation is available in this system, and the proof consists of finding

the minimum of the function b — ab — %p + % (see Appendix B for a proof

of this inequality). Let u and v be any two simple functions. Let a = %

and b = ||1|’1(}ﬁ3| in the above inequality and obtain

lu(z)| [v(@)] _ 1 [u(z)P 1 [v=z)
) < P q -
lull, (vl — 2 llullp g lvlg

Integrating yields the desired inequality. In particular, when u = f, and
v = g, (4.3) follows.

Next, show that fg is integrable. Let m < n. Since f, — fi, and g, — gm
are simple, Holder’s inequality for simple functions applies.

| fngn — fmgmllt = | fngn — fagm + fngm — fmgmllL
< N falgn = gm)lls + [lgm (fa = fm)ll1
< Nfallp lgn = gmllq + lgmllg lfn — Frmllp-

Every Cauchy sequence of real numbers is bounded: ||f, |, < [|fill, +27 =
M and ||gnll1 < |lg1]| + 27" = M. Then

| fngn — fmgmllt < M127™ + Mp2™™,

which is a Cauchy sequence with a fixed rate of convergence. The function
fg is integrable, and taking the limit in (4.3) is justified. The Hoélder’s
inequality follows. O

It is worth pointing out that our definition of L, spaces is different from
that of most authors. Even in Bishop’s work, a function f is an element of
Ly(X) if and only if f is measurable and |f|P € L;(X). How are the two
definitions related? An exact correspondence cannot be established, since we
do not have the notion of measurable function. The measurability condition
has to be replaced with another, though, as it is easy to construct a sequence
of simple functions (f,,) which is not Cauchy, whereas for some p (f5) is (for
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example, p = 2, fo,(x) = 1 and fo,11(xz) = —1). No such difficulty arises
when functions considered are nonnegative, so it is reasonable to give the
following characterization. Interestingly enough, its proof is not as obvious
as one might imagine.

Lemma 4.3.2 (RCAg) A function f is an element of Ly(X) if and only if
(fF)? and (f~)P are elements of L1(X).

Proof. One direction is straightforward. Let f = (f,) and assume (f*)? €
Li(X). The inequality |z — y|? < |zP — 3P| holds for all z,y € R (proved in
Appendix B) and implies that

|F = LalP <A = (F))
for all n, m. Applying i to the inequality yields

158 = £l < NP = (Pl < 27

when m < n. Therefore, (f,7) and (f,) are Cauchy in L,(X), meaning that
[t € Ly(X) and f~ € Ly(X); consequently f = ft — f~ € Ly(X).

For the other direction it suffices to show that if f is nonnegative and
[ € Lp(X), then fP € Li(X) (since f = f* — f~, and f* and f~ are
nonnegative).

Based on the inequality |z —y?| < p|(z —vy) (2P ! +yP1)|, which is true
for all real x and y (for proof see Appendix B),

|f£7 - fﬁz‘ < p|(fn - fm)(fg_l +f7pn—1)|

for all n and m. Assume m < n. After integrating, and with the aid of
Holder’s inequality,

177 = fall pllfn = fmllp IFE~" + £57 g

pllfa = Fallp ULFE g + 155 o),

where ¢ is such that % + % -1,
Because f € Ly(X), || fo — fmlp <27™. It remains to estimate ||f£_1||q
and ||f717)z_1||q Notice that p = (p _ 1)q_

172 g = [(FP DIV = (DT = | fallBe.

The sequence (|| fr||p) is Cauchy in R and thus bounded; let M be an upper
bound. Then

<
<

12— f2 |l < pMP/227"
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and fP is an integrable function. O

Next we can determine the relationship among the L,(X) spaces. The
proof is adapted from [27].

Lemma 4.3.3 (RCAg) For p < q, Ly(X) C Ly(X).

Note: The spaces Ly(X) and Ly(X) don’t really exist as objects. The
statement L,(X) C L,y(X) is just an abbreviation for “every function f that
can be represented as a Cauchy sequence in the L; norm has an equivalent
representation (in the L, sense) which is Cauchy in L,(X).”

Proof. It is sufficient to show that if (f,) € L¢(X), then (f,) € Ly(X),

that is, if ||fm — fall; < 27™ for all m and n such that m < n, then

| frn — fullp < 27™ as well. It is clearly enough to show that ||gll, < ||gllq

for g € S(X). The claim is derived from the following: for z,y € R*,

Y/ > %w% (y — ) + #9/?. This inequality is provable in RCAq (proved in

Appendix B). In particular, let f = |g|P (f is in C(X)) and let y = f(¢):
a=p

[f(£))9? > %xT (f(t) — 2) + 29/7.

Recall that ;(1) = 1. Since measure is monotonic on C(X), it follows that

a=p

p(f%) > 2z 0 (u(f) — ) + 27,

4
p
and since the above inequality is true for all z € R, let z = u(f), obtaining

u(F%) > (u( )97,

which after some algebraic manipulation turns into ||g||q > ||g]lp- O

The immediate consequence of the above proof is that Lo(X) C L1 (X),
a fact needed in the passage from Lo convergence to Li convergence in the
ergodic theorem. Furthermore, if p < ¢ and f € Ly(X), then || f|l, < ||fllq
(proof: let f = (fy,) and, as in the proof of 4.3.3, || fnllqg < ||fnllp for each fy;
to obtain the result, take the limit).

Lemma 4.3.3 also implies that every function in L,(X), for any p > 1,
is pointwise defined a.e. (as it is also an element of L;(X)).
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4.4 Integrable Functions and Sets

In the remainder of the chapter we restrict our attention to the space L (X).
The proof of the following statements can be found in [31]:

Proposition 4.4.1 (WWKLy) For f,f' € Li(X) the following properties
hold:

1. |f = f'Il =0 if and only if f = f' a.e.
2. If f < f" a.e, then pu(f) < p(f).

From now on, “f = g in L1(X)” and “f = g a.e. 7 will be used interchange-
ably when the underlying system is WWKLg or ACAg.

Y

Lemma 4.4.2 (ACAy) For f € Li1(X) and any c € R the sets {z | f(z) >
¢} and {z | f(z) > ¢} are integrable.

Proof. Set f = (fn), with f, € C(X). For each n, {z | fo(z) > ¢} is open,
and f(z) = lim, fo(z) for all z in the domain of f, a full F, set F. Since
characteristic functions of sets that differ by a null set are equal in L1 (X),
there is no loss of generality in assuming that z € X instead of z € F.

{z|f(z)>c} = {z|IMm3IkVYn>k folz) >c+2" "}
= U U N falz) > c+27m,

m=1k=1n>k

which is integrable (in ACAp). The second claim follows from the first, using
complements. O

It is not difficult to show that the previous claim reverses to ACAy.
Theorem 4.4.3 (RCAg) The following are equivalent:

1. For f € Li(X) and any c € R the set {z | f(z) > ¢} is integrable.

2. (ACA).

Proof. That (1) — (2) was proved in Lemma 4.4.2. To prove the other
direction, we will use item 2. from Lemma 1.2.3. For that purpose, let a
sequence (an) of nonnegative numbers is given, such that foralln, >, _, a; <
1. We are going to construct a function f € L1([0,1]) such that

n({z] fl@) >0}) =) an. (4.4)
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For this purpose, define a Cauchy sequence of simple functions (f,) such
that p(fn) =D <, 4. This can be accomplished as follows. First define fi:

i<m 2¢
25 0<z<4
a1 9 — 2
filg)=q 1=z G <z<a
0 a1 < zx.

Clearly, p(f1) = a1. Similarly, assuming f; is defined for ¢ < n, assuming it
satisfies (4.4), define

fi(iv) Dok<io1 Gk ST < Yopci @iy 1 <M,

fn(37) — 2715’% on Ekgnfl a < ‘: < Zkgnfl ap + aTH’
-1~ a, L Ekgnfl ap+ 3 <z < Zkgn Ok,
0, > k<n @k < T

It is probably easier to understand how f, is defined from its graph:

where the length of the side of the i*® triangle lying on the z-axis is a; and
each triangle has area 3¢, hence pu(fn) = 3_;<,, 5+ The function correspond-
ing to this graph is a simple function.

First let us show that (f,) is a strong Cauchy sequence. Notice that the

sequence (f,) is increasing, so if m < n,
1fn = fmll = wlfa = fm) = p(fn) — p(fm)
" a "1 1
= > %< > 3w <gmm
k=m+1 k=m+1

as required. This means that there is a function f € L1([0,1]) represented
with this sequence. Furthermore, the set M = {z | f(z) > 0} is precisely
the domain of f with the exception of countably many points of the form
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T =)<, @, where f(z) = 0, but countable sets don’t affect measure. Since
M is integrable, (M) exists, and it is not hard to show that u(M) =3, an,
which completes the proof. O

It is conceivable that, with more care, integrability of {z | f(z) > ¢}
could be proved in a weaker system than ACAg, for “enough” values of c.
Bishop developed the entire theory of profiles (see [8]) for this purpose.
He defined accessible numbers and showed that the sets of the above form
are integrable if c is accessible. Without a doubt, it would be worthwhile to
examine Bishop’s approach more carefully and see if his ideas can be utilized
in our framework, but this falls outside of the scope of this work. Since the
proof of the pointwise ergodic theorem requires arithmetic comprehension
in a number of places, this is not a great loss.

We also want to integrate over arbitrary integrable sets. Since g = fxg
is integrable by Proposition 4.2.7, it is valid to define [, f = u(fxa)-

Similarly, to define a function by cases, for f to be f; on My, where
fr € L1(X) and My, a integrable set, define

F=>" fexu,-

k=1

Linear combinations of integrable functions are integrable, and since
feXu, is integrable for each k, f is integrable.

We now adapt two standard results from measure theory, the first of
which will be used in the first proof of the pointwise ergodic theorem, and
the second to prove one of its consequences. Both proofs are similar to
standard ones, though the second uses the monotone convergence theorem
and is postponed until the next section.

Lemma 4.4.4 (ACAg) Let (f,) be a pointwise convergent sequence of func-
tions in L1(X), which converges in norm to an integrable function f. Then
(fn) converges to f pointwise a.e.

Proof. First show that (f,) has a subsequence that converges pointwise to

f. Since ||f — full = 0, for each k let f,, be such that ||f — fn, || < 27
We are going to show that p({z | limy f,, (z) # f(z)} = 0, which will,

by regularity of measure for G sets, implies that limy, f,,, (z) = f(z) a.e.
Let U = {z | limy, f,, (z) # f(z)}. Since

lim f, (2) # [(2)  ImVE T > 1(f () = fuy ()] > 27™),
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the set U can be represented as
U=UNU U,
m 1 k>l

where Uy, = {z | |f(z) — fn,(z)| >27™}.

Let us evaluate the measure of U,,;. Because U,,; is integrable, we can
integrate over this set.

On the one hand, [;; [fn, — f| < [Ifn, — fIl < 27%. On the other,

fUmk |fre — f1 > fUmk 27 = 27 (Upnk). Therefore, pu(Uy,;) < 2™k,
Next, p(Ugsi Umk) < gy 2™ F = 211, which implies

#(ﬂ U Umk‘) < 2mfl+1

1 k>l

for all I, and hence this set has measure 0. The set U, consequently, is the
union of sets of measure 0, so itself has measure 0. As was mentioned earlier,
since it is simple enough in structure, U is contained in a null Gy set, so it
can be assumed that U is a G set. Hence, the subsequence (f,,) converges
a.e. to f.

This concludes the first part of the proof. It remains to show that the
entire sequence converges pointwise to f. By pointwise convergence of (f,),
for all z outside of a null G4 set there exists some & such that f,(z) — Z.
It remains to show that & = f(z) a.e. Since

& = f(2)| <12 = fo, (@)] + |fny, (2) = ()],

it is easy to see that this is true. O

Compare this lemma to the result from Section 4.2 that if (f,g,) con-
verges strongly to h, then it converges pointwise product as well. The proof
of this fact only needed RCAp, whereas Lemma 4.4.4 is proved in ACA,.
There is no contradiction between the two. The functions in Section 4.2
were simple, and the convergence was strong: we have neither of the two in
the previous lemma.

With additional assumptions, the reverse also holds, i.e. pointwise con-
vergence can imply convergence in norm.

Lemma 4.4.5 (ACAg) If(fn) is a sequence of integrable functions that con-
verges pointwise to an integrable function f, and if in addition || fa|| < || f]l
(or || full = [I£]]) then fn — f in L1 (X).

A proof is given in the next section.
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4.5 The Monotone Convergence Theorem

The monotone convergence theorem will be used in a number of places in
the next chapter, directly, or through one of its consequences. It is also a
convenient tool for proving integrability of certain functions. In [31], Yu
showed that the dominated convergence theorem is equivalent to (ACA),
while a weaker version of the monotone convergence theorem is equivalent to
(WWKL) over RCAq. In the latter, the limit is a known integrable function.
We have little use for that theorem, since in general the sequence of functions
will converge at almost every point, but the limit function will not be known
in advance. Since the proof of the main theorem is formalized in ACAy, it
is not a great loss that this stronger version of the monotone convergence
theorem, presented below, is also stated and proved in ACAg.

Theorem 4.5.1 (ACAg) Assume (f,) is a monotonic sequence of functions
in L1(X) with bounded measure. Then there is f € L1(X) such that || fn, —

fIl =0, and p(fn) = p(f)-

Proof. Without loss of generality, let (f,) be increasing, and u(f,) < M for
all n. Since (fy) is increasing, the sequence (u(fy,)) is an increasing sequence
of real numbers (Proposition 4.4.1) and as it is bounded, it is convergent
and therefore Cauchy so

Ve IN V> m > N (|ulfa) — p(fn)| <€)

and

1(fn) = 8(fm)| = p(fn) — 1(fm) = w(fo = fm) = p(fn = fml),

which means that
Ve AN Vn >m > N (||fn — fmll < &).

The sequence (f,) is Cauchy, hence convergent in ACAgy. Because Li(X)
is complete, the sequence converges to an integrable function f such that

p(fn) = p(f)- O

The proof of the theorem does not change if the sequence (f,) is assumed
to be decreasing and bounded below instead. This would not be true were
the space X not of finite measure.

In both this reversal and that of the pointwise ergodic theorem, it will
be necessary to show that a function of the form ), cxxs, (where I} are
disjoint, half-open intervals that cover [0, 1]) is integrable. In both cases,
the following situation arises:
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Lemma 4.5.2 (RCAg) Let 0 = ag < a1 < ..., define I = [ag,ar+1) and
Urly = [0,1]. Then xr1, € Li([0,1]) and if (cx) is a sequence of ratio-
nal numbers with |cgr1 — cx| < M for all n and some constant M, then
> on kX1, € Li(z).

Note: In examples that we will encounter, a = 1 —27%, or the sequence
(ak) is finite.

Proof. Tt is necessary to find a Cauchy sequence (with a fixed rate of con-
vergence) (gn) of functions in C(X) such that lim, g, = >, cxxr,- Let
ly = ag+1 — ag. Fix n and define

gn(z) =g, for ag +1- 27" <z < apyq — L2757,

(except when k = 0, in which case the condition is 0 < z < a; — -2 ")
and make it linear otherwise. Let m < n. Then g, and g,, differ only on
the open interval

(a1 — Ik - 275 ™ apgr 4+ lpgr - 27570

for each k. Each of these intervals has length [, - 27¢=1=™ 4 [, . 2=k—m,
which is less than 27%~™~1 and |g, — gm| < M on each, hence

p(lgn — gml) < M2 = prommi2,
k

The sequence (g,) therefore represents an integrable function: the function
Z k Ce X1, k* |:|

The reversal can now be proved.
Theorem 4.5.3 (RCAg) The following are equivalent:
1. (ACA).

2. Monotone convergence theorem for an arbitrary measure on a complete
separable meitric space.

3. Monotone convergence theorem for the Lebesque measure on [0, 1].

Proof. (1) — (2) was proved above and (2) — (3) is immediate. It remains to
show (3) — (1). Let (ay) be a monotonic bounded sequence of real numbers.
We may assume 0 < a1 < ag < --- < 1. The goal is to show that this
sequence is convergent, which will in turn imply arithmetic comprehension
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(by Lemma 1.2.3). We will construct an increasing, pointwise convergent
sequence of functions (f) in L1[0, 1], such that u(f,) = a,. Assume the
monotone convergence theorem holds. One of the conclusions of the theorem
was that u(f,) converges. This implies that (a,) is convergent as well.

It remains to construct the desired sequence of functions.

aj z < %
2a3 — ay lcx<?
) = P ST
g, — 2" 2q, | — - —ay 27;—;?—1 <z <l
For each fixed n, f, is a step function that jumps at every 2];;1 for1 <

k < n— 1, with step size bounded by 2"~ . According to Lemma 4.5.2, f,, €
L([0,1]) for each n. Furthermore, u(f,) = a,, the sequence is increasing
and converges everywhere except possibly at 1, and is therefore as required.
This completes the proof. O

The monotone convergence theorem helps us establish integrability of
suprema and infima of sequences of integrable functions in the case their
norms are uniformly bounded (or if the functions are essentially bounded
with the same bound). This is really the only case of interest for the
pointwise ergodic theorem, because the sequence under consideration will
be (S, f), where, since the transformation 7" preserves norm, ||S,f|| < || fll
for all n.

By the supremum of a sequence of functions we mean the L; limit of
the sequence g, = max{fi,... fn} (the definitions of inf, f,, liminf, f, and
lim sup,, f,, are analogous). This definition is not to be confused with the
pointwise definition: in ACAq for a.e. z, sup,, fn(X) exists, but it is not
obvious that these pointwise values define an integrable function. Unless
otherwise specified, all limits, suprema or infima, and all equalities are meant
in the L; sense.

Proposition 4.5.4 (ACAg) If (fn) is a sequence of functions in L1 such
that |u(frn)| < M, then sup,, fn, inf, fn, limsup f,, as well as liminf f,, are
all integrable as well.

Proof. Consider only sup,, f, and limsup,, f,, since the argument for inf,, f,
and liminf, f, is analogous. Define g, = max{fi,... fn}. The sequence
(gn) is increasing and ||g,|| < M. Theorem 4.5.1 applies: lim, g, = sup fp
is an integrable function.

The argument for limsup, f, is similar. Define h,; = max,<m<k fn-
Then hy, € L1(X) and ||hy || < M for all k,n and, for a fixed n, (hy | k €
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N) is increasing. By the monotone convergence theorem, for all n, limy, hy, i
exists and is in Li(X). Set hy, = limy hy, = supy>, fi, then h, € Li(X)
for all n. -

Applying a similar argument to the sequence h,, (decreasing sequence of
functions on L;(X), bounded in measure), it follows that lim, h, exists and
is in L1(X). But this limit is limsup,, f,, hence limsup, f, € L1(X), as
required. O

Proposition 4.5.4 and Lemma 4.4.4, imply (in ACAy) that if a sequence
(fn) converges pointwise to an integrable function f, then liminf, f, = f.

Corollary 4.5.5 (ACAy) (Fatou’s Lemma) Let (f,,) be a sequence of non-
negative integrable functions with p(f,) < M for all n. Then

p(liminf f,,) < liminf u(f,).
n n

Proof. Let g, = infy>, fr. Then by Proposition 4.5.4, g, € L{(X) for
each n, so (g,) is an increasing sequence of integrable functions such that
p(gn) < p(fn) < M for all n. Since

v (4(gn) < p(fn)) = liminf ps(gn) <Tim inf z(fy)
and liminf, p(gy) = lim, p(g,) = p(liminf, f,), it follows that
p(liminf f,) < lim infp(f,)
as required. O

Now we can complete the proof of Lemma 4.4.5, promised in the last
section.

Proof. First observe that |f,|+|f| —|f — fn| = 2|f| pointwise. According to
the comment after Proposition 4.5.4 on page 66, liminf |f,|+ |f|—|f — fa] =
2|f| and by Fatou’s Lemma

2,“(|f|) = M(li%inf|fn| + |f| - |f - fn|) < liInnian(|fn| + |f| - |f - fn|)
< (7D + mp(lfal) + Tminf(—ps(15 — ful)
= 2u(lf]) — limsup p(|f — fal)-

The last inequality yields 0 < lim sup,, u(|f — fn|) < 0, and it is easy to show
that this implies lim,, u(|f — fn|) = 0. O
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Chapter 5

The Pointwise Ergodic
Theorem

The classical statement of the pointwise ergodic theorem is as follows:

If T is a measure preserving transformation on a metric space
X and f a function in L;(X), then there exists a function fe
L1(X) such that the average Sy, f(z) = % SrZs f(T*z) converges
to f(z) € L1(X) a.e. Furthermore, the limit function f is invari-
ant, i.e. foT = f

Before proving the theorem, we need to translate it into our framework.
The first thing to consider is the definition of 7". Because there is no such
thing as an arbitrary, pointwise defined function from the point of view of
second-order arithmetic, T' cannot be defined on the points of the space.
Instead, it will be represented as an operator on functions, following the
same reasoning as for the mean ergodic theorem. More precisely, instead of
the operator on X, we will consider the operator induced on L;(X). More
information on the relationship between these representations can be found
in Halmos [16]. The appropriate definition of 7" will be discussed fully in
Section 5.1.

Three proofs of the pointwise ergodic theorem are presented below. The
first is adapted partly from Spitters [27] and partly from Billingsley [3], the
second is based on a proof by Katznelson and Weiss [19], which in turn is
derived from a proof by Kamae [18] that used nonstandard analysis, while
the third mostly follows Billingsley [3]. The first two proofs are in some
sense more natural than the third one, though it is more commonly found
in textbooks. This is because the first two adopt a functional approach
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and avoid the use of invariant sets, whose treatment in our framework is
problematic. Nevertheless, as Section 5.6 will show, these difficulties can be
overcome. Each proof is interesting in its own right and provides insights
into the behavior of measure preserving transformations on the space of
integrable functions over a compact metric space.

5.1 Motivation

In standard mathematical practice, if (X, F, p) is a measure space, a measure
preserving transformation (m.p.t.) 7' is defined as a mapping of X to itself
such that:

e The inverse image of each measurable set is measurable, and

e foreach A e F
w(A) = u(T 1 4),
or, equivalently,
u(f) = pu(foT)
for each f € Ly(X).

When defining a measure preserving transformation within weak sub-
systems of second-order arithmetic, we cannot do so pointwise. Even if T
is defined on the dense subset A of X, as it is not linear, there is no way
of extending it to the entire space. Instead, there are two choices before
us: to define T' on functions, or on sets. For a number of reasons, the
functional approach is preferable. In this case, T is first defined on simple
functions, then extended in the usual way, and we will see later that WWKL,
(and sometimes even RCAg) will suffice to capture the properties that the
classical version of the transformation 7" has. On the other hand, we saw
that there is presently no satisfactory way to formalize integrable sets, other
than via characteristic functions. Even when X is [0, 1] or [0, 1]", where the
characterization of integrable sets is relatively simple, there is no merit in
defining T on sets. It does not make showing that a given set is invariant
any easier; besides, the pointwise ergodic theorem is ultimately a statement
about points and functions and not about sets. In addition, this method is
in tune with the treatment of measure theory by Bishop, and by Simpson
and his students. Finally, it matches the approach taken in the first part of
the thesis.

To motivate the definition of T' in the context of second-order arith-
metic, let us employ briefly classical mathematical reasoning. Assume a
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transformation T is given, measure preserving in the sense specified above.
Consider now the induced transformation T, as we did earlier, which is de-
fined as T'f(z) = f(Tx) for all z for which Tz is in the domain of f. Then
T has the following properties:

e T sends L1 (X) to itself.

e T is linear.

e T is measure preserving: u(Tf) = p(f) for all f € Li(X).

e T is norm preserving (an isometry): | T'f|| = ||f| for all f € L1(X).
e T is multiplicative: T(fg) —Tf-Tg ae.

e T is nonnegative: if f > 0 a.e. then T'f > 0 a.e.

o If |[f| < M a.e. then |T'f| < M a.e. (T preserves L; o norm).

Note: Such a transformation will be called T and not 7' for the remainder
of the text. It will be clear from the context that it is an operator on L;(X)
and not on X.

The question presents itself of which of these properties characterize the
transformation. We will show in the next section that the properties of
being norm preserving and measure preserving are equivalent in WWKL,
and that nonnegativity is a consequence of linearity and multiplicativity. In
proofs of statements that require at least WWKLg, we are going to freely
switch between the two notions, and assume 7' is an isometry in claims that
are proved in RCAg. The only definition given below is that of an isometry,
with obvious modifications for a measure preserving transformation. In fact,
in the pointwise ergodic theorem, it suffices that 7" be nonexpansive with
respect to norm, as this alteration does not affect any of the proofs.

Although the main theorem is concerned only with the space Li(X),
other L, spaces will also be of interest. For this reason, consider first a
more general definition. It corresponds exactly to Definition 2.1.6.

Definition 5.1.1 An isometry on L,(X) is a function T : S(X) — L,(X)
such that

1. T(qifi + q2f2) = 1T fr + ¢2T fo for q1,q92 € Q and fi, f» € S(X),

2. ITfllp = Ifllp for every f € S(X).
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Then, for f = (f,) € Ly(X), the sequence (T'f,) is Cauchy in the space
because T is an isometry, and since L,(X) is complete, Tf is well-defined
and || Tf|l, = || fllp for all f € Ly(X).

(The alternative is for T' to be nonexpansive, and to change clause 2. to
T fllp <|fllp- All proofs remain the same with this modification, so assume
for simplicity from now on that 7" is an isometry.) A function is invariant
ifTf=Ff.

We will mainly be concerned with the case p = 1.

How does one define a multiplicative transformation? This question is
related to that of products of L, functions. It seems logical to character-
ize multiplicativity only on simple functions, and as long as fg € Ly(X) it
should follow in RCAg that T'(fg) = T'f - T'9. This is not necessarily the
case. In fact, as with products, essential boundedness needs to be employed.
To ensure that T'f - Tg is defined, we need to assume that T takes essen-
tially bounded functions to essentially bounded functions (7" preserves L,
norm). This is a reasonable assumption, true classically of measure preserv-
ing transformations. In practical terms, it guarantees that simple (and test)
functions behave well with respect to the transformation.

Definition 5.1.2 (RCAq) A transformation T : L,(X) — L,(X) is said to
be multiplicative if the following two conditions are satisfied:

1. If f is a simple function with |f| < M, then |Tf| < M also.
2. For all f,g € S(X), T(fg) =Tf -Tg in Ly(X).

There is no need to demand in 2. that T'f-T'g be in L,(X), as this is provided
by the first condition.

In the preceding definition, product are meant in the sense of Defini-
tion 4.2.2, that is, strong products. However, for essentially bounded func-
tions, the product exists in both senses and is the same, so it would be
possible to replace the second condition in the definition of multiplicativity
with the requirement that 7'fg(z) = T'f(z)T'g(x) for all z in the domain of
T(fg), Tf and Tg. The strong definition proves to be more useful.

It can easily be shown that this definition implies that T'(fg) =T f - Tg
when both functions are in L, . In particular, T is multiplicative on C'(X).

Proposition 5.1.3 (RCAg) If (f,) and (g,) are representations of f,g €
Lyoo(), then T(fg) = Tf - Ty.

Proof. Assume |f| < My and |g| < My; then also |T'f| < M and |T'g| < M,.
Notice that T'f - Tg exists, as do T'f,,-Tg, T(f — fn)-Tg and Tf - T(g — gm)
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(all functions are essentially bounded) and recall that T'(f,gm) = T fn - T9m
for all m and n. Using the triangle inequality,

IT(fg) =Tf -Tglly, < T(f9) = T(fa@)llp + IT(fng) — T (fngm)lp
+ NTfn-Tgm —Tfn-Tgllp + |Tfn-Tg—Tf Tgllp
IT((f = fr)9)llp + 1T (fnlg — gm))llp
|7 fnT (gm — 9)llp + 1T (fn — F)T9llp
My27™" + M2™™ 4 Mp2™™ 4 M,27"
= 2M27™ 4+ 2M,27",

IN +

based on the (L; and L; ) norm preserving property of 7.
Since the inequality holds for all values of m and n, ||T'(fg)—Tf-Tg|| = 0,
as required. O

It is still unclear if this type of argument can be extended to a more
general class of functions.

A seemingly stronger property will be required when considering L, (X)
for p > 1, a more general multiplicativity principle:

T(f%) = (Tf)",

whenever f € S(X) and is nonnegative. This property follows from multi-
plicativity when p is natural or rational. When p € N, it can be proved by
31 induction (the statement “T" is multiplicative on simple functions” is II;)

and holds not only for simple, but also for test functions. Since f »eC (X)
. 1 1
if f € S(X), and Tf =T([f»]") = [T(f)]",

(Tf)= =T(f),

so general multiplicativity holds for all rational numbers. Finally, if p is an
arbitrary real number, f? = lim,, fP», where p = (p,) (see Appendix B for
a justification of this fact) and

T(f7) = T(lim f) = Em T(f"") = kim(T f)" = (Tf)".
n n n
The second equality is true since 7', as a continuous operator, commutes
with limits.

Definition 5.1.4 (RCAq) An operator T : L,(X) — L,(X) is nonnegative
if whenever f is a nonnegative simple function, T'f is nonnegative as well.
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We proceed to show that if T' is nonnegative on simple functions, it will
preserve nonnegativity of arbitrary functions as well. This fact is almost
immediate, with our definition of nonnegativity.

To see this, let f be a nonnegative integrable function, represented as a
sequence of simple functions (fy,). It was remarked earlier that it is safe to
assume that each f, is nonnegative. By assumption, |T'f,| = T f, for all n
and

Tl =THllp < IATF =T faDllp + AT ful = TF)llp + 1T fr = Tfllp
< 27"4+0+277

for all n because T' is norm preserving, so

1T fn =T Fllp =T (fn = Pllp = llfn = Fllp <277,

and by the triangle inequality, ||(|Tf| — |Tfu|)ll, < [ITf — T fallp- Because
N(ITf| —Tf)|lp <27" for all n, Tf is nonnegative.

We showed earlier in the case of Hilbert spaces that for all n, T™ is con-
tinuous, linear and norm preserving. The proof in the case of T': L1(X) —
L, (X) is no different. Note also that the formula stating that 7™ is multi-
plicative is also IIj, so multiplicativity of T™ is provable using Lemma 1.2.1.

This may be a good place to examine the behavior of T', as defined in
the previous section, on sets. For example, can we prove that T' takes sets to
sets? Fortunately, this is the case whenever T is linear and multiplicative.
(If T is an isometry, then it preserves measures of sets, too.) Let A be an
integrable set, i.e. let x 4 be a characteristic function. Since x4 is essentially
bounded, multiplicativity applies, and since x% = x4, T(xa) = T(x3) =
(Tx4)?. In addition, T'x 4 is essentially bounded by 1 so it is a characteristic
function. In standard mathematical practice, with the pointwise definition
of T, if T is the transformation induced by T', then TX A = X7-14- It may be
tempting to think of Ty 4 in those terms, but we have no way of determining
the action of T on sets, and therefore cannot make this claim.

Recall that the following identities hold in RCAg:

XANB = XA * XB;

XAUB = XA+ XB — XA XB>
xac =1—xa.
After applying T', they become:

T(xanB) =Txa - Txs,
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T(xauB) =Txa+Txp —Txa-Txs,
T(xac) =T(1) =Txa=1-Txa.

It remains to justify the last identity, i.e. to show that 7'(1) = 1 (the constant
1 function). If one is careful, this fact can be shown in RCAg, assuming 7'
is measure preserving. Since 1 is a bounded function, 7'(1) is also bounded,
and multiplicativity applies.

First, observe that 7(1) = T(1 - 1) = [T(1)]? and that consequently,

(1-T1)2=1-271) + [T =1-T(1).

The multiplication above was legitimate, as 1 —T'(1) is a bounded function.
We can conclude that |1 — T'(1)] =1 —T(1) and

11 =T = p(l — T(D) = p(1) - p(T(1) =0,

or T(1) =1 in Li(X).
The above identities can also be interpreted in the following way. If M
and N are sets such that T'x4 = xa and T'xp = xn, then

T(XAOB) = XMnN,

T(xAuB) = XMUN,
T(xac) = Xne-

Another useful property holds of T'. It seems that pointwise properties
of functions cannot be avoided in proving it.

Proposition 5.1.5 (WWKLg) Let T : L1(X) — Li(X) be a linear, mul-
tiplicative transformation. Then T(f*) = (Tf)T and T(f ) = (Tf) in
Li(X).

Proof. Let f be represented as (f,), where each f, is a simple function.
The goal is to show that ||T'(f*) — (Tf)*||, = 0, where =+ stands for + or
—. Notice that for all n, T'f, = T(f;5) — T(f;) = (Tfa)* — (Tfn)” and
all functions involved are defined a.e, are nonnegative on the domain, and
at most one of the terms on each side of the identity is nonzero whenever
they are all defined. All these facts immediately imply the claim. For
example, if Tf,(z) > 0, then T(f,;7)(z) > 0, and (T'f,)"(z) > 0, while
T(f, ) (=z) = (Tf) (z) = 0, therefore T(f)(z) = (Tfn)*(z). The case
Tf,(z) < 0 is analogous. In WWKLg this means that | T(f;5) — (Tf,)*|| = 0
for all n, which in turn implies the claim. O
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We can now without ambiguity write T'f T or T'f . This fact also implies
that T|f| =T(f*+ f7) = (Tf)T+(Tf)~ = |Tf|, from which the following
proposition follows:

Proposition 5.1.6 (WWKLg) Every measure preserving transformation is
nonnegative.

Proof. Let |f| = f. Then Tf =T|f| = |Tf|. O

As promised in the previous section, we will show that a linear trans-
formation 7" : Li(X) — L;(X) is measure preserving if and only if it is an
isometry.

Proposition 5.1.7 (WWKLgy) A linear transformation T on L1(X) is mea-
sure preserving if and only if it is norm preserving.

Proof. If T is measure preserving, then u(Tf") = u(f*) and u(Tf~) =
u(f7), and

p(lf) = p(fT+17)=p(f")+u(f)
= w(TfT)+uw(Tf7) =p(Tfl).

For the other direction, let 7' be an isometry. It should be clear that |f*| =
f*. Similarly, because Tf* stands for (T f)*, |Tf*| = Tf*. Therefore:

p(f) = p(f") —pl(f)=plfT) —plf )

(
= p(ITf) - u(Tf7))
= w(Tf") —u(Tf7)
= u(Tf).

O

Due to the two propositions just proved, from now on we can always as-
sume that 7' is a multiplicative isometry when working in theories extending
WWAKLg.

5.2 Convergence in Norm

For T defined as in Section 5.1, for n > 1, let

1n71
Snf:EkZOT’“f.



5.2. CONVERGENCE IN NORM 7

If T is an isometry, then ||S,f|| < ||f]| for all n. In fact, if T is measure
preserving (recall the two are equivalent in WWKLy), ||Snf|| = ||f|l, though
the first property is sufficient for our purposes.

Recall that Chapter 3 established that the mean ergodic theorem is
equivalent to (ACA). Since Lo(X) is a real Hilbert space, arithmetic com-
prehension implies convergence of S, f in Ly norm.

The next step in the proof of the pointwise ergodic theorem is to show
that Lo convergence implies L; convergence, under some additional assump-
tions. Section 5.4 provides a proof that, in turn, L; convergence implies
pointwise convergence, which will conclude the proof of the pointwise er-
godic theorem (in ACAg). For the sake of generality, though, we are going
to consider general L, spaces. Results in this section are largely adapted
from [27].

The transformation 7' is going to be an isometry throughout. In the
next claim also assume that it is multiplicative. The underlying system
is WWKLg, because the fact that T|f| = |Tf|, which is used both in
Lemma 5.2.1 and Lemma 5.2.2, requires (WWKL).

Lemma 5.2.1 (WWKLg) Let T : L1(X) — L1(X) be a multiplicative isom-
etry. Then T, when restricted to Ly,(X) for any p > 1, is an isometry on
that space. Moreover, T takes Ly(X) to Ly(X).

Proof. Let f = (fn) be in L1(X). Observe that, since f,, € C(X), all powers
of f, are in L,y(X) for all p.

1115 = lim [ fu][f = Tim p(] fa]”)
= limp(|T(|f2 7)) = Tim o (|(T fa])P])
= limp(|T(|fa)IP) = L [T foll; = [T f[15-
The limit in the last step exists since T" is an isometry. The step before last
is the consequence of T'|f| = |T'f|.

For the second part of the claim, let f = (f,) € Lp(X): || f;n—Ffullp <27™
for all m, n such that n > m. But since T is an isometry on L,(X),

”Tfm - Tanp = ||T(fm - fn)“p = ||fm - anp <27™.

Therefore, (T'fy) is strong Cauchy with respect to the L, norm, so T'f €
Ly(X). O

Lemma 5.2.2 (WWKLg) If T is an isometry on L,(X) for some p > 1,
then it is also an isometry on L1(X).
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Proof. 1t will suffice to show that, if f € C(X), then ||Tf| = ||f||. By
assumption, for every g € C(X)

#(ITgl?) = u(lgl?)-

Let g be such that |f| = g7, i.e. ¢ = |f|'/P. It is easily shown that g is in
C(X). Therefore:

p(fD) = wlgl’) = p(ITgl”) = p(IT(g")))
= p(TIfID) = (T D)

Put together, the previous two lemmas yield the following:

Corollary 5.2.3 (WWKLg) If T is a multiplicative isometry on some Ly,
with p > 1, then it is an isometry for all Ly, ¢ > 1.

In particular, T is an isometry on L;(X) if and only if it is an isometry
on L2 (X)

Lemma 5.2.4 (RCAg) Let T be a multiplicative isometry on Ly(X). If
(Snf) converges in Ly norm for all f € Ly(X), for some q > p, then (S, f)
converges in Ly norm for all f € L,(X).

Note: In WWKL there would be no need to specify where 7" is an isometry.
This is due to the previous corollary: it is an isometry simultaneously on all
L,(X) spaces.

Proof. Let f € L,(X) be represented by (f;). Then, for each k, f;, € S(X) C
L,(X), and therefore for each k, (S, fi | n € N) converges in Ly(X) to some
gk € Ly C L.

Find an estimate for || g, —gm ||, for any k,m, where k < m. The goal is to
show that the sequence (gy) is strong Cauchy in L,(X) and thus convergent
to an element in the space. This will precisely be the limit of (S, f).

For k < m, HSnfk - Snfm”p = “Sn(fk - fm)”p < ||fk - fm”p < 27k,

Choose n so that ||S, fx — gkllg < 27%, [|Snfm — gmllg < 27% (this can be
done recursively, since the limit exists). Because p < ¢, the above inequali-

ties also hold in L, norm, based on the comment after Lemma 4.3.3 on page
59. Then

||gk - Snfk”p + HSnfk - Snfm”P + ”S'nfm - gm”]l
27k o7k o7k —3.27k

gk — gmllp

IAIA
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This is clearly a (strong) Cauchy sequence and since the space is complete,
the proof is done. O

Corollary 5.2.5 (RCAg) Let T be an isometry on L1(X). Then Lo con-
vergence of (Spf) for all f € Lo(X) implies Ly convergence of (Snf) for all

fe Ll(X)

By Theorem 3.1.3, arithmetic comprehension proves Lo convergence of (Sy,).
The following holds:

Corollary 5.2.6 (ACAg) For every f € Li(X), (Snf) converges in Ly
norm.

The converse to Lemma 5.2.4 holds. It is not relevant to the proof of the
ergodic theorem, however.

Lemma 5.2.7 (RCAg) If T is a multiplicative isometry on Ly(X), and if
(Snf) converges in L, norm for all f € Ly(X), then (Spf) converges in Ly
norm for all f € Ly(X) whenever ¢ > p.

Proof. We will show that (S, f) is a Cauchy sequence in Ly(X).

||Snf - Smf“q < ”Snf - Snfk”q + HSnfk - Smfk”q + HSmflc - Smeq,

and the first and third term are dominated by 27%. As for the middle term,
note that fi, € S(X), hence |fix| < M} for some real number My. Then
|T® fr| < My, for all 4, which implies that for all n, also |Sy fx| < M} and

| Snfr — Smkag = u(|Snfe — Smfrl?)
= u('snfk_smfk‘p‘snfk _Smfk|q7p)
(ZMk)qip ||Snfk - Smkaga

IA

or
1S fk — Smfrllg < (2Mg) P/9 (|8 fr — Sy fi|[B/.

The fact that (Syfx) converges in L,(X) implies that (S,fr) is Cauchy
in L,(X), and therefore for every [, and m and n large enough, |5, fr —
S frll, < 27¢, therefore

1Snfk = Smfrllp < (2Mk)1*p/q24p/q’

and it is not difficult to see that the sequence (S, fx) is strong Cauchy in
Ly(X), as is (S, f), and is therefore convergent. O

The next step is passing from convergence in norm to pointwise conver-
gence. This requires the maximal ergodic theorem.
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5.3 The Maximal Ergodic Theorem

The standard proof of the maximal ergodic theorem presents a problem
similar to that encountered when trying to formalize the standard proof
of the pointwise ergodic theorem. In this case the problem is resolved by
adapting a constructive proof by Garsia [15], which (unlike the standard
one) makes no use of inverse images of sets.

Recall that if a transformation is multiplicative, it is also nonnegative
(in WWKLj and stronger systems).

Theorem 5.3.1 (ACAg) Let T be a multiplicative isometry on L1(X), f €
Li(X), and M = {z | sup,Snf(z) > 0}. Then u(fxm) > 0.

Proof. Proposition 4.5.4 shows that sup, S, f is an integrable function, and
by Lemma 4.4.2, M is an integrable set.
Define

n—1
Aof =0, Anf =D T,
k=0
and notice that S, f = %An f for n > 1. Also note that
{z | supSnf(z) > 0} = {z | sup A, f(z) > 0},
n n

so consider the latter set.

Fix N € N. Let hy = maxo<p<ny Anf. Then hy € Li(X) and hy > 0.
Let My = {z | hy(z) > 0}. By Lemma 4.4.2, My is an integrable set and
M =Jy My. Since My is integrable, xar, € L1(X).

For alln, 0 <n < N,

hy > Anf — Thy >TAf
— ThN +f > An+1fa
therefore,
Th > A
N+f > oJax, n+1f

> AT

2 1152?5)(N nf
This implies that Thyxay + fXMy = maxi<n<ny AnfXxny, and this fact
is true in RCAg, assuming X, is an integrable function. The next step,
however, requires WWKLg:

max A My = max A My = ANXM
max, nf XMy oJhax, nf XMy XMy



5.3. THE MAXIMAL ERGODIC THEOREM 81

because hy(z) > 0 on My, so the maximum of A, f is not attained at n = 0.
Therefore,

Fxvy 2 hnxavry — Th Xy -

After integrating this becomes

N(fXMN) > ,uf(hNXMN) - H(ThNXMN) (51)
= plhn) — p(Thyxmy) (5.2)
> p(hy) — p(Thy). (5.3)

The equality in (5.2) follows from the fact that Ay = hnxny +hn Xz, and
hy =0 on X \ My, therefore hy = hyxn, while (5.3) is a consequence of
nonnegativity of T: Thy > 0 implying that Thyxmy < Thy (the former
is provable in WWKLy, the latter in RCAy).

As T is norm preserving, and hy and Thy are nonnegative, u(hy) =
Ihw|l = IThn|| = p(Thy), and p(fxay) > 0.

Now pass to the limit. It is easy to show that xary, — xar and fxary —
fxm in Li(X), which implies that u(fxamy) — w#(fxm). Consequently,
u(fxnr) > 0. O

If G = {z | sup, Spf(z) > A}, then it immediately follows from the
proof above that 1 (xa) < Tu(fxa)-

Although this proof is constructive from the standpoint of Bishop-style
mathematics, this is not the case in second-order arithmetic. First of all, the
claims that sup,, S, f is an integrable function, and M and My for all N are
integrable sets require arithmetic comprehension. The operation of taking
the limit over N can be performed in RCAy with the knowledge that xas and
XMy are integrable functions. Even if we suppose these facts beforehand,
the proof of the maximal ergodic theorem still does not formalize in RCAq
because pointwise properties of the function Ax are used in the proof.

We will need the following modification of the maximal ergodic theo-
rem for the third proof of the pointwise ergodic theorem: we need to show
that the conclusion of the theorem still holds if we restrict ourselves to an
invariant subset of the space (A is invariant if T'x4 = x4)-

Corollary 5.3.2 (ACAg) Let T be a multiplicative isometry on L1(X), f €
Li(X), and A an invariant set. If M = {x | (sup,,Snf(z))xa > 0}, then

p(fxaxa) > 0.

Proof. Apply 5.3.1 to the integrable function fyx 4. It suffices to show that
{z | (sup,Snf)xa > 0} = {z | suppSn(fxa) > 0}, for then the state-
ment immediately follows. This is where the invariance of A is used: since
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T*(fxa) = TFf - Thxa = T - xa for all k, Su(fxa) = (Suf)xa and the
two sets are equal. O

As above, if G = {z | sup, Spf(z) > A}, then p(xana) < Fu(fxcna)-

5.4 First Proof of the Main Theorem

Before proving the main theorem, one last auxiliary statement is needed.

Lemma 5.4.1 (ACAg) If (fx) is a sequence of functions in L1(X) that con-
verges in norm to f € L1(X), and if for all k, lim, S, fi ezists a.e, then
(Snf) converges a.e.

Note: The above statement can be interpreted as saying that the set of
all functions for which S, f converges a.e. is L closed.

Proof. Let G be the null set on which neither f, S, f for any n nor lim,, S, fi
for any k are defined (a countable union of null G4 sets is a null G, set, so
integrable). Due to regularity of measure, there is no loss in assuming that
G is a null Gy set. If x is outside of this set, and n, m,k € N are arbitrary,
then

Snf (@) = Smf (@) < |Snf (@) — Snfi(e)| + [Snfr(®) — Smfr(z)|
+  |Smfe(e) = Smf(2)].

Since lim,, S, fx(z) exists, there is Ny € N such that |S, fx(z) — Sp.fr(z)] <
27k whenever m,n > Nj. It remains to approximate the other two terms.
Because [S;f(z) — Sifx(w)| < sup;|S;(f(x) — fr(x))| for all 4,

|Suf (@) — S f (z)] < 2sup;|S;(f (@) — fu(@))| +27F
for n, m > Nj. According to the maximal ergodic theorem, for every A > 0,

Wl | sup Su(7(@) = fu(@)| > X)) <
plf | supaSald (@) = fu@)) > A < SIF = Sl < 527
Let Uy = {z | sup,|Sn(f(z) — fi(z))| > 27} UG. By Lemma 4.4.2, Uy

is integrable. Its measure does not exceed 2!=% while |S, f(z) — S f(z)| <
2270427k for n,m > N}, and outside of Uy.



5.4. FIRST PROOF OF THE MAIN THEOREM 83

Let ¢ be arbitrary. Choose I such that 27+ < ¢/2 and consider U =
Nkt Ui p(U) < 2=k for all k, thus u(U) = 0. If z ¢ U, then z ¢ Uy, for
some k. For this value sup,|S,(f(z) — fe(z))] < 27! and

Snf(z) — Smf(z)| <2-27"+27F < ¢

for m,n > Nj.

Now for each i let U; be the set U which corresponds to € = 27* above.
Define V' = U;U;. As a union of null sets, V is itself a null set, at a low level
in the Borel hierarchy. We can therefore appeal to regularity of measure once
again, and as V is contained in a null G set, it may be assumed that V itself
is a Gs set. For z ¢ V, (S, f(z)) is a Cauchy sequence, thus convergent,
which by definition means that (S, f) converges a.e. O

Theorem 5.4.2 (ACAy) (Pointwise ergodic theorem) For every multi-
plicative isometry T and for every f € Li(X), (S,f) converges a.e. to an
integrable function f. In addition, u(f) = u(f) and f is invariant.

Proof. Given f € Li(X), f = (fn), where f, € S(X) for all n. Since f, €
Ly(X), by Theorem 3.1.2, ACAq proves that f, = fM + N (follows from
the mean ergodic theorem) where fM and fN are in Lo(X) and therefore
integrable. Then TfM = fM and fY is represented by the sequence (g,x —
Tgnr), with g € S(X) for all k. S fM converges pointwise to fM, as
SmfM(z) = fM(z) for all z for which it is defined.

For any function of the form g — Tg, if ¢ € C(X) then |g(z)| < K for
some K, and because T preserves L; o, norm

Sug(@)] = Hlg(e) ~ T"g(x)| < 2K/n 0.

Thus, S,g converges pointwise to 0. As f}¥ is the L; limit of functions of
the above form (an Ly limit is also an L; limit), according to Lemma 5.4.1,
SmfN is also pointwise convergent, and, as a consequence, Sy, f;, is pointwise
convergent. But, once again, by the same lemma, as f is the L; limit
of the sequence f,, S,f converges a.e. At the same time, it was proved
above that (S,f) converges in L; to an integrable function f, which by
Lemma 4.4.4 implies that lim, Sy, f(z) = f(z) a.e. This establishes the first
part of the claim. That u(f) = p(f) follows directly from u(f — f) =

pu(f = Snf)+1(Snf = f), and u(Spf — f) = 0 while, since Spf — f in norm,
If = Sufll = 0 thus p(f — S,f) — 0.
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To prove invariance of f, it suffices to show that ||Tf — f|| = 0. For all
n €N,

ITf = fI| < ITf = TSnfll + |TSnf — Sufll + [1Saf — .

Consider each of the terms on the right-hand side of the inequality. Fix
e > 0. Because ||f — S, f|| — 0, there exists Ni(¢) such that | Tf —TS.f|| =
If = Sufll < € for n > Ni(e). Similarly, there exists Na(e) such that
ITSnf — Sufll = LIT™fF — fIl < 2||f]| < € for n > Ny(e). For n >
max{Ny, No}, |T'f — f|| < 3¢. Since ¢ is arbitrary, this concludes the proof.
O

We showed that L; convergence of the sequence (S, f) implies its point-
wise convergence. In fact, the reverse also holds. This follows directly from
Lemma 4.4.5. Since S,f — f a.e. and ||S,f|| = ||f|l, we have S,f — f in
Li(X).

5.5 Second Proof

We now proceed to the second proof of the pointwise ergodic theorem. The
advantage this proof has over the first one is that it requires fewer assump-
tions on T'. It is only required that it be a measure preserving (and therefore
nonnegative) linear operator. The resulting proof, however, is longer and
somewhat less intuitive. It also relies heavily on arithmetic comprehension.
The goal is to prove that liminf, S, f and limsup,, S, f coincide. To even
begin talking about these notions (suprema, infima, limits), arithmetic com-
prehension is necessary. Most proofs in this section are formalized in ACAy.

For the sake of clarity, the proof is divided into a number of lemmas. We
retain the notation from the previous sections.

Since any function f can be written as f = f* — f~, and T is linear, it
can safely be assumed that f > 0. Consider the full F,, set X on which f,
along with T*f for all k, is defined and nonnegative.

Recall that for each n, ||S,f|| < ||f]l- Set f(z) = limsup,, S,f(z) and
f(z) = liminf, S, f(z) for z € X. By virtue of arithmetic comprehension,
both of these pointwise limits exist. Furthermore, by Proposition 4.5.4, f
and f are integrable.

Fix € > 0. Let

P(z,n) = (n = min{k > 1| S¢f(z) > f(z) —€}).



5.5. SECOND PROOF 85

Then 9(z,n) is an arithmetic formula which holds if the first average that
comes within € of f(z) is S, f(z).
Next, define a formula ¢ so that

olz,m,n) < ki,...kn) @@, k) A YTz, k) A ..
A ¢(Tk1+"'+km_1$, km) An=Fk +--+ km)

In other words, once an average is reached that is within ¢ from f, we start
“counting” over, until another such average is reached. If ¢(z,m,n) holds,
then by term with index n this has happened m times.

We will write n = R(z) when 9(z,n) holds and n = R,,(z) when
¢(w, m,n) holds. Both R(z) and R,(z) exist a.e. and Sg,, (o) f(7) > flz)—¢
for all m.

First consider a restricted case. In the following lemma use the assump-
tion that T is nonnegative. So far in this section, arithmetic comprehension
has been necessary for all considerations, but if we assume that R,,(z) is
defined a.e. for all m and that f € L;(X), this lemma can be proved in
WWAKL,.

Lemma 5.5.1 (WWKLg) If f € Li(X), and there exist R* and M in N
such that R(z) < R* and f(z) < M a.e, then p(f) < u(f) + 2.

Proof. Pick L such that MTR* < ¢ and fix z in the domain of f and for which
Ry, (z) is defined for all m. There exists n such that R,(z) < L < Rp41(x)
and

L-(f(z) —¢)

IN

+1(x) - (f(2) —¢)
Ry (2) - (f(z) — €) + (Bnt1(z) — Bu(@)) - (F(z) —¢)

R, (
(
< Ry(2)Sr,f(z)+ MR* < LS.f(z) + MR*.

The inequality R, +1(z) — Ry(z) < R* is deduced from
Rni1(2) — Rn(7) < Rnya1(z) = R(Ra(2)) < R

In the last step nonnegativity of T' was used to conclude that Sg,f < SLf.
Now divide by L. Since f(z) — e < Spf(z) + MTR* a.e, by Proposi-
tion 4.4.1:

. L—1
u(f—) <u(fe) + 2 < 2 > THf) e =) +e

Use the fact that T is measure preserving in the last step.
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Finally, because u(f —¢) = u(f) — p(e) = u(f) — € (since p(1) = 1) it

follows that u(f) < u(f) + 2. O
Before proceeding to the general case, we prove the following statement.

Lemma 5.5.2 (ACAg) The set W = {z | R(z) > K} is integrable for all
KeN

Proof. This fact doesn’t follow immediately from Lemma 4.4.2 because R(x)
is not defined as a function.

The formula R(z) > K is an abbreviation for ¢(z,n) A n > K. Let
Wo = {z | Spu(z) — f(z) + & >0} and Y, = Wy, \ U=, Wi. Then z is in
W, if and only if S,,(z) is within ¢ from f(z) and is in Y,, if and only if it is
there for the first time: z € Y;, <> R(x) = n. Hence,

[ee) 00 K—-1
W= Y= W\ | Wa
n=K n=K n=1

Each W; is integrable by Lemma 4.4.2, as is W, because infinite unions of
integrable sets are integrable, as are differences of integrable sets. O

To conclude the proof, consider an arbitrary f, and “cut off” f at some
M, i.e. make it essentially bounded to reduce to the previous case. Taking
limits will give us the desired result.

Lemma 5.5.3 (ACAq) For any f € Li(X), pu(f) < u(f).

Proof. Fix M € N and set f,; = min(f, M). Choose R* € N such that
p({z | R(x) > R*}) < +7. This is possible because R(z) is finite a.e. and
u(X) = 1. 3
Let ¥ar(z,n) = (n = min{k > 1| Spf(z) > far —€}). As before, when
Yar(z,n) holds, denote n = Rps(z). Note that Rys(z) < R(zx) since f,, < f.
Define f as
_f(.’E) — { f(.’B) R("E) <R*
max(f(z), M) R(z)> R*,

and define R with

= [ Ry(z) R(z) <R*
R(z) = { T R S R

Then f € L;(X) because f = [Xr<rs + max(f, M)xg>r- a.e. and both
{R < R*} and {R > R*} are integrable sets and max(f, M) is an integrable
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function. Integrability of f follows from the comment in Section 4.4 on page
60. In addition, f > 0.
The following inequality holds:

B 1 1fz(z)—1Tk~
) —e< = x
Fule) —e < s 3 Tte)

a.e.
There are two cases. If R(z) < R*, then R(z) = Ra(z) and f(z) = f(x)

and
Ry—1

1 _
Ry 2 T
k=0
by definition. .
The second case occurs when R(z) > R*. Then R =1 and

0
D TFf=f =max(f,M)>M > fy -
k=0

= =

The conditions of Lemma 5.5.1 are now satisfied. This lemma applies to
£ in place of f and f in place of f and thus

u(far) < p(f) + 2e.

At the same time,

w(f) = u(fxr<r)+ p(max(f, M)xr>r-)
< p(fxr<rs) + (M + f)Xr>R*)
< p(f)+ Mo = u(f) +e,

thus u(far) < p(f) +3e. B B
Since e was arbitrary, u(fys) < p(f). Since f = limps £y,

u(F) = p(lim frr) = Timp(Far) < p(f)-

The inequality is the consequence of the proof above. The limit commutes
with the integral due to the weaker version of monotone convergence the-
orem, provable in WWKLg, as f,, is an increasing sequence of integrable
functions that converges to an integrable function f. O
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Theorem 5.5.4 (ACAp) (Pointwise ergodic theorem) Let T : Ly (X) —
L1(X) be a nonnegative measure preserving transformation and f € Li(X).

Then the sequence of averages S,f = Ez;é Tk f converges for almost all
zeX.

Proof. The following chain of inequalities holds:

u(f) < plf) < p(f) < u(f)-

The middle inequality is trivial, the third is Lemma 5.5.3, while the first is
analogous to the first.
To see that this proves the theorem, note that

u(f = f) <ulf—f)=0.

By Proposition 4.4.1, Ifll = 0 iff f = 0 a.e. Since f is nonnegative, u(f —
f) = 0 implies f = f outside of a null G set G. For all z outside of G, due to
nested interval convergence, f(z) = f(z) = limy Spf(«). This implies that

the sequence (S, f) converges to an integrable function f a.e. as required.

5.6 Third Proof

In this section we consider the standard proof of the pointwise ergodic the-
orem. In the classical mathematical setting this proof is short and straight-
forward. In our framework, however, it becomes complicated, providing an
example of the difficulties in dealing with subsets of a measure space in
the context of second-order arithmetic. For that reason, this proof is pre-
sented last. To simplify matters, the underlying space X is taken to be
[0, 1], though it is likely that the argument easily generalizes to an arbitrary
compact metric space equipped with a Borel measure. The main idea of the
proof is to show that given a,b € QQ such that a < b, the set

Agp ={z | liminf S, f(z) < a < b < limsup S, f(z)}

is invariant (T~!(A) = A), and then with the help of the maximal ergodic
theorem to show that p(A,p) = 0. Since Ua,b Agp is the set of all z for
which the limit of S,,f(z) does not exist, and since u(U,, Aap) = 0, this
suffices to prove the claim. The main difficulty for us is in showing that A,
is an invariant set. In our setting this means that T'x 4, , = x4,,-

Throughout the section we are going to work under the assumption that
T is a multiplicative isometry on L;([0,1]). Recall that a multiplicative
transformation also preserves L; o, norm.
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Notice that Agp = BN C, where
B = {z | iminf S, f(z) < a},
n

and
C={z|b<limsupS,f(z)},
n

and that

Txpnc =T(xB-xc) =Txs - Txc-
If we show that B and C are both invariant, A, will be invariant as well.
As B and C have symmetric definitions, it is enough to prove the claim for

only one of the two, so from now on consider only the set B.
Since ¢ € B <> e Vk In > k (Spf(z) < a—¢),

B:Uﬂ U{$|Snf(m)<a—€}.

€ k n>k

For brevity, let
Bna = {SE ‘ Snf(m) <a-— 5}1

where € ranges over rational numbers, e.g. those of the form 27™ for some
m.

The next thing we need to show is that 7', in a sense, commutes with
infinite unions and intersections, i.e. that

T(XUEnkUnZanE) = XUEOkU’nZanE’

where D,,. is such that T'xp,. = xp,.-

This fact is true in the finite case (see also comment on page 75 before
Proposition 5.1.5). It is not difficult to show that, due to continuity of
T, the extension to infinite unions and intersections can be made. For
example, assume M = U2, M, exists (meaning xp = limy, Xun_, M, ), With
Txm, = XN,- Then

Txmy = T(Xiim,u
(%)

- hv{nT(XU;cllek) - hylbnxuglek = XUp2, Nn

pm) = T(limxor_ )

The step (x) follows from continuity of 7T'.
With this conclusion, and since

Txp = TXUsﬂkUnZana = XUeNgUn>£Cne
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it suffices to show that U; Ny Up>gBre = Uz Ng Up>Che. To make this
claim, we need to see how T acts on xp,.. For this purpose we consider an
alternative characterization of integrable functions.

Definition 5.6.1 (RCAg) A function f is called a step function if it is of
the form Y ., ckxr;, where I, ..., I, are disjoint open intervals.

It can be shown in RCAg that every step function is integrable, because
characteristic functions of open intervals can be defined in RCA( (see page
46) and linear combinations of integrable functions are integrable (comment
before Lemma 4.4.4).

Lemma 5.6.2 (RCAq) Every function f € Ly(X) is the Ly limit of step
functions.

Proof. 1t is enough to show the claim for simple functions. Let f be a
simple function. Let g, be the function defined as 37— f(£)xz,,, where
Iy, = (%, %) It is clear that each g, is a step function. It can furthermore

be shown that (g,) is a Cauchy sequence and that it converges to f. O

Lemma 5.6.3 (WWKLg) Let g € L1(X). Then

TX{z | g(2)>0} = X{z | Tg(z)>0}- (5.4)

Proof. We will use the previous characterization of integrable functions to
prove the claim. First assume that g is a characteristic function of an open
interval: call it ;.

This case is simple, since for all z, x7(z) > 0 <> x7(z) = 1 (if x7(z) is de-
fined, it is either 0 or 1, according to the definition of characteristic functions
of intervals) and {z | x7(z) = 1} = I, so the left-hand side of (5.4) becomes
Txr. As for the right-hand side, since Ty is the characteristic function of
some set J, similarly, x;(z) > 0 <> xs(7) = 1 and X{z |y, (2)=1} = XJ> SO
the two are equal.

Next assume that g = )", .. cxX1,- Since the intervals I are disjoint,

{z| ZCkX[k > 0} = Up<n{z | ckxr, > 0}
k<n
Observe that, if T'x7, = x,, the sets Ji,...,J, can intersect only at a null
set, as
Xindy = XJ;Xq, = Txr, - Txr,
= T(Xfiﬁfk) = T(O) =0.
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Since two sets that differ only on a null set have the same characteristic
function, and since T' commutes with unions in the sense specified above, it
is enough to consider only T/, | ckxr, >0} for a fixed k.

If ¢, <0, then {z | cxx1, > 0} =0, xg =0 and T'(0) = 0. Following the
same reasoning, {z | T'(cxx1, > 0)} = {z | ckxs, > 0)}0, and once again, the
two sides of (5.4) coincide. If ¢y > 0, then {z | ¢xx1, > 0} = {z | x1, > 0}
and this reduces to the previous case.

Finally, let g be represented as a limit of step functions (g,). Then

g(z) >0 Ve AN Vn > Ngp(z) > ¢,

and

{z | g(e) >0} = (U= | gn(2) > €}

e N n

We can once again appeal to the fact that T' commutes with unions and
intersections. Since T'X(z | g, (z)>e} = X{z | Tgn(z)>} 0T all n, it follows that

TX{z|g)>0} = TXn.Unnn{z|gn(z)>e}
XNeUnNn{z | Tgn(z)>e}

= X{z|Tg(z)>0}-
The last step follows from the fact that 7" is continuous. O
Now we need to see why this is enough to prove our initial claim. The

lemma is stated and proved in WWKLy, with the assumption that all limits
exist.

Lemma 5.6.4 (WWKLy) The set B is invariant.

Proof. First assume that the function f is bounded. According to the pre-
vious lemma, TX{z | Snf(z)<a—e} = X{z | TSnf(z)<a—e} and

Txa = TX{m | liminfy, Sy, f(z)<a}
= TXUaﬁkUnZk{l‘ | Snf(z)<a—e}
= XUcNgUp>i{z | TSnf(z)<a—c}

=  X{z | liminf, T'S, f(z)<a}>

and it therefore suffices to show that

{z | lin}linfTSnf(x) <a}={z]| lin;linfSnf(a:) < a}.
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Notice that T'S, f(z) = S f (z) + w Since f is bounded, |f] <
My, and as T preserves Li o norm, ‘W‘ < % — 0. It is not
difficult to show that, if (a,) and (b,) are two sequences of real numbers

such that lim, b, = 0, then liminf, (a, + b,) = liminf,, a,, and therefore

liIIiLinfTSnf(m) = lir%Linf (Snf(gc) + w)
= lin%inf Snf(z).

It should be clear that this proves the claim in the case f is bounded.

The general case follows, as f is represented with a sequence (f,) of
simple functions, which are by definition bounded. More precisely, we have
proved that for every k,

TX{z | liminfn Sn fe()<a} = X{z | liminf, S f(z)<a}
while

liminf S, f(z) < a > Ve AN Ym > N(liminf S, f,,(z) < a — ¢€),
n n

from which the claim follows, once again by the useful fact that T' commutes
with unions and intersections. O

Finally, it remains to prove the actual pointwise ergodic theorem. The
proof has been adapted from [3].

Theorem 5.6.5 (ACAy) (Pointwise ergodic theorem) If T is a mul-
tiplicative isometry on Li1([0,1]), then the sequence of averages S,f(x) =
%ZZ;& Tk f(x) converges for a.e. z in [0,1].

Proof. As indicated at the beginning of the section, we need to show that for
all rational numbers a and b with a < b, u(Aqp) = 0. Fix a and b. We showed
that A, is an invariant set. Furthermore, if M = {z | supp>15,f(x) > b},
then A, = Ag N M and by Corollary 5.3.2 of the maximal ergodic theorem,

bu(xa,,) < u(fxa,,)
Similarly,
(fXA.) < aplxa,,)s

and
bu(xa,,) < ap(xa,,)
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which, as a < b, is only possible when (x4, ,) =0, which means that A,
is a null set and

p({z | lim S, f(z) does not exist} = p(Ugpecq Aap) =0,
n

which implies that the limit exists a.e. g

5.7 Reversal

The introduction contained Bishop’s explanation as to why the ergodic the-
orem of Birkhoff is not constructive. He gave an example of two vessels
between which a leak may or may not exist. Imagine now infinitely many
such pairs, each half the size of the previous one, so that they all fit on a finite
line, and associate to the n'" pair the n" Turing machine is some standard
ordering. A leak exists iff the corresponding Turing machine halts. Know-
ing the behavior of the system after a sufficient amount of time provides the
solution to the halting problem, and we know that is not constructive. In
fact, it is equivalent to arithmetic comprehension. Formalizing this heuristic
argument will provide us with the reversal of the pointwise ergodic theorem.
Recall that the Turing jump of Z C Nis {z | Jy 0(z,y, Z)}, where 0 is Ay
and Jy 6(z,y, Z) is a complete ¥; formula.

The transformation T defined below will preserve measure and norm,
and will be multiplicative and nonnegative (recall that in RCAg some of
these notions may differ). This will imply that the equivalence between the
pointwise ergodic theorem and (A CA) will hold regardless of the definition,
regardless of which proof of the theorem we consider (recall that the second
proof uses slightly different assumptions from the other two). Having said
this, we take the statement of the theorem to be the one below, with the
understanding that even with modified assumptions, the reversal works.

If X is a compact complete separable metric space, and 1" a multiplicative
isometry on L1 (X), then the sequence of averages S, f(z) = 1 STk (x)
converges a.e. to an invariant function f € L1(X) such that u(f) = u(f).

Theorem 5.7.1 (RCAg) The following are equivalent:
1. Pointwise ergodic theorem.

2. (ACA).
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Proof. Tt only remains to prove the reversal. Let the space X be [0, 1] with
the standard metric. It is compact as required and the Borel measure on
this space coincides with the Riemann integral. Define a measure preserving
transformation 7" on L;(X) in the following way:

We split [0,1] into intervals Iy = [z}, Ty, 1), where zx = 1 — 2% and
k > 0, so that I, has length 2~ (*+1)_ Define

2= (ktm) < ABO(k,m, Z) AVI < m —0(k,1,Z)
(ak)n = i
0 otherwise.

It is immediate that each aj is a computable real number and that aj is
equal to 0 if and only if -3m 6(k, m, Z).

Next, define T on simple functions. If f € S(X) and z € [zg_1,zk),
define

| flz+ag) r+ap <z
Tf(ac)—{ f(:z:+az-2_k) :1:+az>w:.

Note that T'f is not defined when z + ar = xx, but since there are only
countably many such points, this presents no difficulty.

We will show that T satisfies all the properties previously associated with
it. First show that T is well-defined, i.e. that T'f € L1([0,1]). This is due to
the fact that T'f is a piecewise continuous function, with at most countably
many jump discontinuities (they can occur at xy 1,z 1 + ax and zj for all
k), which is moreover bounded above; by Lemma 4.5.2, T'f is an integrable
function.

Next show that 7" is measure preserving on S(X). Let f be a simple func-
tion. Because p(f) = fol flz)dz = >, f;ﬁk_l f(z)dz, it is enough to show
that ffk’“_l Tf(z)dx = ffkk_l f(z)dz, but this fact follows immediately from
invariance of the Riemann integral under translation. The same argument
can be used to show that 7" is an isometry.

Showing that 7 is nonnegative is also straightforward, and it is clear
that if f € S(X), Tf € L1, as the maximum of f is preserved. It remains
to show that if f,g € S(X), then T(fg) = Tf -Tg. That T(fg)(z) =
Tf(x)Tg(x) whenever all the quantities are defined is immediate. How
about the strong product of Tf and T'g? We know that this product exists
and is unique. By a previous remark, it has to coincide with the pointwise
product, which is T'(fg).

Now extend the definition to all of L ([0, 1]). Because T is an isometry
on simple functions, this will imply that T' is well-defined on the entire space.

Pointwise properties of integrable functions are in general not available
in RCAg. However, the only choice for f of interest to us is that of the
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identity function. In this case, we will be able to analyze both T'f and S, f.
The definition of 7" implies that 7'f(z) remains in the same subinterval as
z, as do all the averages S, f(z). If ay = 0, T does not change f, hence
Spf = f on [xg_1,zg) for all n. If a # 0, each iteration moves f(z), and
regardless of where in the interval z is, T?" f = f.

Consider the graphical representation of this. For the sake of conve-
nience, assume k = 0 and m = 2.

T2 f s T3f N

Algebraically, it can be shown that

Snf@) = gale' + (@ a0+ @+ 2a) 4 (@ 4 Q7 D))
2m —1

— 3), + ay = .’E, + 2—(/€+1) _ 2—(k+m+1).

where ' = £ —i2™™ and i is the largest integer such that z —i27™ > zp_4,
that is, 2’ is the leftmost iteration of z in the interval [zy_1, ). This 2’ is
computable, based on Proposition 1.2.2. The above formula holds for all x
for which T* f(z) is defined for all k < 2™,

The function Som f can graphically be represented as
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S

Som f
Define A, f = nS,f. Because T?" f = f,
SZme — jom = jom = SQm.

Finally, for arbitrary n, since for some i, i2™ < n < (i + 1)2™,

Anf  Aigmf
808 = Sanfll = 115af = Samfl| = | 225 - 22
2™ (Asng + Ra) — nAin |
ngi2m ’
where R, = A, — Ajom.
This is in turn equal to
Aisz(‘iQm — n) Rn 2Mm —n ||Rn||
— < |———|Sgm .
|22 S < S 1]+
Since [|Sam|| < [I£Il < 1, |228] < 22 = 1 and

Rl = IT?" f + -+ "7 f|| < (n—i2™)| | f]| < 2,
it follows that 5
|Snf — Som f|| < -

Thus, if ap = 0, lim, S, f = f. If ax # 0, then lim, S,f = Som f. Once
again, graphically:

/v

lim, S, f .
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It remains to find a formula that will distinguish between the two limit
functions, and consequently between the cases when a; = 0 and a; # 0.
We cannot directly compare integrals of limit functions, since the pointwise
ergodic theorem states that the integral of the limit is equal to the integral
of the original function. Instead, we can consider the restriction of lim,, S, f
on the second half of each subinterval. It is clear from the above graph that
the two have different measures. A brief computation shows this.

Let Iy = [zx + 22 24.1) and fi, = lim, Spf + I, = lim, S, fx1,-
In general, (WWKL) is needed to prove that a product of an integrable
function and a characteristic function is integrable. In this case, however,
it can be shown directly that this is the case: f, is a piecewise continuous
function and its integrability is shown using Lemma, 4.5.2.

If ap = 0, then p(fy) = 2= *+2 (1 — 2=(+1) _ 9=(k+2) 4 9—(k+3)),

If ay, # 0, then p(fy) = 2~ K2 (1 — 2~ (k+1) _ o~ (k+2))

Therefore

ap £ 0 6 p(fe) = 272 (1 = 9= (+1) _ 9= (k+2)),

and the latter formula is Iy, which completes the proof.
O

It can be shown using the same argument that the L; ergodic theorem
(statement that the sequence (Sy, f) converges in the L; norm for all f) also
reverses to (ACA). The transformation T remains the same, as does the
proof. This is because we never used any of the pointwise properties of the
limit function in the above theorem.
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Chapter 6

Closing Remarks

It is my hope that the reader has been convinced that doing analysis in
second-order arithmetic is both a fascinating and useful endeavor, that un-
covers relationships that are easily overlooked in the standard mathematical
practice.

This is by no means an attempt to formalize all of measure theory and
all of functional analysis within second-order arithmetic. My purpose was
to give a self-contained account of the ergodic theorems and results required
to prove them. Much more work can and should be done towards a more
complete understanding of these spaces within second-order arithmetic. A
natural continuation of the work presented in Chapters 2 and 3, and in more
breadth with Jeremy Avigad in [2], would include the analysis of the spectral
theory of Hilbert spaces, as well as consideration of more general classes of
Banach spaces. As for measure theory, there is the question of whether there
are situations in which it is necessary to introduce measurable functions, and
if so, how. It is also still unclear if it is possible to create a satisfactory theory
of measure starting from sets. Finally, it would be especially worthwhile to
explore and fully grasp the relationship between reverse and constructive
mathematics.

Despite of my effort to make this presentation complete, a number of
questions still remain open. Those pertaining to Hilbert spaces and the
mean ergodic theorem were discussed in [2]. The list given below can be
found in Section 16 of that paper.

1. Every closed linear subset of a Banach space is located.
2. Every closed linear subset of a Hilbert space is located.

3. Every closed linear subset of a Banach space is a closed subspace.

99



100 CHAPTER 6. CLOSING REMARKS

4. Every closed linear subset of a Hilbert space is a closed subspace.

5. If T is any bounded linear operator from a Banach space to itself and
A any real number, {z | Tz = Az} is a closed subspace.

6. If T is any bounded linear operator from a Banach space to itself,
{z | Tz = =} is a closed subspace.

7. If T is any bounded linear operator from a Hilbert space to itself,
{z | Tx = z} is a closed subspace.

In RCAy, all of these are implied by (I -CA), and all, in turn, apply (ACA).
In addition, 1 implies all the statements below it; 2 implies 4 and 7; 3 implies
all the statements below it; 4 implies 7; 5 is equivalent to 6 (since if A # 0,
we can define Tz = %Tm), and these in turn imply 7. It is possible, however,
that all the statements are equivalent to (IIf-CA), and it is also possible
that they are all equivalent to (ACA).

Also left wide open is the strength of the statement:

e If M is any closed linear subset of a Hilbert space, and z is any point,
and the distance from z to M exists, then the projection of x on M
exists.

There are also many unresolved questions in the realm of measure the-
ory. I proved a number of results under the condition that the functions
considered are essentially bounded, but in some instances was not able to
conclude anything about the general case. It is especially unfortunate that
the definitions of f- f and f2 in general cannot be shown to be equivalent in
RCAy. Also, I tailored the definition of products and powers of L, functions
to suit my particular needs in this work; the definition may be too restrictive
and may not recognize all functions that are classically integrable as such.
This should also be addressed in the future.

Another unresolved issue is this: it is a known fact that (WWKL) proves
that the domain of an integrable function is a full set. What is not known,
however, is whether this is sharp, that is, if that statement reverses to weak-
weak Konig’s lemma.

It would also be quite interesting to figure out the nuances regarding the
exact relationship between measure theory in Bishop-style mathematics and
in our framework.
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To pay off a debt from the introduction, we show that the statement “C(X)
is an integration space” (in the classical sense) reverses to (WWKL). The
constructive definition of an integration space is given in [8] and is as follows:

Definition A.0.2 An integration space is a triple (X, L, I) with the follow-
ing properties:

i) If f,g,€ L and o, B € R, then af + Byg, |f| and f A1 belong to L and
I(af + Bg) = aI(f) + BI(g)-

ii) If f € L and (fy,) is a sequence of nonnegative functions in L such that
YonI(fn) converges and Y, I(fn) < I(f), then there erists x in X
such that ) fn(z) converges and ), fn(z) < f(z).

iii) There exists a function p in L with I(p) = 1.
iv) For each f in L, lim, I(f An) = I(f) and lim, I(|f| An"!) = 0.

The classical definition of an integration space in the Daniell integral theory
is almost the same as the one above, and can be found, for example, in [24],
where Daniell integrals are discussed at length. The essential difference lies
in item ii). In the standard definition, it is replaced with the continuity
condition (A):

Let (fn) be a sequence of functions in L such that f,(z) | 0 for
all z. Then I(f,) | 0.

Classically, the two are equivalent, but constructively, ii) is stronger.

We will show that the statement “(A) holds in every space C'(X) induced
by a complete separable metric space X” implies (WWKL). In fact, the
space that provides this reversal is C([0, 1]), so it may be more accurate to
say that the statement “(A) holds in L = C([0,1])” implies (WWKL). The
proof will be based on the following result [26, 32, 11]:
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Theorem A.0.3 The following assertions are equivalent over RCAg:
1. (WWKL).

2. For any covering of the closed unit interval [0, 1] by a sequence of open
intervals ((an,by) | n € N), we have Y, |by, —an| > 1.

We will show that (A) implies (2) above, or rather that —(2) — —(A).
If (2) does not hold, there exists a covering of [0, 1] by ((an,b,)) such that
Yonlbn —an| < 1.

Now consider C([0,1]) and construct a sequence of functions ( fn) that
fails (A), using the covering above. Let f, be 1 on [a; + 5n+2 ,bi — 2n+2] for
i <mn,00n/0,1]\U,<,[a:, b;] and linear everywhere else. This is an increasing
sequence of functions in C([0,1]). Furthermore, lim, f,(z) = 1 for all z,
because ((an,by)) is a covering. At the same time, u(fn) < Y., |bi — a4l
Because Y., |bp — an| < 1, if lim, u(f,) exists, it is less than 1. In other
words, fn(z) 1 1 for all z, but u(fn) /4 ©(1). This immediately implies —(A)
and so the classical definition of an integration space implies the weak-weak
Konig’s lemma.

However, this conclusion no longer holds if we replace the classical def-
inition of integration spaces with that by Bishop and Bridges. It cannot
be proved in RCAg that item ii) in Definition A.0.2 and property (A) are
equivalent.

To prove this fact, suppose (A), and let (f,,) be a sequence satisfying the
hypotheses of ii). Define a sequence (g;) such that

g = f
git1 = i — fi.

Then for each n, gn = f — ), ., fn, and the hypothesis implies that y(gn)
is decreasing and converges, but not to 0. Applying (A), we conclude that
for some z, g, (z) does not converge to 0. In other words, for some z, either
> n fu(z) does not converge at all, or it converges to something other than
f(x). But this is different from conclusion of ii), which does not allow the
first possibility.

This last argument makes it clear that Bishop and Bridges were very
careful in choosing definitions that go through constructively.
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A number of proofs in Chapter 4 used properties of derivatives of power
functions. Instead of developing a theory of differentiation, this Appendix is
intended only to convince the reader that power functions are well-defined,
and that it is legitimate to differentiate them, that basic laws of differ-
entiation hold, along with the mean value theorem and some other simple
results. These are all concepts that are usually taken for granted, but require
some effort in reverse and constructive mathematics The motivation comes
from Bishop’s work [6, 8], and, more importantly, from Schwichtenberg, who
worked out most of these issues constructively in [25]. Most technical details
of proofs will be omitted. Assume throughout that the underlying system
is RCAO

The first question to answer is: how to define the function zP? The
answer is clear for p € N, but more difficult when p is rational, and even
more so when it is an irrational number. All standard calculus and analysis
textbooks define power functions via exponentiation, i.e. P = P! for all
x > 0. This is the approach that we will also take, but prior to that we need
to justify the validity of taking these operations, that is, we need to show
that e* and Inz (when z > 0) are continuous.

Based on Lemma I1.6.5. in [26], power series give rise to continuous func-
tions, so e” can be defined as the sum of the series > ° o mn—T,L Schwichtenberg
shows in [25] that e? - ¥ = Y. He then proceeds to define Inz = [;" 1 dt,
for £ > 0. It is not obvious that this integration is permitted in RCAg. In
fact, according to Lemma IV.2.6 in [26], % can be integrated only if it has a
modulus of uniform continuity, but it is a well-known fact that this is true,
as long as we restrict ourselves to a closed interval [a, b], with a > 0.

A function obtained via integration is continuous and differentiable (def-
inition of derivatives will follow below), hence In z is continuous for all z > 0.
Furthermore, the reader can find a proof in [25] that Inz thus defined has
the usual properties and that e® and Inz are inverse to each other.
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This means that when z > 0, the function f(z) = e?!"® as a composition
of continuous functions is itself continuous ([26], Lemma I1.6.4) and we let
zP = eP®%_ Standard properties of power functions can be shown, for ex-
ample that zP1? = 27 . 27 and (zP)? = 2P? (and in particular, (z?)'/? = z).
Also, ifpeN, aP =g ---- - x.

——

There is only one prf)blem with this definition, and that is that it only
works for z > 0. However, it is possible to show that lim,_,oe?"* = 0, by
showing that Inz is negative and unbounded when z — 0 and that e® is
unbounded when x — oo. We also know that zP is a continuous function for
all z > 0, which means that there is a sequence of quintuples (as described
in Definition 1.1.4) that codes it. With some care, it can be shown that, if
we add to this sequence a countable number of conditions specifying that
0 — 0, we will obtain a code for another continuous function, the function
zP for all nonnegative numbers.

Another useful fact can be shown: suppose p is an arbitrary real number,
hence represented as the limit of a strong Cauchy sequence. Then it follows
from properties of exponents and logarithms that P = lim,, zP» when z > 0
(the fact is immediate when z = 0).

We can now define fP, when f is a nonnegative simple function. With
some effort it can be shown that if f € S(X), then f? € C(X), by showing
it has a modulus of uniform continuity.

Next we need to discuss some basic concepts regarding differentiation.
The definition of derivative is what one would expect. A function f is
differentiable at z if limj,_,q w exists. This limit, if it exists, is
f'(z). Since the goal is to formalize all this in RCAg, the rate of convergence
has to be computable. Bishop gives the following definition:

Definition B.0.4 Let f and g be continuous functions on a compact proper
interval I such that for each € there exists §(e) > 0 with

1f(y) = f(=) — g9(2)(y — 2)| < ely — =
whenever z,y € I and |y — z| < §(e).
and with it proceeds to prove the following:
Proposition B.0.5 With the notation Df = f' = %, the following hold:
1. D(fi+ fo) =Df1+ Dfs.
2. D(fif2) = Dfif2 + f1Dfo.
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3. D(f{") = —f*Dfi.
4. =1
de _
5. 4 — .
6.

(gof) = (9" N

The standard proofs of these facts are constructive: they apply almost word
for word in RCAy.

The statements about power functions that were mentioned in the main
text and require proper proofs are these:

Lemma B.0.6 (RCAg) 1. The inequality ab < % + % holds for all non-
negative real numbers a and b. (4.8.1)

2. The inequality |x — y|P < |zP — yP| holds for all x and y. (4.3.2)

3. The inequality |xP — yP| < p|(z — y)(zP~! + yP~1)| is true for all real
xz andy. (4.3.2)

4. For all z,y € RY, and g > p, y9/? > gw%(y —z)+ 9P, (4.8.8)
To prove Lemma B.0.6, a number of facts are needed.

Proposition B.0.7 The function f(x) = zP is differentiable for all real
numbers p and f'(z) = pxP~ L.

Proof. If p is a natural number, this is proved by induction, using the product
rule. The base case is item 4. in Proposition B.0.5. If p is rational, the result
is provided by the chain rule. Finally, if p is an arbitrary real number,

(.’,Cp), — (eplnz)l — 1_) epln.z‘ — pxp—l,
x
by another application of the chain rule and by properties of exponents and
logarithms. O
Proposition B.0.8 The function f(x) = xP is convex for all p > 1, that

is, it is above its tangent line at every point.

Proof. The standard proof that if f” > 0, then f is convex, applies. It is
easy to see that when p > 1, (zP)" =p(p — 1) zP~2 > 0. O
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Proposition B.0.9 The mean value theorem for x*: for every x and y

) a_ya _1
there is a & between them such that mz_z = al% .

Proof. The general form of the mean value theorem was proved by Hardin
and Velleman in [17]. The proof of this theorem in RCAj is not at all obvious.
O

Proposition B.0.10 If f is differentiable at x and f'(z) > 0, then f is
increasing in some neighborhood of x; if f'(z) < 0, f is decreasing; con-
sequently, if f'(zo) = 0, f'(x) < O (resp. f'(z) > 0) for all z < xy and
f'(z) >0 (resp. f'(z) <0) for all z > xo, then f(zo) is the absolute mini-
mum (resp. absolute mazimum) of f.

Proof. If f'(z) > 0, then based on properties of limits and continuous func-
tions, there is some neighborhood of z for which w > (. This means
that for y < z in that neighborhood, f(z) > f(y) and for y > z, f(z) < f(y)
as required. Other facts are shown similarly. O

We can now outline the proof of Proposition B.0.6:
Proof.

1. The proof consists of finding the maximum of the function b — ab —

% — %. Since f'(z) = a — %', and f'(z) > 0 when z > aP/9, while
1

f'(z) < 0 when z > a?/9, the maximum is attained when z = aa-1 =

a?/? and is equal to a!*tP/7 — %” — % = 0. Therefore, ab < %p + %.

2. Let £ > y > 0 and divide the entire inequality by zP. Then it suffices
to show (1 —¢)? < (1 —¢P) for 0 < ¢ < 1. As in the previous item,
we consider the derivative. In this case, f(t) = (1 —¢)? — 1 + ¢, while
i) = —p(1 —t)P L+t 1 so f/(t) > 0 when ¢t < 3 and f'(t) < 0
when ¢t > % Clearly, the minimum of the function on the interval is
attained at ¢ = 0 or ¢t = 1. Since f(0) = f(1) = 0, f(¢) > 0 which
implies the original claim.

3. This inequality is proved using the mean value theorem. If z,y > 0,
(at least one is nonzero, otherwise the claim is trivial),
ZP — P

=pPt < p(aPt P,
T —y

4. Let f(z) = z9/P. Then the inequality can be written as W >

f'(x), which is true since f is a convex function, as % > 1. O
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