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Abstract

This thesis describes the results of a collaborative effort to formal-
ize the proof of the central limit theorem of probability theory. That
project was carried out in the Isabelle proof assistant, and builds upon
and extends the libraries for mathematical analysis, in particular measure-
theoretic probability theory. The formalization introduces the notion of
weak convergence (or convergence in distribution) required to state the
central limit theorem, and uses characteristic functions (Fourier trans-
forms) to demonstrate convergence to the standard normal distribution
under the hypotheses of the central limit theorem. Supporting such rea-
soning motivated significant changes to the measure-theoretic integration
libraries of Isabelle.
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1 Introduction

Consider a toss of a fair coin. If we treat a result of tails as having value zero and
a result of heads as having value one, we may treat the coin toss as a random
variable, say X.1 Thus X is supported on {0, 1}, and

P(X = 0) = P(X = 1) =
1

2
.

Hence the expected value of X is

E(X) = 0 · P(X = 0) + 1 · P(X = 1) =
1

2
.

Now suppose we toss the coin repeatedly, thus generating an infinite sequence
〈Xn | n ∈ N〉 of random variables which are pairwise independent and have
the same distribution as X. By the strong law of large numbers, the mean
Xn = 1

n

∑
i≤nXi converges almost surely to E(X) = 1

2 . But clearly after a

finite number of trials there is a nonzero probability that the value of Xn will
differ from E(X). In fact, for n odd the probability of deviation is 1, because in
that case it is impossible for 1

n

∑
i≤nXi to have the value 1

2 at any element of

the sample space. Nevertheless |Xn − E(X)| must converge to zero, and so the
probability of large deviations of the mean Xn from the expected value E(X) is
small. Exactly how small is made precise by De Moivre’s central limit theorem.

In 1733 De Moivre privately circulated a proof2 which, in modern terminol-
ogy, shows that n−1/2Xn converges to a normal distribution. This material was
later published in the 1738 second edition of his book The Doctrine of Chances,
the first edition of which was first published in 1712 and is widely regarded as
the first textbook on probability theory. De Moivre also considered the case of
what we might call a biased coin (an event which has value one with probability
p and zero with probability 1 − p, for some p ∈ (0, 1)), and realized that his
convergence theorem continues to hold in that case.

De Moivre’s result was generalized by Laplace in the period between about
1776 and 1812 to sums of random variables with various other distributions.
For example, in 1776 Laplace proved that n−1/2Xn converges to a normal dis-
tribution in the case where the Xn’s are uniformly distributed. The particular
problem Laplace considered in that paper was finding the distribution of the
average inclination of a random sample of comets, the distribution for a single
comet being assumed uniform between 0◦ and 90◦. Over the next three decades
Laplace developed the conceptual and analytical tools to extend this conver-
gence theorem to sums of independent identically distributed random variables
with ever more general distributions, and this work culminated in his trea-
tise Théorie analytique des probabilités. This included the development of the

1An intuitive understanding of probabilistic language suffices for the present section; more
precise definitions for many concepts will be discussed in section 2.

2This historical information is drawn from [9], and references to original works may be
found there.
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method of characteristic functions to study the convergence of sums of random
variables, a move which firmly established the usefulness of analytic methods in
probability theory (in particular Fourier analysis, the characteristic function of
a random variable being exactly the Fourier transform of that variable).

Laplace’s theorem, which later became known as the central limit theorem (a
designation due to Pólya and stemming from its importance both in the theory
and applications of probability), states in modern terms that the normalized
sum of a sequence of independent and identically distributed random variables
with finite, nonzero variance converges to a normal distribution. All of this
imprecise language will be made precise later on. In the work of Laplace all the
main ingredients of the proof of the central limit theorem are present, though
of course the theorem was refined and extended as probability underwent the
radical changes necessitated by its move to measure-theoretic foundations in the
first half of the twentieth century.

Gauss was one of the first to recognize the importance of the normal dis-
tribution to the estimation of measurement errors, and it is notable that the
usefulness of the normal distribution in this context is largely a consequence
of the central limit theorem, for errors occurring in practice are frequently the
result of many independent factors which sum to an overall error in a way which
can be regarded as approximated by a sum of independent and identically dis-
tributed random variables. The normal distribution also arose with surprising
frequency in a wide variety of empirical contexts: from the heights of men and
women to the velocities of molecules in a gas. This gave the central limit the-
orem the character of a natural law, as seen in the following poetic quote from
Sir Francis Galton in 1889 [10]:

I know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the “Law of Frequency
of Error.” The law would have been personified by the Greeks and
deified, if they had known of it. It reigns with serenity and in com-
plete self-effacement, amidst the wildest confusion. The huger the
mob, and the greater the apparent anarchy, the more perfect is its
sway. It is the supreme law of Unreason. Whenever a large sample
of chaotic elements are taken in hand and marshaled in the order of
their magnitude, an unsuspected and most beautiful form of regu-
larity proves to have been latent all along.

Many more details on the history of the central limit theorem and its proof can
be found in [9].

Standards of rigour have evolved a great deal over the course of the history
of the central limit theorem, and around the turn of the twentieth century
a completely precise notion of proof, developed by Frege, Russell, and many
others, finally became available to mathematicians. Actually writing proofs
which conform to the precise requirements of this notion did not become the
new norm of mathematical practice, however, largely because it is impractical
for human mathematicians to work at that level of formal detail. The burden of
writing an entirely precise proof in first-order logic (say) simply does not offer
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sufficient gain for a human mathematician to undertake it. However, advances
in automated computing technology around the middle of the twentieth century
quickly progressed to the point where a computer could be programmed to take
on the cumbersome burden of verifying all the details of a proof which a human
outlined at a high level. This is the domain of interactive theorem proving.

One significant mathematical result to be verified using an interactive proof
assistant was the prime number theorem, formalized between 2003 and 2004 at
Carnegie Mellon University by Jeremy Avigad, Kevin Donnelly, David Gray,
and Paul Raff. Thoughts on that formalization, which was carried out with the
Isabelle proof assistant, are recorded in [2]. Though the prime number theorem
is traditionally considered a landmark result of analytic number theory, it should
be noted that the proof formalized by Avigad and collaborators did not employ
complex analysis, but was rather the elementary proof of Selberg [24], using
results and methods due to Erdős. Thus the proof of the prime number theorem
demonstrated that significant mathematical results could be formalized quite
effectively in Isabelle, but did not provide a test of the usefullness of Isabelle
for formalizing results based on deep theory. In 2009 John Harrison published
a formalization of an analytic proof of the prime number theorem [16].

When the author approached Avigad seeking a research project, Avigad saw
an opportunity to carry out in Isabelle a formalization relying on deep analytical
theory, and suggested that the author help develop Isabelle’s integration libraries
by choosing an interesting result to formalize. The author’s choice was the
central limit theorem, often abbreviated CLT.

A theorem which both played a fundamental role in the development of mod-
ern probability theory and has far-reaching applications seemed to us a perfect
candidate for formalization, especially because the measure-theoretic libraries
of Isabelle are still under active development and we saw an opportunity to
contribute to them by formalizing the characteristic function arguments used to
prove the CLT. The formalization was completed between 2011 and 2013, and
improvements to the proof scripts are ongoing. The formalization was a joint ef-
fort between Jeremy Avigad, Johannes Hölzl (Technische Universität München),
and the author. A preliminary report [3] was written by all three collaborators
and presented at the Vienna Summer of Logic by Hölzl. All the proof scripts
from our formalization which have not yet been moved into Isabelle’s libraries
are found at https://github.com/avigad/isabelle.

The fact that our effort to formalize the central limit theorem succeeded
in a few months of dedicated formalization effort (interspersed among longer
stretches of slower progress) testifies to the maturity of the analysis and measure
theory libraries in Isabelle, though of course much remains to be added and many
improvements are possible.

Here is the result we verified in Isabelle:

theorem ( in prob_space) central_limit_theorem:

fixes
X :: "nat ⇒ ’a ⇒ real" and
µ :: "real measure" and
σ :: real and
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S :: "nat ⇒ ’a ⇒ real"

assumes
X_indep: "indep_vars (λi. borel) X UNIV" and
X_integrable: "

∧
n. integrable M (X n)" and

X_mean_0: "
∧
n. expectation (X n) = 0" and

σ_pos: "σ > 0" and
X_square_integrable: "

∧
n. integrable M (λx. (X n x)2)" and

X_variance: "
∧
n. variance (X n) = σ2" and

X_distrib: "
∧
n. distr M borel (X n) = µ"

defines
"S n ≡ λx.

∑
i<n. X i x"

shows
"weak_conv_m (λn. distr M borel (λx. S n x / sqrt (n * σ2)))

(density lborel std_normal_density)"

At the time of writing the full proof document is 4499 lines, which is 98 pages
after processing with Isabelle’s LATEX facilities. This excludes a large amount
of library development which has already been moved to HOL-Probability,
but is still dramatically shorter than the proof of the prime number theorem,
which excluding previously developed library material and a proof of the law of
quadratic reciprocity was still in the neighborhood of 500 pages, or 22,300 lines
([2], p. 8). The fact that the relatively deep measure-theoretic proof of the
central limit theorem can be successfully formalized with such comparatively
little library augmentation testifies to the maturity of the analysis libraries in
Isabelle.

2 Probabilistic Prelimilaries

Readers familiar with the basics of measure-theoretic probability theory may
wish to skip to the next section, though this section still serves to establish
notation. Readers lacking this background will find a brief introduction here,
just sufficient to give an idea of what concepts are behind the proof of the
central limit theorem in the next section. Those who wish to learn the measure-
theoretic foundations of probability theory should consult a standard work on
the subject, such as [6].

2.1 Measure Spaces

We begin with an explication of the idea of a measure. It is intuitively obvious
that some sets of points have a definite “size:” A line segment has a length, a
circle has an area, a cone has a volume, etc. The notion of a measure is intended
to make precise this intuitive notion of the “size” of a set. We shall see later
how probabilities are interpreted in terms of measures.

Definition 2.1. Let X be a set, and Σ ⊆ X be a collection of subsets of X
which contains ∅ and is closed under complements and countable unions (from
which it immediately follows that X ∈ Σ and that Σ is closed under countable
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intersections). A measure on Σ (often simply called a measure on X when the
intended collection Σ is clear from the context) is a function µ : Σ→ [0,∞] with
the property that µ(∅) = 0 and which is countably additive, which means that
for every pairwise disjoint collection {An | n ∈ N} of elements of Σ,

µ

( ∞⋃
n=0

An

)
=

∞∑
n=0

µ(An).

For A ∈ Σ as in the definition, the value µ(A) is called the measure of A
and corresponds to the intuitive notions of size, length, area, volume, etc. Note
that the measure of a set may be infinite; indeed, if µ is a measure on R such
that µ(n, n + 1] = 1 for n ∈ N (as should be the case if µ measures the length
of intervals), it is immediate from the definition of a measure that µ(R) =∞.

A collection Σ of subsets of a set X satisfying the hypothesis in the above def-
inition (i.e. containing ∅ and closed under complements and countable unions)
is called a σ-algebra. The elements of Σ are called the measurable sets, and a set
with an associated σ-algebra but no associated measure is called a measurable
space.

One might ask why a measure should not determine a size for every subset of
X; one important reason is that there is no translation-invariant measure µ on
R which assigns intervals the expected length (i.e. µ[a, b] = b− a for a < b) and
is defined for all subsets of R. A measure µ on R is called translation-invariant
iff for every measurable A ⊆ R and every x ∈ R, µ(A+x) = µ(A), where A+x,
the translate of A by x, is {a+ x | a ∈ A}.

Suppose now for contradiction that µ is a translation-invariant measure on R
which measures all subsets of R (so the measurable space on which µ is defined
is (R,P(R)), where P(R) is the powerset of R) and satisfies µ[a, b] = b − a
for a < b. Consider the equivalence relation ∼ on R defined by x ∼ y iff
|x−y| ∈ Q. Because the rationals are dense in R it is clear that each equivalence
class contains an element of the closed unit interval. Using the axiom of choice,
select one element of the intersection of each equivalence class with [0, 1] (this use
of the axiom of choice is essential; there are models of set theory in which there
exists a translation-invariant measure λ defined for all subsets of R and assigning
to intervals the expected length). Denote this collection by V = {rα | α ∈ I},
where I is some index set. Enumerate the rationals in [−1, 1] as {qn | n ∈ N},
and for each n define Vn = V + qn. Since µ is translation-invariant, all elements
of the collection {Vn | n ∈ N} receive the same measure. Let E =

⋃
n∈N Vn; it

is clear from the definition of the Vn’s that [0, 1] ⊆ E ⊆ [−1, 2]. Furthermore,
it is an immediate consequence of countable (in this case finite) additivity that
for any measure ν on any space, if A and B are measurable and A ⊆ B, then
ν(A) ≤ ν(B) (note B = A ∪ (B \A) and this union is disjoint). Hence because
µ assigns intervals their expected length, we have 1 ≤ µ(E) ≤ 3. However, by
countable additivity

µ(E) = µ

( ∞⋃
n=0

Vn

)
=

∞∑
n=0

µ(Vn).
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Since µ(Vn) is the same for all n, the sum on the right is infinite if it is
not zero, and we have obtained a contradiction. This counterexample is due to
Vitali [26].

The standard solution to the nonexistence problem noted in the preceding
paragraph is to restrict which sets are assigned measures—hence the σ-algebra
Σ in the definition of a measure. This allows “bad” sets such as V from the
counterexample to be excluded from receiving a measure, and is essential to a
useful theory of measure.

Since measures extend the notion of length of intervals, it is natural to
suppose that all intervals should be measurable (let us say open intervals, for
definiteness). If all open intervals are measurable, then all sets in the σ-algebra
generated by the open intervals—the intersection of all σ-algebrae containing
all the open intervals, an object which is easily verified to be a σ-algebra—must
also be meaurable. The σ-algebra generated by all open intervals in R is called
the Borel σ-algebra on R, and more generally for any topological space the
associated Borel σ-algebra is the σ-algebra generated by the open sets. Most
measures encountered in our formalization are Borel measures, that is, measures
defined on the Borel σ-algebra.

A note regarding limits: For a sequence 〈an | n ∈ N〉 of real numbers or
real-valued functions, the notation an → a is used to indicate the sequence
converges (in a sense which should be clear from the context) to the limit a.
an ↑ a and an ↓ a indicate the convergence is monotone in the obvious direction.
For 〈An | n ∈ N〉, An ↑ A indicates

⋃
n∈NAn = A and An ⊆ An+1 for each n,

while An ↓ A indicates
⋂
n∈NAn = A and An+1 ⊆ An for each n. It is an

easy consequence of countable additivity that if each An and A are measurable
subsets of some measure space (X,Σ, µ) and An ↑ A, then µ(An) ↑ µ(A), and
similarly if An ↓ A then µ(An) ↓ A. These are called the upward and downward
continuity of the measure µ, respectively.

There is a unique Borel measure λ on R, called Lebesgue measure, which
assigns to each interval the expected length: λ[a, b] = b − a for a < b. As
expected, this measure has the property that λ{x} = 0 for any single real x:
Note that [x− 1/n, x+ 1/n] ↓ {x}, and so λ{x} = limn→∞ 2/n = 0. A set with
measure zero is called null. In general, if µ is a measure on a measurable space
(X,Σ), x ∈ X, and µ{x} = 0, x is called a continuity point of µ. It is possible
in general for there to be singletons of positive measure; if µ{x} > 0, x is called
an atom of µ. A measure is called continuous just in case it has no atoms.

How does all this talk of measures relate to probability? Well, in probability
theory, one wishes to assign probabilities to events. The probability that a
fair coin turns up heads should be 1

2 , the probability that a randomly selected
element of the unit interval [0, 1] is between 1

3 and 2
3 should be 1

3 , etc. How can
these events be modelled formally? Let Ω be the set of all possible states of the
world (or simply the set of all possible worlds, if one is of a philosophical bent);
an event is simply a collection of such states (namely the collection where the
event occurs). Thus for the toss of a fair coin we may take Ω = {H,T}, where H
is a world where the coin turns up heads, and T a world where it turns up tails.
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The event that the coin turns up heads is simply {H}. Similarly, for randomly
selecting an element of the unit interval we may take Ω = [0, 1], ω ∈ Ω being a
world where the selected element is ω. The event that the selected number is
between 1

3 and 2
3 is then simply ( 1

3 ,
2
3 ). The space Ω is called the sample space

in probability theory.
It is intuitively clear that the probability of the impossible event ∅ is zero,

and that the probability of a union of disjoint events should be the sum of their
probabilities. It is therefore reasonable to suppose probability determines a
measure, P, on some collection of events (which we might consider “observable”).
Vacuously ∅ is observable, and it is clear that if an event E is observable then
so should be its complement, and that if events {En | n ∈ N} are observable
then so should be their union. Thus the collection of observable events should
be a σ-algebra. It should be noted that in probability theory, the term “event”
is generally reserved for what we have termed “observable event,” and we shall
follow this convention in the sequel.

Measures determined by probabilities of events are naturally called probabil-
ity measures. An important feature of such measures, and indeed the sole crite-
rion in the mathematical definition of a probability measure, is that P(X) = 1.
Probabilities cannot be arbitrarily large, and it is assumed to be certain that
something in the sample space is the true state of the world (so the sample
space is exhaustive). A measure µ is called finite iff µ(X) <∞, and modulo the
zero measure the theory of finite measures is the same as the theory of proba-
bility measures (any nonzero finite measure µ can be scaled by 1

µ(X) to obtain

a probability measure).

2.2 Independent Events

Consider now tossing two coins successively. It is intuitively clear that the out-
come of the first toss does not influence in any way the outcome of the second.
Taking the sample space as Ω = {HH,HT, TH, TT} and assigning each single-
ton event (e.g. {HH}, the event that both tosses come up heads) equal proba-
bility (so 1/4), the event that the first coin comes up heads is E1 = {HH,HT},
while the event that the second comes up heads is E2 = {HH,TH}. Note that
P(E1) = P(E2) = 1/2, and P(E1 ∩ E2) = P({HH}) = 1/4 = P(E1)P(E2). It
turns out that this multiplicative rule for computing probabilities of intersec-
tions is a useful formal explication of the intuitive notion of independence (this
can be explained in terms of conditional probabilities; we refer the reader to
any elementary account of probability).

Definition 2.2. Let (Ω,F ,P) be a probability space, and E1, E2 ∈ F . E1 and
E2 are independent (written E1 ⊥⊥ E2) iff P(E1 ∩ E2) = P(E1)P(E2).

For a larger collection E1, . . . , En of events, we want independence to entail

P

(
n⋂
i=1

Ei

)
=

n∏
i=1

P(Ei).
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Pairwise independence is too weak for this—in tossing a coin twice, the events
{HH,HT}, {HH,TH}, and {HT, TH} are pairwise independent each with
probability 1/2, but their intersection is impossible (empty), and does not have
probability 1/8. We instead use

Definition 2.3. Events E1, . . . , En are independent iff

P

(
n⋂
i=1

Ei

)
=

n∏
i=1

P(Ei).

This does not generalize directly to an infinite collection of events; the defi-
nition employed in that case is

Definition 2.4. A collection E ⊆ F of events is independent iff every finite
subcollection {E1, . . . , En} ⊆ E is independent.

We spoke earlier of the σ-algebra of events being the collection of “observ-
able” events, and indeed σ-algebrae are useful for keeping track of information
acquired by observation. Roughly, obtaining information about the state of the
world can make more events observable. For example, if a coin is flipped twice
but the result of the second flip is hidden, the states HH, HT and the states
TH, TT are indistinguishable, and a reasonable σ-algebra of observable events
is F = {∅, {HH,HT}, {TH, TT}, {HH,HT, TH, TT}}. If, however, the result
of the second flip is revealed, singleton events such as {HH} become observable,
and the σ-algebra of observable events should accordingly be expanded to the
full powerset of the sample space {HH,HT, TH, TT}.

If observations are independent, the refined σ-algebrae they give rise to
should also be independent; this is made precise by extending the notion of
independence to σ-algebrae:

Definition 2.5. A collection {Fα | α ∈ I} of σ-algebrae (I an index set of
arbitrary cardinality) is independent iff for each choice of precisely one set Eα
from each σ-algebra Fα, the collection {Eα | α ∈ I} of events is independent.

For F , G σ-algebrae, the notation F ⊥⊥ G means of course that F and G are
independent.

2.3 Random Variables

Often one wishes to talk about real-valued statistics associated to sample points
rather than the sample points themselves; examples include the waiting time
for a train, the length of a manufactured screw, or the average height of the
Danish population. These can be thought of as functions from the sample space
Ω to the real line R (or perhaps the extended reals [−∞,∞]; the bus may never
arrive). In order to be accessible to probability theory, the “interesting” events
associated with such statistics should be measurable; in particular, for X such a
statistic and a < b, the preimage X−1[(a, b)] = {ω ∈ Ω: a < X(ω) < b} should
be measurable. This is handled by the notion of a measurable function:
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Definition 2.6. Let (X1,Σ1), (X2,Σ2) be measurable spaces. A function
f : X1 → X2 is measurable (with respect to (Σ1,Σ2)) iff for every E ∈ Σ2,
f−1[E] ∈ Σ1.

Note the similarity to the definition of continuity from topology. For (Ω,F ,P)
a probability space, a random variable is simply a measurable function
X : Ω → R, where R is assumed to be equipped with the σ-algebra of Borel
sets (sometimes the codomain is taken instead as [−∞,∞]). This makes pre-
cise the notion of a probabilistically accessible real-valued statistic on a sample
space.

It should be noted that when talking about probabilities and events in the
context of random variables, evaluation is often left implicit. For example
P(X > 0) is an abusive notation for P{ω ∈ Ω | X(ω) > 0}.

A random variable X induces a probability measure µX on the real line
via µX(A) = P(X ∈ A); in this case we say X is distributed as µX and write
X ∼ µX .

Events can be viewed as random variables via their indicator functions
(called characteristic functions outside probability, the term characteristic func-
tion in probability denoting a Fourier transform). In general, for A ⊆ X, the
indicator function 1A is the function which has value one at elements of A and
zero elsewhere. In case A is a measurable set in a probability space, the indicator
function of A is a random variable.

Random variables make precise the notion of an “observation” alluded to
while discussing independence of σ-algebrae in the preceding section: one can
observe the clock while waiting for the train to arrive, or measure the average
height of a random sample drawn from the Danish population, etc. The amount
of information that knowing the value of a random variable makes available is
determined by the σ-algebra generated by the random variable, which we now
define.

Definition 2.7. Let X be a random variable defined on a probability space
(Ω,F ,P). The σ-algebra generated by X, σ(X), is the σ-algebra generated by
the collection of preimages of Borel sets (or equivalently open intervals) under
X, i.e. {X−1[A] | A ∈ B}, where B is the collection of Borel subsets of R.

Note that σ(X) is a σ-algebra on the real line.
Now we can define the notion of independence for random variables:

Definition 2.8. A collection {Xα | α ∈ I} of random variables on a probability
space (Ω,F ,P) (I an index set of arbitrary cardinality) is independent iff the
collection {σ(Xα) | α ∈ I} is independent.

Thus random variables X, Y are independent (written X ⊥⊥ Y ) iff the infor-
mation obtained by learning each of their values is independent.

2.4 Integration

Frequently in applications of probability one is interested in the average value
of a random variable, called its expected value. In computing this average,
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sample points are weighted by their probabilities. For example, if a weighted
coin turns up heads with probability 2/3 and tails with probability 1/3, and we
bet a dollar that it will come up heads (and so gain one dollar if it does and
lose one dollar if it doesn’t), our expected gain is (2/3)1 + (1/3)(−1) = 1/3.
For a continuous random variable X (such as the waiting time for a train or
the length of a screw), this weighted sum takes the form of a weighted integral,
called the integral with respect to a probability measure µ (the measure on the
domain of the random variable) and denoted

∫
X dµ. This integral is over the

entire space; sometimes one wishes to take an integral over a subset A of the
space (effectively regarding the random variable X as zero outside A); this is∫
A
X dµ =

∫
X1A dµ.

Taking such weighted integrals is by no means limited to random variables;
if (X,Σ, µ) is any measure space and f : X → R, we may consider

∫
f dµ,

and
∫
A
f dµ for any A ⊆ X. This general integral with respect to a measure

is called the Lebesgue integral; it simultaneously generalizes weighted discrete
sums, Riemann integrals, and much more.

Note that the integral of a function may fail to exist; for example, the in-
tegral3

∫
[0,∞)

xλ(dx) is infinite (which may be regarded as having value ∞ or

being undefined, depending on context), while the integral
∫
xλ(dx) does not

exist. Functions f for which
∫
f dµ <∞ (which implicitly assumes this integral

exists) are called µ-integrable, or simply integrable if the measure is clear from
the context.

For a full account of Lebesgue integration see [6]. Here we shall briefly outline
some properties of integration which will be used later.First, the integral is linear
in full generality: ∫

(cf + g) dµ = c

∫
f dµ+

∫
g dµ

for any integrable f, g : X → R and any c ∈ R. Second, the monotone conver-
gence theorem holds: If 〈fn | n ∈ N〉 are measurable functions, fn : X → [0,∞]
and fn ≤ fn+1 for each n, then the pointwise limit f is measurable, and fur-
thermore ∫

fn dµ ↑
∫
f dµ.

Here, the value ∞ is allowed for the integrals. Finally, the dominated con-
vergence theorem holds: If

∫
g dµ < ∞, and 〈fn | n ∈ N〉 is a sequence of

measurable functions fn : X → R, and |fn| ≤ g for each n, then the pointwise
limit f is integrable, and furthermore∫

fn dµ→
∫
fdµ.

In the special case where g is a constant (
∫
g dµ exists in this case if its domain

is a finite measure space, such as a probability space), this result is called the
bounded convergence theorem.

3Note that for f : X → R and (X,Σ, µ) a measure space,
∫
f(x)µ(dx) denotes the integral

of f with respect to µ.
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ForX a random variable defined on a probability space (Ω,F ,P), the integral∫
X dP is called the expected value, expectation, or mean of X and denoted E(X),

while E((X − E(X))2) is called the variance of X. The mean is the “center of
mass” of the distribution of X, while its variance indicates how “spread out”
the mass of its distribution is.

2.5 Normal Distributions

As mentioned in the introduction, the familiar bell-shaped curve of the normal
distribution was discovered to arise frequently in empirical investigations in-
volving errors or deviance from the mean, and the central limit theorem largely
explains this frequent appearance. To proceed further with reasoning about
the central limit theorem, it will of course be necessary to define precisely what
such a distribution is. For this we need the notion of the density of a probability
measure.

Definition 2.9. Let f : R→ R be a function. A Borel measure µ on R is said
to have density f (with respect to Lebesgue measure λ) iff for every Borel set
A, µ(A) =

∫
A
f dλ.

Not all measures have densities; it is straightforward to verify that a prob-
ability measure such that µ{0} = 1—a unit mass at zero—has no density.
However, normal distributions do have densities, and are most conveniently
described in terms of those densities.

Definition 2.10. Let µ ∈ R, σ > 0. The normal distribution with mean µ and
variance σ2, denoted Nµ,σ2 , is the Borel measure with density

1

σ
√

2π
e−

(x−µ)2

2σ2 .

The reason for labelling the variance of a normal distribution with σ2 is
that σ, the square root of the variance, is a quantity of importance in statistics,
called the standard deviation. In general, the square root of the variance of
a distribution is called its standard deviation, but that quantity will not be
of importance to us. Variance is a more convenient quantity for our purposes,
because the variance of the sum of two independent random variables is the sum
of their variances.

The normal distributionN0,1 is called the standard normal distribution. Note

that for any normal distribution Nµ,σ2 ,
Nµ,σ2−µ

σ2 is a standard normal distribu-
tion. In general, any random variable with finite mean and finite, nonzero
variance can be “normalized” to a random variable with mean zero and unit
variance by subtracting the mean and dividing by the variance; this will be of
importance for ensuring convergence to a standard normal distribution in the
central limit theorem.
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2.6 Convergence of Random Variables

Especially in the context of the central limit theorem, one is interested in the
convergence of a sequence 〈Xn | n ∈ N〉 of random variables to a given random
variable X. Pointwise convergence is generally uninteresting because it often
fails on a negligible set of sample points (negligible in the sense that it has
measure zero, and so may be safely ignored for most purposes in probability
theory); the notion of convergence almost surely (pointwise convergence except
on a set of measure zero; called convergence almost everywhere in general prob-
ability theory) fixes this problem, but is still a very strong condition. A weaker
condition is that for every ε > 0 limn→∞ P(|Xn −X| > ε) = 0. Intuitively, this
says that the sequence 〈Xn | n ∈ N〉 eventually becomes very close to X outside
a very small (though not necessarily measure zero) set. However, this notion
of convergence, called convergence in probability (convergence in measure in
general measure theory) is still too strong for the central limit theorem.

For the convergence of the central limit theorem, we want to say that the
distribution of the normalized sum of independent random variables with finite,
nonzero variance “resembles more and more” the standard normal distribution.
This is made precise by the notion of convergence in distribution, or weak con-
vergence (weak* convergence in the sense of functional analysis), which will be
defined and discussed in the course of our treatment of the formalization of the
CLT. Weak convergence of a sequence 〈Xn | n ∈ N〉 of random variables to a
weak limit X is denoted Xn ⇒ X, and this makes sense also for the distributions
of the random variables (µn ⇒ µ, where Xn ∼ µn and X ∼ µ).

2.7 Convolutions and Characteristic Functions

Definition 2.11. Let µ, ν be Borel measures on R. The convolution µ ∗ ν is
defined by

(µ ∗ ν)(B) =

∫
ν(B − x)µ(dx),

where B ⊆ R is a Borel set and B−x = {y − x | y ∈ B} (which is easily verified
to also be a Borel set).

It turns out that the distribution of the sum of two independent random
variables is the convolution of their distributions. More precisely, if X and Y
are random variables on a probability space (Ω,F ,P) and X ∼ µ and Y ∼ ν,
then for any Borel set B ⊆ R, P(X+Y ∈ B) = (µ∗ν)(B). If µ, ν have densities
f , g, respectively, then µ ∗ ν has density f ∗ g, the convolution of the functions
f and g, which is defined by

(f ∗ g)(x) =

∫
g(x− t)f(t) dt.

For proofs of these remarks and more information about convolutions, see [6] or
any standard treatment of measure theory.
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The notion of a Fourier transform is central to harmonic analysis (see [20]
or any standard text on the subject); the Fourier transform µ̂ of a measure µ
on R with the Borel σ-algebra is given by

µ̂(x) =

∫
eitx µ(dt).

In case µ has density f , µ̂ is also denoted f̂ and called the Fourier transform of
f . Note that

f̂(x) =

∫
eixf(t) dt.

In a probabilistic context, the Fourier transform of a random variable or distri-
bution is called its characteristic function; these will be discussed in more detail
in section 5.5.

The importance of characteristic functions for the proof of the CLT is largely
the fact that weak convergence of a sequence of random variables (or distribu-
tions) is equivalent to pointwise convergence of their characteristic functions;
this is very useful because pointwise convergence is much easier to work with
analytically. Also, for any measures µ, ν on R with the Borel σ-algebra, the
Fourier transform of µ ∗ ν is simply µ̂ν̂, the pointwise product of µ̂ and ν̂. Thus
if X, Y are independent random variables with characteristic functions ϕ, ψ,
respectively, the characteristic function of X + Y is simply ϕψ. This is helpful
because pointwise products are in general much easier to work with than convo-
lutions. In particular, the n-fold convolution which would arise when computing
the distribution of a sum of n independent identically distributed random vari-
ables (as occurs in the statement of the central limit theorem) is replaced by the
nth power of their characteristic functions, a much more approachable object.
All this will be discussed more thoroghly in section 5.5.

3 Summary of the Proof

Before finally diving into the details of the formalization, we pause to give a
quick overview of how the proof will succeed. Our model proof for the central
limit theorem was that found in Billingsley’s classic text Probability and Measure
[6], and we refer the reader seeking additional details to that excellent work.

As noted in the preliminaries, if X and Y are independent random variables
with distributions µ and ν, respectively, the distribution of their sum is the
convolution of their distributions: X + Y ∼ µ ∗ ν. Thus if 〈Xk | k ≤ n〉 is
a sequence of independent random variables all with distribution µ, the sum∑
k≤nXk is distributed as the n-fold convolution of µ with itself. However,

this n-fold convolution is a technically inconvenient object to work with, and
to study the asymptotic distribution of

∑
k≤nXk as n→∞, it turns out to be

technically advantageous to take Fourier transforms of the random variables, or
to put this in probabilistic language, to study their characteristic functions. The
advantage of this method of characteristic functions is twofold: first, if X and Y
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are independent then the characteristic function of X+Y is simply the product
of the characteristic function of X and that of Y ; and secondly, a sequence
〈Xn | n ∈ N〉 converges in distribution to a random variable X if and only if the
corresponding characteristic functions converge pointwise. This is a significant
advantage because products are far easier to work with than convolutions, as
is pointwise convergence easier than convergence in distribution. This shift of
focus from random variables to their characteristic functions is justified by the
Lévy inversion theorem, which entails that two random variables with the same
characteristic function have the same distribution.

We can now express the idea of the proof of the central limit theorem: The
characteristic function of the average of n independent identically distributed
random variables with unit variance is shown to converge pointwise to the char-
acteristic function of the standard normal distribution. The general result for
averages of variables with finite nonzero variance can then be deduced by nor-
malizing general variables to have zero mean and unit variance. Proving the
case of zero mean and unit variance is reasonably straightforward, though it re-
quires several delicate estimates based on Taylor series and complex variables,
all of which require rather tedious formalization. The bulk of the work in our
formalization, however, was in supporting the use of characteristic functions to
study the distributions of sums of independent random variables, by proving
the Lévy inversion and continuity theorems.

The Lévy inversion theorem is the result which justifies using characteris-
tic functions to study probability distributions, for it demonstrates that if two
distributions have the same characteristic function, they are in fact the same dis-
tribution. The proof of this theorem employs something akin to kernel methods
from harmonic analysis, using the function4

Si(t) =

∫ t

0

sinx

x
dx

to “concentrate” near points of interest. This requires, among other things,
proving that limt→∞ Si(t) = π/2, which we accomplished using Fubini’s theo-
rem (see Billingsley [6], pp. 235–236) and required tedious verification of many
“obvious” facts about integrals (including the validity of integration by substi-
tution). Deriving uniqueness from the Lévy continuity theorem required using
the fact that the complement of a countable subset of R is dense in R and the
π-λ theorem from measure theory (the latter having already been formalized by
Hölzl).

Verification of the Lévy continuity theorem required proving the portman-
teau theorem, more calculations with integrals (and another use of Fubini’s
theorem), and use of the theory of tightness of sequences of probability mea-
sures. The portmanteau theorem establishes that convergence in distribution is
equivalent to various definitions of weak* convergence in the sense of functional
analysis; we verified equivalence to two such definitions, as done in Billingsley

4The notation
∫ b
a f(x) dx, familiar from calculus, denotes simply the Lebesgue integral of

f over the interval [a, b] with respect to Lebesgue measure.
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[6]. The proof of the portmanteau theorem uses Skorohod’s theorem, which
states that if a sequence 〈µn | n ∈ N〉 of probability measures converges in dis-
tribution to a probability measure µ, then there exists a sequence of random
variables 〈Xn | n ∈ N〉 and a random variable X, all defined on a common prob-
ability space, such that Xn ∼ µn, X ∼ µ, and Xn → X pointwise. The proof
of this result requires only elementary analysis.

The theory of tightness of sequences of measures gives an analogue in the
space of probability measures of the Weierstrass theorem that every bounded
sequence of reals has a convergent subsequence. Tightness is the requisite ana-
logue of boundedness: Roughly a sequence of probability measures is called
tight iff no mass “escapes to infinity.” The sequence 〈µn | n ∈ N〉, where µn is a
unit mass at n, gives an example of how mass can “escape to infinity.” The key
result regarding tightness of a sequence 〈µn | n ∈ N〉 of probability measures is
that it is equivalent to the condition that for every subsequence 〈µnk | k ∈ N〉
there exists a subsubsequence 〈µnkj | j ∈ N〉 which converges in distribution

to some probability measure. A corollary of this result is that if a sequence
〈µn | n ∈ N〉 is tight, and it can be shown that every subsequence which has a
weak limit must converge in distribution to a given probability measure µ, then
in fact µn ⇒ µ.

The proof of the main result concerning tight sequences of measures requires
the Helly selection theorem, which is of importance also in functional analy-
sis. This is another analogue of Weierstrass theorem, this time giving that if
〈Fn | n ∈ N〉 is any sequence of distribution functions5 then it has a subsequence
〈Fnk | k ∈ N〉 which converges vaguely to some nondecreasing, right-continuous
function F (which may not be a distribution function because its limit at ∞
may be less than 1). Vague convergence is defined the same way as weak con-
vergence, and differs only in not requiring that the limit function have limit 1 at
∞. The Helly selection theorem is proven using the method of diagonal subse-
quences to obtain values for the requisite function F at rationals, and extending
to all reals by right-continuity.6 The elementary analytical arguments involved
in this were straightforward but tedious to verify.

4 The Isabelle Interactive Proof Assistant

Before giving details of our formalization, we pause for a quick overview of some
relevant features of the Isabelle interactive proof assistant that we employed.
Readers familiar with this system may wish to skip to section 5, though some
of the material on axiomatic type classes and locales in section 4.2 and on the
implementation of general limits using a definition involving filters in section
4.3 may still be of interest.

5The distribution function F of a Borel probability measure µ on R is given by F (x) =
µ(−∞, x]; these functions are treated in section 5.1.

6This summary is not quite accurate, but provides reasonable intuition. The actual proof
is given in section 5.3.
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4.1 Overview of Isabelle

When the author first decided to undertake an interactive formalization project,
he knew nothing about the available proof assistants, and chose Isabelle with
Avigad’s advice. Other possibilities considered were Coq and HOL-Light, a vari-
ant of the HOL system. The Coq assistant [5] had the best support for algebraic
reasoning (in the manner of abstract algebra), and an attractive implementation
of dependent type theory (which allows types to depend on parameters, e.g. the
type of integers modulo n depends on the natural number n). However, Coq is
intended to formalize proofs in constructive logic, and constructive analysis is in
general very different from classical analysis. This could be overcome by adding
the law of the excluded middle (or something entailing it, such as the axiom of
choice) as an axiom. That solution is slightly inelegant, but the main reason for
deciding against using Coq was the fact that it had far less powerful automated
tools than our other options. HOL-Light [17] arguably had the most extensive
support for analysis (the Jordan curve theorem [15] and other significant results
had already been formalized in this system, and it was the system of choice
for the Flyspeck project [14], a now-completed effort to formalize Tom Hales’
proof of the Kepler conjecture), but its user-interface was more difficult than
that of the others (the user must directly type ML code). Isabelle had both
good analysis libraries and a good user interface, and furthermore was the sys-
tem chosen by Hölzl and collaborators for the development of measure-theory
libraries, making it a clearly optimal choice for the formalization of the central
limit theorem.

The Isabelle system was initially developed by Larry Paulson at Cambridge
University and Tobias Nipkow at Technische Universität München, and has
grown to include a large number of additional developers and library con-
tributers. Isabelle is generic in the sense that it provides a small, trusted core
reasoner (known as “Isabelle/Pure”) and allows extension in any direction over
that. It employs an LCF-style architecture [11] to ensure extensions preserve
soundness. The extension of Pure which has received the most attention by
library developers is Isabelle/HOL, where HOL stands for higher-order logic.
Our formalization was carried out in Isabelle/HOL-Probability, an extension of
the HOL main library incorporating a significant amount of measure-theoretic
probability theory.

In simple form, higher-order logic is a conservative extension of first-order
logic incorporating quantification over predicates and functions, higher-order
predicates and functions (e.g. a predicate T (R) which holds iff R is a tran-
sitive binary relation), and quantification over these. This can be augmented
by a definite description operator (THE in Isabelle), and the extension remains
conservative roughly because definite descriptions can be eliminated via Rus-
sell’s well-known interpretation [23]. The indefinite description operator SOME

included in Isabelle/HOL is a more radical departure, for its presence entails
the axiom of choice (which can be easily stated in higher-order logic), and thus
breaks conservativity of the HOL extension. However, the axiom of choice (or
at least some weak variant of it) is essential to the usual development of mathe-
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matical analysis, and so the indefinite description operator is a welcome addition
for our purposes.

One might reasonably ask why higher-order logic rather than set theory is
used as the basis of our formalization. Pragmatically, the Isabelle support for
higher-order logic is far better than that for set theory, but why is this? A
number of advantages exist, including functions as primitives, type-checking
and type inference, and the additional resources provided by the type system
for pruning the search space of automated procedures. However, all these ad-
vantages could in principle be obtained in a system based on set theory, say by
augmenting ordinary set theory with “weak types.” Further discussion of the
tradeoffs between higher-order logic and set theory in the context of automated
deduction, and possibilities for combining the two approaches, are found in [12].

We shall now briefly describe some of the Isabelle infrastructure and tools we
used while formalizing the central limit theorem. Readers seeking to gain some
working knowledge of Isabelle are advised to consult Nipkow’s tutorial introduc-
tion [21] and the wealth of resources available at
http://isabelle.in.tum.de/. A high-level overview can also be found at
that website.

We mentioned earlier that one of our reasons for choosing Isabelle was its
friendly user-interface, and this is provided by the Isar proof-scripting language
[27], developed by Markus Wenzel as part of his doctoral thesis at Technis-
che Universität München. The goal was to provide a more human-readable
paradigm for proof scripts, and we certainly agree that Wenzel achieved his goal.
The old style for proof scripts consisted in repeatedly applying tactics (using the
apply method) to refine a goal into subgoals until all these are proved. Figure
1 gives an example of a tactic-style proof from our formalization, while figure 2
gives an example of an Isar proof. These styles can also be combined, as seen
in figure 3. Clearly Isar offers a great improvement in readability, and hence in
ease of maintenance, for proof scripts.

Nevertheless, often it is easier to hack through a tactic-style proof than to
carefully structure an Isar proof, and so a significant amount of our formalization
is still written in tactic style. Most of the tactic-style proofs involve fiddly
calculations in one way or another, and we see both an opportunity to clean
up our own proof scripts (rewriting long tactic-style proofs in Isar is one of the
main goals of our continued development of the proof scripts) and to improve the
usability of Isabelle for doing fiddly calculations without resorting to a tactic-
style proof. It seems likely advances in Isar, Isabelle’s libraries, and Isabelle’s
automated tools could all benefit this latter goal.

To help the user prove theorems more efficiently, Isabelle provides support for
proof automation. The basic tools for this are the equational-reasoning simpli-
fier simp (though more functionality is being continually built into this tool), the
higher-order tableau prover auto (which uses extensive heuristic reasoning that
can be influenced by the user), and the first-order sequent prover blast, though
many variants and alternatives are available. In addition, the sledgehammer

tool [22] provides a link to an extensible suite of external provers. Proofs gener-
ated by sledgehammer tools can be inserted into Isabelle proof scripts via proof
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lemma ex_18_4_2_ubdd_integral:

fixes x

assumes pos: "0 < x"

shows "LBINT u=0..∞. |exp (-u * x) * sin x | = |sin x | / x"

apply (subst interval_integral_FTC_nonneg [where F = "λu. 1/x * (1 -

exp (-u * x)) * |sin x |"
and A = 0 and B = "abs (sin x) / x"])

apply force

apply (rule ex_18_4_2_deriv)

apply auto

apply (subst zero_ereal_def)+

apply (simp_all add: ereal_tendsto_simps)

apply (rule filterlim_mono [of _ "nhds 0" "at 0"], auto)

prefer 2

apply (rule at_le, simp)

apply (subst divide_real_def)

apply (rule tendsto_mult_left_zero)+

apply (subgoal_tac "0 = 1 - 1")

apply (erule ssubst)

apply (rule tendsto_diff, auto)

apply (subgoal_tac "1 = exp 0")

apply (erule ssubst)

apply (rule tendsto_compose[OF tendsto_exp])

apply (subst isCont_def [symmetric], auto)

apply (rule tendsto_minus_cancel, auto)

apply (rule tendsto_mult_left_zero, rule tendsto_ident_at)

apply (subst divide_real_def)+

apply (subgoal_tac "abs (sin x) * inverse x = 1 * abs (sin x) *

inverse x")

apply (erule ssubst)

apply (rule tendsto_mult)+

apply auto

apply (rule tendsto_eq_intros)

apply (rule tendsto_const)

apply (rule filterlim_compose[OF exp_at_bot])

unfolding filterlim_uminus_at_bot

apply simp

apply (subst mult.commute)

apply (rule filterlim_tendsto_pos_mult_at_top[OF tendsto_const pos

filterlim_ident])

apply simp

done

Figure 1: A tactic-style proof.
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lemma ( in pair_sigma_finite) Fubini_integrable:

fixes f :: "_ ⇒ _::{banach, second_countable_topology}"

assumes f[measurable]: "f ∈ borel_measurable (M1
⊗

M M2)"

and integ1: "integrable M1 (λx.
∫

y. norm (f (x, y)) ∂M2)"
and integ2: "AE x in M1. integrable M2 (λy. f (x, y))"

shows "integrable (M1
⊗

M M2) f"

proof (rule integrableI_bounded)

have "(
∫

+ p. norm (f p) ∂(M1
⊗

M M2)) = (
∫

+ x. (
∫

+ y. norm (f (x,

y)) ∂M2) ∂M1)"
by (simp add: M2.nn_integral_fst [symmetric])

also have " . . . = (
∫

+ x. |
∫
y. norm (f (x, y)) ∂M2 | ∂M1)"

apply (intro nn_integral_cong_AE)

using integ2

proof eventually_elim

fix x assume "integrable M2 (λy. f (x, y))"

then have f: "integrable M2 (λy. norm (f (x, y)))"

by simp

then have "(
∫

+y. ereal (norm (f (x, y))) ∂M2) = ereal (LINT y|M2.

norm (f (x, y)))"

by (rule nn_integral_eq_integral) simp

also have " . . . = ereal |LINT y|M2. norm (f (x, y)) |"
using f by (auto intro!: abs_of_nonneg[symmetric]

integral_nonneg_AE)

finally show "(
∫

+y. ereal (norm (f (x, y))) ∂M2) = ereal |LINT
y|M2. norm (f (x, y)) |" .

qed
also have " . . . < ∞"

using integ1 by (simp add: integrable_iff_bounded

integral_nonneg_AE)

finally show "(
∫

+ p. norm (f p) ∂(M1
⊗

M M2)) < ∞" .
qed fact

Figure 2: An Isar proof.
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lemma Billingsley_ex_17_5:

shows "set_integrable lborel (einterval (-∞) ∞) (λx. inverse (1 +

x^2))"

"LBINT x=-∞..∞. inverse (1 + x^2) = pi"

proof -

have 1: "
∧
x. - (pi / 2) < x =⇒ x * 2 < pi =⇒ (tan

has_real_derivative 1 + (tan x)2) (at x)"

apply (subst tan_sec)

using pi_half cos_is_zero

apply (metis cos_gt_zero_pi less_divide_eq_numeral1(1)

less_numeral_extra(3))

using DERIV_tan

by (metis cos_gt_zero_pi less_divide_eq_numeral1(1) power2_less_0

power_inverse

power_zero_numeral)

have 2: "
∧
x. - (pi / 2) < x =⇒ x * 2 < pi =⇒ isCont (λx. 1 + (tan

x)2) x"

apply (rule isCont_add, force)

apply (subst power2_eq_square)

apply (subst isCont_mult)

apply (rule isCont_tan)

using pi_half cos_is_zero

apply (metis cos_gt_zero_pi less_divide_eq_numeral1(1)

less_numeral_extra(3))

by simp

show "LBINT x=-∞..∞. inverse (1 + x^2) = pi"

apply (subst interval_integral_substitution_nonneg[of "-pi/2" "pi/2"

tan "λx. 1 + (tan x)^2"])

apply (auto intro: derivative_eq_intros simp add:

ereal_tendsto_simps filterlim_tan_at_left add_nonneg_eq_0_iff)

apply (erule (1) 1)

apply (erule (1) 2)

apply (subst minus_divide_left)+

by (rule filterlim_tan_at_right)

show "set_integrable lborel (einterval (-∞) ∞) (λx. inverse (1 +

x^2))"

apply (subst interval_integral_substitution_nonneg[of "-pi/2" "pi/2"

tan "λx. 1 + (tan x)^2"])

apply (auto intro: derivative_eq_intros simp add:

ereal_tendsto_simps filterlim_tan_at_left add_nonneg_eq_0_iff)

apply (erule (1) 1)

apply (erule (1) 2)

apply (subst minus_divide_left)+

by (rule filterlim_tan_at_right)

qed

Figure 3: A mixed-style proof.
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text automatically generated by sledgehammer; typically these will employ the
Isabelle-native SMT solver7 metis. The tools simp and auto and their vari-
ants can be influenced by the user by declaring results to be simplification rules
[simp] or introduction rules [intro], which enables their use by simp or auto,
respectively. All these tools were extensively employed in our formalization.

4.2 Types and Locales

The existence of the type nat of natural numbers must be guaranteed by an
axiom of infinity (because otherwise higher-order logic has models where all
types are finite), but everything else can be built up from there. Integers (type
int) are defined as equivalence classes of pairs of natural numbers, and ratio-
nals (type rat) as equivalence classes of pairs of integers, both in the usual
manner (see for example [8]). Real numbers (type real) are defined as equiva-
lence classes of Cauchy sequences of rational numbers (see [25]; perhaps a more
common method of construction in analysis texts is that via Dedekind cuts).
Extended reals (type ereal) are defined as the sum type of {−∞}, R, and {∞},
with the expected ordering and operations. Complex numbers are defined as
pairs of real numbers.

All this is supported by Isabelle’s system of polymorphic type constructors,
which we briefly describe. Full detail can be found in the Isabelle/HOL doc-
umentation available at http://isabelle.in.tum.de/documentation.html.
The fact that a variable x has type α can be indicated with the annotation
x::α, though Isabelle’s polymorphic type inference system often eliminates the
need for such annotations. If α and β are types, the type α ⇒ β is the type
of functions with domain α and codomain β (note that this is more commonly
denoted α→ β in the literature on higher-order logic), while α× β is the type
of pairs with first element of type α and second of type β. If α is a type, so is
α set, the type of sets of elements of type α. These could be interpreted as
predicates (functions of type α⇒ bool), where bool is the type with precisely
two elements true, false), but it is harmless and notationally useful to take
these as separate types.

Types and type variables (such as α in α set) can belong to axiomatic type
classes, for example the annotation α::linordered field indicates that α is a
type with the structure of an ordered field (and so α possesses binary operations
+ and ·, unary operations − and −1, constants 0 and 1, and a binary relation ≤
which satisfy the axioms of a linearly ordered field). See [13] for further details.
Types can also be organized into locales, which allows them to be structured
into hierarchies (as is familiar in an informal setting from algebra). For example,
if the locale field is a sublocale of the locale ring, then any theorem proved
for rings can be used for fields. A type can be shown to instantiate a locale
with the reserved words instance and instance proof. Further information

7SMT stands for Satisfiability Modulo Theories; an SMT solver demonstrates satisfiability
of a normal form in the presence of assumptions from a background theory. A quick overview
can be found in [7].
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on locales can be found in [4]. Syntax for locales will arise as we examine the
proof scripts developed for the central limit theorem.

4.3 Limits and Filters

Because it is interesting and different than what is found in standard concrete
presentations of analysis, we describe the flexible method of filterlimits used in
the Isabelle limit libraries. Full detail can be found in [19].

Definition 4.1. Let X be a set. A filter over X is a nonempty set F ⊆ P(X)
such that

1. If A ⊆ B and A ∈ F , then B ∈ F .

2. If A,B ∈ F , then A ∩B ∈ F .

Filters can be thought of as “large” sets, in some vague sense. P(X) is the
trivial filter, and often must be excluded (say by the condition that ∅ /∈ F). In
Isabelle, predicates are employed instead of sets in the definition of a filter.

We now turn to some examples of filters. Please note that none of the
notation used here is standard. The verification that these actually are filters
is elementary, and the interested reader may regard it as an exercise.

1. If A ⊆ X, the filter PA = {B ⊆ X | A ⊆ B} is called the principal
filter over A. A filter which is not equal to PA for any A ⊆ X is called
nonprincipal. In case A = {a} is a singleton, P{a} is denoted Pa and
called the principal filter over a.

2. For X infinite, the smallest nonprincipal filter on X is the cofinite filter
{A ⊆ X | |X \A| <∞}.

3. If τ is a topology on X,

N τ
x = {A ⊆ X | ∃U ∈ τ. x ∈ U ⊆ A}

is the neighborhood filter on X, while

N τ
(x) = {B ⊆ X | ∃A ∈ N τ

x . B = A \ {x}}

is the punctured neighborhood filter. The superscript τ can be omitted
when there is no danger of ambiguity.

4. If ≤ is a linear order on X, there are two natural filters on X “going to
infinity” in the two possible directions. These are

U = {A ⊆ X | ∀x ∈ A. x ≤ y =⇒ y ∈ A},

the filter of upper sets, and

L = {A ⊆ X | ∀x ∈ A. y ≤ x =⇒ y ∈ A},

the filter of lower sets.
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5. We can also define left and right “punctured half-neighborhood filters” for
a linear order (X,≤):

H+
x = {A ⊆ X | ∃y > x. ∀z ∈ X. x ≤ z ≤ y =⇒ z ∈ A}

is the right punctured half-neighborhood filter of x, while

H−x = {A ⊆ X | ∃y < x. ∀z ∈ X. y ≤ z ≤ x =⇒ z ∈ A}

is the left punctured half-neighborhood filter.

A property P is said to hold eventually with respect to a filter F iff
{x | Px} ∈ F . For example, if Pa is the principal filter over a, a property
holds eventually with respect to Pa iff it holds at a. A property holds eventu-
ally with respect to the cofinite filter iff it holds at all but finitely many points,
and it holds eventually with respect to the neighborhood filterNx of x iff it holds
in some neighborhood of x. A property which holds eventually with respect to
U may be thought of as holding “at ∞,” and analogously for L.

A filter G is finer than F iff fewer properties hold eventually for G than for
F , equivalently iff G ⊆ F . For example, if (X, τ) is a topological space and
x ∈ X, we have that Nx is finer than N(x), which is in turn finer than Px.

Convergence is now easily defined: A function f converges to a filter G with
respect to a filter F iff f(F) is finer than G, where f(F) = {A | f−1[A] ∈ F}
(Hölzl calls this the filtermap operation). In case G is N(x) for some x in a
topological space, we say that f converges to x with respect to the filter F .
The extra filter G is useful for saying such things as that a function f converges
to U , or in intuitive terms f → ∞; this is easily expressible with the two-filter
definition of convergence but would be lost if the filter to which a function
converges were always assumed to be a puncturedneighborhood filter. Also,
limits from the left and right can be expressed in terms of H−x and H+

x rather
than requiring separate definitions. This filterlimit framework gives rise to an
amazing amount of flexibility which was very useful when formalizing the CLT;
further examples and explanation are found in [19].

5 The Formalized Proof

Having given an overview of the proof we formalized and the system in which
it was carried out, we turn now to the details. Along the way, we shall try
to point out best practices, pitfalls, and opportunities for improvement which
we encountered in the course of our formalization. Full proof scripts are often
included, but not generally intended to be read in full detail. A quick skim of
these scripts should give a flavour of how they work, and we always include an
informal proof first.

Why include formal proofs at all? It is a common practice when present-
ing a formalization to omit all formal proofs and just indicate the informal
proofs of formalized statements. This implicitly assumes that the proof scripts
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are far less readable than their informal counterparts, which is certainly true
to an extent, but it is our hope that the readability of proof scripts has im-
proved to the point that the reader may benefit by at least skimming them.
At the very least this will give side-by-side comparisons of formal to informal
mathematics, a comparison sometimes difficult to make when reading papers
on formalization. If scripts are particularly long or difficult to read, we omit
them (of course the full formalization is available in the project git repository
https://github.com/avigad/isabelle).

5.1 Distribution Functions

Often it is more convenient to work with a real-valued function determining a
measure on R than directly with the measure, and an obvious way to accomplish
this for finite measures is to study the distribution function of the measure,
which when evaluated at an argument gives the amount of mass below that
argument.

Definition 5.1. Let µ be a finite measure on R. The (cumulative) distribution
function Fµ is defined by Fµ(x) = µ(−∞, x].

In Isabelle, this is rendered as

definition
cdf :: "real measure ⇒ real ⇒ real"

where
"cdf M ≡ λx. measure M {..x}"

lemma cdf_def2: "cdf M x = measure M {..x}"

The lemma gives what is intuitively the definition; the actual definition uses
lambda abstraction. If τ(x) is a term, λx. τ(x) is the function which, when
evaluated at input a, gives τ(a). This is a standard notation in higher-order
logic; for more details we refer the reader to any standard textbook treatment
of the subject, for example [1].

Before proving that the distribution function of a measure uniquely deter-
mines that measure, let us note some general properties of distribution functions.
For convenience we assume the measures we are working with are probability
measures; other nonzero finite measures can be normalized to probability mea-
sures, and the zero measure is trivial.

Theorem 5.2. The distribution function Fµ of a finite measure µ is nondecreas-
ing and right-continuous and satisfies limx→−∞ Fµ(x) = 0 and
limx→∞ Fµ(x) = 1.

Fµ nondecreasing follows from monotonicity of µ; right-continuity and
limx→−∞ Fµ(x) = 0 follow from continuity of µ from above as if xn ↓ x then
(−∞, xn] ↓ (−∞, x] and (−∞,−n] ↓ ∅. The fact that limx→∞ Fµ(x) = 1 follows
from continuity of µ from below as (−∞, n] ↑ R.

In Isabelle this expands to
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lemma cdf_nondecreasing [rule_format]: "(∀ x y. x ≤ y −→ cdf M x ≤ cdf

M y)"

unfolding cdf_def by (auto intro!: finite_measure_mono)

lemma cdf_is_right_cont: "continuous (at_right a) (cdf M)"

unfolding continuous_within

proof (rule tendsto_at_right_sequentially[where b="a + 1"])

fix f :: "nat ⇒ real" and x assume f: "decseq f" "f ----> a"

then have "(λn. cdf M (f n)) ----> measure M (
⋂
i. {.. f i})"

unfolding cdf_def

apply (intro finite_Lim_measure_decseq)

using ‘decseq f‘ apply (auto simp: decseq_def)

done
also have "(

⋂
i. {.. f i}) = {.. a}"

using decseq_le[OF f] by (auto intro: order_trans LIMSEQ_le_const[OF f(2)])

finally show "(λn. cdf M (f n)) ----> cdf M a"

by (simp add: cdf_def)

qed simp

lemma cdf_lim_at_bot: "(cdf M ---> 0) at_bot"

proof -

have 1: "((%x :: real. - cdf M (- x)) ---> 0) at_top"

apply (rule tendsto_at_topI_sequentially_real)

apply (auto simp add: mono_def cdf_nondecreasing cdf_lim_neg_infty)

using cdf_lim_neg_infty by (metis minus_zero tendsto_minus_cancel_left)

from filterlim_compose [OF 1, OF filterlim_uminus_at_top_at_bot]

show ?thesis

by (metis "1" filterlim_at_bot_mirror minus_zero tendsto_minus_cancel_left)

qed

lemma cdf_lim_at_top_prob: "(cdf M ---> 1) at_top"

by (subst prob_space [symmetric], rule cdf_lim_at_top)

The annotation [rule format] indicates that the universally quantified vari-
ables may be freely instantiated by Isabelle’s automated tools, and that the
implication may be used to refine a subgoal (replacing the consequent with the
antecedent).

In turn, any function with the properties listed in the preceding theorem is
the distribution function of a probability measure on R:

Theorem 5.3. Suppose F : R → R is nondecreasing, right-continuous, and
satisfies limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. Then there exists a Borel
probability measure µ on R such that F = Fµ.

The requisite measure µ is constructed by defining µ(a, b] = F (b) − F (a)
and extending this to the Borel σ-algebra using the Carathéodory extension
theorem, which Johannes Hölzl had already formalized. In Isabelle this is
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lemma real_distribution_interval_measure:

fixes F :: "real ⇒ real"

assumes nondecF : "
∧

x y. x ≤ y =⇒ F x ≤ F y" and
right_cont_F : "

∧
a. continuous (at_right a) F" and

lim_F_at_bot : "(F ---> 0) at_bot" and
lim_F_at_top : "(F ---> 1) at_top"

shows "real_distribution (interval_measure F)"

proof -

let ?F = "interval_measure F"

interpret prob_space ?F

proof
have "ereal (1 - 0) = (SUP i::nat. ereal (F (real i) - F (- real i)))"

by (intro LIMSEQ_unique[OF _ LIMSEQ_SUP] lim_ereal[THEN iffD2] tendsto_intros

lim_F_at_bot[THEN filterlim_compose] lim_F_at_top[THEN filterlim_compose]

lim_F_at_bot[THEN filterlim_compose] filterlim_real_sequentially

filterlim_uminus_at_top[THEN iffD1])

(auto simp: incseq_def intro!: diff_mono nondecF)

also have " . . . = (SUP i::nat. emeasure ?F {- real i<..real i})"

by (subst emeasure_interval_measure_Ioc) (simp_all add: nondecF right_cont_F)

also have " . . . = emeasure ?F (
⋃
i::nat. {- real i<..real i})"

by (rule SUP_emeasure_incseq) (auto simp: incseq_def)

also have "(
⋃
i. {- real (i::nat)<..real i}) = space ?F"

by (simp add: UN_Ioc_eq_UNIV)

finally show "emeasure ?F (space ?F) = 1"

by (simp add: one_ereal_def)

qed
show ?thesis

proof qed simp_all

qed

Here real distribution is a locale for Borel probability measures, and
interval measure is a function defined by Hölzl which generates a measure
from a nondecreasing, right-continuous function. Note the calculation paradigm
have...also have...finally show; this is Isar syntax for chaining equations
and is very convenient for writing calculations in Isar as opposed to a tactic
style.

A method of proof similar to that used to prove all nondecreasing right-
continuous functions with the appropriate limits at ±∞ are distribution func-
tions also gives that the distribution function of a probability measure is unique
in the sense that if Fµ = Fν then µ = ν, because Fµ = Fν implies µ(a, b] = ν(a, b]
for every a, b, and the half-open intervals are a π-system generating the Borel
sets on R, so µ = ν by Dynkin’s uniqueness lemma8. In Isabelle this is

lemma cdf_unique:

fixes M1 M2

assumes "real_distribution M1" and "real_distribution M2"

assumes "cdf M1 = cdf M2"

shows "M1 = M2"

8This is an easy consequence of the π-λ theorem; see [6], p. 42.
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proof (rule measure_eqI_generator_eq[where Ω=UNIV])

fix X assume "X ∈ range (λ(a, b). {a<..b::real})"

then obtain a b where Xeq: "X = {a<..b}" by auto

then show "emeasure M1 X = emeasure M2 X"

by (cases "a ≤ b")

(simp_all add: assms(1,2)[THEN real_distribution.emeasure_Ioc] assms(3))

next
show "(

⋃
i. {- real (i::nat)<..real i}) = UNIV"

by (rule UN_Ioc_eq_UNIV)

qed (auto simp: real_distribution.emeasure_Ioc[OF assms(1)]

assms(1,2)[THEN real_distribution.events_eq_borel] borel_sigma_sets_Ioc

Int_stable_def)

5.2 Weak Convergence

We are finally ready to give the definition of weak convergence. The funda-
mental notion is for distribution functions, and it immediately lifts to measures
(distributions) and random variables.

Definition 5.4. A sequence 〈Fn | n ∈ N〉 of distribution functions converges
weakly to a distribution function F iff

lim
n→∞

Fn(x) = F (x)

for every x ∈ R such that F is continuous at x. A sequence 〈µn | n ∈ N〉 of proba-
bility measures converges weakly to a probability measure µ iff the corresponding
distribution functions converge weakly, and a sequence
〈Xn | n ∈ N〉 of random variables converges weakly to a random variable X
iff the corresponding distributions converge weakly.

To see why convergence is allowed to fail at continuity points of F , note that
intuitively a sequence 〈µn | n ∈ N〉 of unit masses at an should converge to a
unit mass µ at a iff an → a. The distribution functions Fn of µn are two-valued,
taking either the value zero or one, and so if an > a for infinitely many n, Fn(a)
does not converge to F (a) (since Fn(a) = 0 if an > a, while F (a) = 1). This
example is taken from Billingsley [6], and further explanation and examples can
be found in sections 14 and 25 of that book.

In Isabelle we have:

definition
weak_conv :: "(nat ⇒ (real ⇒ real)) ⇒ (real ⇒ real) ⇒ bool"

where
"weak_conv F_seq F ≡ ∀ x. isCont F x −→ (λn. F_seq n x) ----> F x"

definition
weak_conv_m :: "(nat ⇒ real measure) ⇒ real measure ⇒ bool"

where
"weak_conv_m M_seq M ≡ weak_conv (λn. cdf (M_seq n)) (cdf M)"
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abbreviation ( in prob_space)

"weak_conv_r X_seq X ≡ weak_conv_m (λn. distr M borel (X_seq n)) (distr

M borel X)"

One technical result we needed for working with weak convergence was the
fact that a nondecreasing function f : R → R has just countably many discon-
tinuities. For this we shall use the concept of the oscillation of a function.

Definition 5.5. Let f : R→ R, and x ∈ R. The oscillation of f at x is defined
by

oscx f = lim sup
t→x

f(t)− lim inf
t→x

f(t).

Note that the oscillation is always nonnegative, and f is continuous at x iff
oscx f = 0.

Lemma 5.6. Suppose f : R → R is nondecreasing. Then the discontinuity set
D = {x ∈ R | oscx f > 0} is countable.

Proof. We begin with showing that a finite interval contains at most count-
ably many discontinuities of f . Suppose a < b, and let Da,b

k be the set of
discontinuities of f in the interval [a, b] with oscillation at least 1

k . Because f is
nondecreasing, f(a) ≤ f(x) ≤ f(b) for every x ∈ [a, b], and from the definition of
oscillation it is immediate that for any u > 0, if oscx f ≥ u, then f(b) ≥ f(a)+u.
Hence

|Da,b
k | ≤

⌊
f(b)− f(a)

k

⌋
,

and in particular Da,b
k is finite. Thus we have that Da,b =

⋃
k∈ND

a,b
k is count-

able for every a, b (being a countable union of finite sets), and hence so is
D =

⋃
n∈ND

−n,n.

Rather than formalizing this directly, we formalized an argument which
works for nondecreasing functions only defined on a subset A ⊆ R, and con-
cluded the above result from that. We omit the rather long proof of the more
general result.

lemma mono_on_ctble_discont:

fixes f :: "real ⇒ real"

fixes A :: "real set"

assumes "mono_on f A"

shows "countable {a∈A. ¬ continuous (at a within A) f}"

lemma mono_ctble_discont:

fixes f :: "real ⇒ real"

assumes "mono f"

shows "countable {a. ¬ isCont f a}"

using assms mono_on_ctble_discont [of f UNIV] unfolding mono_on_def mono_def

by auto

Another general lemma which we needed to formalize is the fact that non-
decreasing functions on R are Borel measurable. This is intuitively because the
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preimage of a semi-infinite interval (−∞, x) under a monotone function is an
interval, and the semi-infinite intervals generate the Borel σ-algebra on R (note
they are a subbase for the open subsets of R). In Isabelle we formalized some-
thing slightly more general, allowing application of the theorem when a function
is only defined (or only of interest) on a subset of R. This is useful in particular
in the proof of Skorohod’s theorem.

lemma borel_measurable_mono_on_fnc:

fixes f :: "real ⇒ real" and A :: "real set"

assumes "mono_on f A"

shows "f ∈ borel_measurable (restrict_space borel A)"

apply (rule measurable_restrict_countable[OF mono_on_ctble_discont[OF assms]])

apply (auto intro!: image_eqI[where x="{x}" for x] simp: sets_restrict_space)

apply (auto simp add: sets_restrict_restrict_space continuous_on_eq_continuous_within

cong: measurable_cong_sets

intro!: borel_measurable_continuous_on_restrict intro: continuous_within_subset)

done

Though weak convergence has the advantage of being a flexible notion which
applies much more generally than such notions as almost sure convergence or
convergence in probability, it is often difficult to work with directly. The fol-
lowing theorem, known as Skorohod’s theorem, allows one to replace weak con-
vergence with pointwise convergence under appropriate conditions.

Theorem 5.7. Let 〈µn | n ∈ N〉, µ be probability measures on the R, and
suppose µn ⇒ µ. Then there exists a probability space (Ω,F ,P) and random
variables 〈Yn | n ∈ N〉, Y on Ω such that Yn ∼ µn for each n, Y ∼ µ, and
Yn → Y pointwise.

Proof. The probability space will be simply the unit interval (0, 1) with Lebesgue
measure. For each n, let Fn be the distribution function of µn, and F be the
distribution function of µ. Let Yn be the pseudoinverse of the nondecreasing
function Fn, that is Yn(ω) = inf{x ∈ R | ω ≤ Fn(x)} for ω ∈ (0, 1), and similarly
Y (ω) = inf{x ∈ R | ω ≤ F (x)}. Thus we have that for any ω ∈ (0, 1), x ∈ R,
and n ∈ N, ω ≤ Fn(x) iff Yn(ω) ≤ x, and similarly ω ≤ F (x) iff Y (ω) ≤ x.
Consequently

P(Yn ≤ x) = P{ω ∈ (0, 1) | ω ≤ Fn(x)} = Fn(x),

and so Fn is the distribution function of Yn. By the same reasoning F is the
distribution function of Y .

The idea of the proof that Yn → Y pointwise is that we know Fn ⇒ F , and
because Yn is the pseudoinverse of Fn and Y is the pseudoinverse of F , this is
sufficient for Yn(ω) to converge to Y (ω) for almost all ω ∈ (0, 1). Note that this
is certainly true in case Fn, F are continuous (in which case Yn, Y are literal
inverses of Fn, F ).

Let ω ∈ (0, 1) and ε > 0. Choose x such that Y (ω) − ε < x < Y (ω)
and µ{x} = 0, so x is a continuity point of F and Fn(x) → F (x). It is im-
mediate from the definition of Y that F (x) < ω, and so for sufficiently large
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n we have Fn(x) < ω, which in turn gives Y (ω) − ε < x < Yn(ω). Hence
lim infn→∞ Yn(ω) ≥ Y (ω).

Now let ω′ ∈ (0, 1) and ε > 0, and suppose ω ∈ (0, 1) and ω < ω′. Choose
y a continuity point of F (so µ{y} = 0) such that Y (ω′) < y < Y (ω′) + ε.
From the definition of Y we have ω < ω′ ≤ F (Y (ω′)) ≤ F (y), and thus for
sufficiently large n, ω ≤ Fn(y), which gives Yn(ω) ≤ y < Y (ω′) + ε and hence
lim supn→∞ Yn(ω) ≤ Y (ω′). Since this holds for arbitrary ω < ω′, we have that
Yn(ω)→ Y (ω) if Y is continuous at ω.

It is immediate from the definition of Y and the fact that F is nondecreasing
that Y is nondecreasing, and hence has at most countably many discontinuities,
a set of Lebesgue measure zero. Thus we may redefine Yn, Y to be zero at
all the discontinuities of Y without affecting the distributions of these random
variables, and obtain Yn(ω)→ Y (ω) for every ω ∈ (0, 1).

This proof presented a number of technical challenges for formalization. For
one, we needed to choose a continuity point of an arbitrary probability measure
in an arbitrary open interval. For this we needed to know that the set of
continuity points of an arbitrary finite measure is dense. To see that, recall
that there are at most countably many atoms, and note that the complement
of a countable set is dense. Rather than formalizing directly the fact that the
complement of a countable set is dense, we simply proved that an interval is
uncountable and so the result of subtracting the set of atoms is still uncountable,
and hence nonempty.

Here is our formalization of the fact that a finite measure has countably
many atoms:

lemma countable_atoms: "countable {x. measure M {x} > 0}"

proof -

{ fix B i

assume finB: "finite B" and
subB: "B ⊆ {x. inverse (real (Suc i)) < Sigma_Algebra.measure M {x}}"

have "measure M B = (
∑

x∈B. measure M {x})"

by (rule measure_eq_setsum_singleton [OF finB], auto)

also have " . . . ≥ (
∑

x∈B. inverse (real (Suc i)))" ( is "?lhs ≥ ?rhs")

using subB by (intro setsum_mono, auto)

also (xtrans) have "?rhs = card B * inverse (real (Suc i))"

by simp

finally have "measure M B ≥ card B * inverse (real (Suc i))" .
} note * = this

have "measure M (space M) < real (Suc (nat (ceiling (measure M (space M)))))"

by (auto simp del: zero_le_ceiling

simp add: measure_nonneg ceiling_nonneg intro!: less_add_one)

linarith

then obtain X :: nat where X: "measure M (space M) < X" ..

{ fix i :: nat

have "finite {x. inverse (real (Suc i)) < Sigma_Algebra.measure M {x}}"

apply (rule ccontr)
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apply (drule infinite_arbitrarily_large [of _ "X * Suc i"])

apply clarify

apply (drule *, assumption)

apply (drule leD, erule notE, erule ssubst)

apply (subst of_nat_mult)

apply (subst mult.assoc)

apply (subst right_inverse)

apply simp_all

by (rule order_le_less_trans [OF bounded_measure X])

} note ** = this

have "{x. measure M {x} > 0} = (
⋃
i :: nat. {x. measure M {x} > inverse

(Suc i)})"

apply (auto intro: reals_Archimedean)

using ex_inverse_of_nat_Suc_less apply auto

by (metis inverse_positive_iff_positive less_trans of_nat_0_less_iff of_nat_Suc

zero_less_Suc)

thus "countable {x. measure M {x} > 0}"

apply (elim ssubst)

apply (rule countable_UN, auto)

apply (rule countable_finite)

using ** by auto

qed

And here is our formal statement of Skorohod’s theorem; the proof is very
long, and we do not include it.

theorem Skorohod:

fixes
µ :: "nat ⇒ real measure" and
M :: "real measure"

assumes
"
∧
n. real_distribution (µ n)" and

"real_distribution M" and
"weak_conv_m µ M"

shows "∃ (Ω :: real measure) (Y_seq :: nat ⇒ real ⇒ real) (Y :: real

⇒ real).

prob_space Ω ∧
(∀ n. Y_seq n ∈ measurable Ω borel) ∧
(∀ n. distr Ω borel (Y_seq n) = µ n) ∧
Y ∈ measurable Ω lborel ∧
distr Ω borel Y = M ∧
(∀ x ∈ space Ω. (λn. Y_seq n x) ----> Y x)"

Another important fact which will be needed later is that a sequence
〈µn | n ∈ N〉 of probability measures converges weakly to a probability measure
µ if and only if it converges to µ in the weak* topology of functional analysis.
Weak* convergence of a sequence of probability measures can be defined in a
variety of ways; two common ones are

lim
n→∞

∫
f dµn =

∫
f dµ
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for every bounded continuous real-valued function f , and

lim
n→∞

µn(A) = µ(A)

for every set A such that µ(∂A) = 0 (where ∂A is the boundary of A). The
equivalence of weak convergence of probability measures with these two defini-
tions of weak* convergence is called the portmanteau theorem.

Theorem 5.8. Let 〈µn | n ∈ N〉 be a sequence of measures on R. The following
are equivalent:

1. µn ⇒ µ.

2. For each bounded continuous f : R→ R,
∫
f dµn →

∫
f dµ.

3. If µ(∂A) = 0, then µn(A)→ µ(A).

Proof. We prove (1)⇐⇒ (2) and (1)⇐⇒ (3).
(1) =⇒ (2): Assume µn ⇒ µ. Let Yn ∼ µn and Y ∼ µ be random variables

on a probability space (Ω,F ,P) such that Yn → Y pointwise, the existence of
such random variables being guaranteed by Skorohod’s theorem. Let f : R→ R
be a bounded continuous function. Then f ◦ Yn → f ◦ Y pointwise, and so
changing variables using Yn, Y and invoking the bounded convergence theorem
yields ∫

f dµn =

∫
f ◦ Yn dP→

∫
f ◦ Y dP =

∫
f dµ.

(2) =⇒ (1): For each n, let Fn be the distribution function of µn, and let F
be the distribution function of µ. For x < y, define f by

f(t) =


1 if t < x
y−t
y−x if x ≤ t ≤ y
0 if y < t

Note that f is continuous and bounded. For each n, Fn(x) ≤
∫
f dµn, and∫

f dµ ≤ F (y), so by (2) we have lim supn→∞ Fn(x) ≤ F (y). and so because
y > x was arbitrary and F is right continuous, in fact lim supn→∞ Fn(x) ≤ F (x).
A similar argument gives that F (u) ≤ lim infn→∞ Fn(x) for u < x, and so
supu<x F (u) ≤ lim infn→∞ Fn(x). If F is continuous at x, then supu<x F (u) =
F (x), and so we obtain Fn(x)→ F (x), which gives µn ⇒ µ.

(1) ⇐⇒ (3): The proof of (1) =⇒ (2) goes through if the hypothesis that
f is continuous is weakened to the hypothesis that f is measurable and the
discontinuity set of f has µ-measure zero: merely weaken f ◦ Yn → f ◦ Y
pointwise to convergence almost surely (with respect to µ), and the rest of
the proof is exactly the same. In particular, if A ⊆ R is measurable and
f = 1A, then f is bounded and has discontinuity set ∂A, so if µ(∂A) = 0,
then

∫
1A dµn →

∫
1A dµ, which is to say, µn(A) → µ(A). The converse is an

immediate consequence of the definition of weak convergence and the fact that
∂(−∞, x] = {x}.
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Rather than formalize this as a single result, we formalized various impli-
cations. First, we have the fact that µn ⇒ µ implies

∫
f dµn →

∫
f dµ for f

measurable and bounded with a discontinuity set of µ-measure zero.

theorem weak_conv_imp_bdd_ae_continuous_conv:

fixes
M_seq :: "nat ⇒ real measure" and
M :: "real measure" and
f :: "real ⇒ ’a::{banach, second_countable_topology}"

assumes
distr_M_seq: "

∧
n. real_distribution (M_seq n)" and

distr_M: "real_distribution M" and
wcM: "weak_conv_m M_seq M" and
discont_null: "M ({x. ¬ isCont f x}) = 0" and
f_bdd: "

∧
x. norm (f x) ≤ B" and

[measurable]: "f ∈ borel_measurable borel"

shows
"(λ n. integralL (M_seq n) f) ----> integralL M f"

This of course immediately gives (1) =⇒ (2) from the informal theorem. The
annotation [measurable] indicates that this fact should be used by a specialized
tool for checking measurability of sets and functions, called measurable and
implemented by Hölzl.

theorem weak_conv_imp_integral_bdd_continuous_conv:

fixes
M_seq :: "nat ⇒ real measure" and
M :: "real measure" and
f :: "real ⇒ ’a::{banach, second_countable_topology}"

assumes
"
∧
n. real_distribution (M_seq n)" and

"real_distribution M" and
"weak_conv_m M_seq M" and
"
∧
x. isCont f x" and

"
∧
x. norm (f x) ≤ B"

shows
"(λ n. integralL (M_seq n) f) ----> integralL M f"

using assms apply (intro weak_conv_imp_bdd_ae_continuous_conv, auto)

apply (rule borel_measurable_continuous_on1)

by (rule continuous_at_imp_continuous_on, auto)

As in the informal treatment, (1) =⇒ (3) can now be obtained in a straight-
forward manner.

theorem weak_conv_imp_continuity_set_conv:

fixes
M_seq :: "nat ⇒ real measure" and
M :: "real measure" and
f :: "real ⇒ real"

assumes
"
∧
n. real_distribution (M_seq n)" "real_distribution M" and

"weak_conv_m M_seq M" and
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[measurable]: "A ∈ sets borel" and
"M (frontier A) = 0"

shows
"(λ n. (measure (M_seq n) A)) ----> measure M A"

proof -

interpret M: real_distribution M by fact

interpret M_seq: real_distribution "M_seq n" for n by fact

have "(λn. (
∫
x. indicator A x ∂M_seq n) :: real) ----> (

∫
x. indicator

A x ∂M)"
by (intro weak_conv_imp_bdd_ae_continuous_conv[where B=1])

(auto intro: assms simp: isCont_indicator)

then show ?thesis

by simp

qed

The converse is also easily obtained, as in the informal development.

theorem continuity_set_conv_imp_weak_conv:

fixes
M_seq :: "nat ⇒ real measure" and
M :: "real measure" and
f :: "real ⇒ real"

assumes
real_dist_Mn [simp]: "

∧
n. real_distribution (M_seq n)" and

real_dist_M [simp]: "real_distribution M" and
*: "

∧
A. A ∈ sets borel =⇒ M (frontier A) = 0 =⇒

(λ n. (measure (M_seq n) A)) ----> measure M A"

shows
"weak_conv_m M_seq M"

proof -

interpret real_distribution M by simp

show ?thesis

unfolding weak_conv_m_def weak_conv_def cdf_def2 apply auto

by (rule *, auto simp add: frontier_real_Iic isCont_cdf emeasure_eq_measure)

qed

The informal proof of (2) =⇒ (1) uses an approximation of step functions
by continuous functions, specifically for x < y we defined

f(t) =


1 if t < x
y−t
y−x if x ≤ t ≤ y
0 if y < t

.

This is formalized in Isabelle by a general definition which is available to all
further development.
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definition
cts_step :: "real ⇒ real ⇒ real ⇒ real"

where
"cts_step a b x ≡

if x ≤ a then 1

else (if x ≥ b then 0 else (b - x) / (b - a))"

The fact that these functions are in fact uniformly continuous is included as
a remark after the proof of the portmanteau theorem on p. 335 of [6], and is
formalized in a natural manner:

lemma cts_step_uniformly_continuous:

fixes a b

assumes [arith]: "a < b"

shows "uniformly_continuous_on UNIV (cts_step a b)"

unfolding uniformly_continuous_on_def

proof (clarsimp)

fix e :: real

assume [arith]: "0 < e"

let ?d = "min (e * (b - a)) (b - a)"

have "?d > 0" by (auto simp add: field_simps)

{
fix x x’

assume 1: " |x’ - x | < e * (b - a)" and 2: " |x’ - x | < b - a" and "x ≤
x’"

hence " |cts_step a b x’ - cts_step a b x | < e"

unfolding cts_step_def apply auto

apply (auto simp add: field_simps)[2]

by (subst diff_divide_distrib [symmetric], simp add: field_simps)

} note * = this

have "∀ x x’. dist x’ x < ?d −→ dist (cts_step a b x’) (cts_step a b x)

< e"

proof (clarsimp simp add: dist_real_def)

fix x x’

assume " |x’ - x | < e * (b - a)" and " |x’ - x | < b - a"

thus " |cts_step a b x’ - cts_step a b x | < e"

apply (case_tac "x ≤ x’")

apply (rule *, auto)

apply (subst abs_minus_commute)

by (rule *, auto)

qed
with ‘?d > 0‘ show
"∃ d > 0. ∀ x x’. dist x’ x < d −→ dist (cts_step a b x’) (cts_step a

b x) < e"

by blast

qed

To formalize (2) =⇒ (1) from the informal proof of the portmanteau theo-
rem, we need that the continuous step functions are integrable and satisfy

Fµ(x) ≤
∫
fxy dµ ≤ Fµ(y),
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where Fµ is the distribution function of µ and fxy is the continuous step from
x to y (we assume x < y).

lemma ( in real_distribution) integrable_cts_step: "a < b =⇒ integrable M

(cts_step a b)"

apply (rule integrable_const_bound [of _ 1])

apply (force simp add: cts_step_def)

apply (rule measurable_finite_borel)

apply (rule borel_measurable_continuous_on1)

apply (rule uniformly_continuous_imp_continuous)

by (rule cts_step_uniformly_continuous)

lemma ( in real_distribution) cdf_cts_step:

fixes
x y :: real

assumes
"x < y"

shows
"cdf M x ≤ integralL M (cts_step x y)" and
"integralL M (cts_step x y) ≤ cdf M y"

unfolding cdf_def

proof -

have "prob {..x} = integralL M (indicator {..x})"

by simp

thus "prob {..x} ≤ expectation (cts_step x y)"

apply (elim ssubst)

apply (rule integral_mono)

apply simp

apply (auto intro!: integrable_cts_step assms) []

apply (auto simp add: cts_step_def indicator_def field_simps)

done
next

have "prob {..y} = integralL M (indicator {..y})"

by simp

thus "expectation (cts_step x y) ≤ prob {..y}"

apply (elim ssubst)

apply (rule integral_mono)

apply (rule integrable_cts_step, rule assms)

unfolding cts_step_def indicator_def using ‘x < y‘

by (auto simp add: field_simps)

qed

The special case of (2) =⇒ (1) for continuous step functions can now be
formalized; we omit the proof.

theorem integral_cts_step_conv_imp_weak_conv:

fixes
M_seq :: "nat ⇒ real measure" and
M :: "real measure"

assumes
distr_M_seq: "

∧
n. real_distribution (M_seq n)" and

distr_M: "real_distribution M" and
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integral_conv: "
∧
x y. x < y =⇒

(λn. integralL (M_seq n) (cts_step x y)) ----> integralL M (cts_step

x y)"

shows
"weak_conv_m M_seq M"

This can then be weakened to something slightly stronger than (2) =⇒ (1):

theorem integral_bdd_continuous_conv_imp_weak_conv:

fixes
M_seq :: "nat ⇒ real measure" and
M :: "real measure"

assumes
"
∧
n. real_distribution (M_seq n)" and

"real_distribution M" and
"
∧
f B. (

∧
x. isCont f x) =⇒ (

∧
x. abs (f x) ≤ B) =⇒

(λn. integralL (M_seq n) f::real) ----> integralL M f"

shows
"weak_conv_m M_seq M"

apply (rule integral_cts_step_conv_imp_weak_conv [OF assms])

apply (rule continuous_on_interior)

apply (rule uniformly_continuous_imp_continuous)

apply (rule cts_step_uniformly_continuous, auto)

apply (subgoal_tac "abs(cts_step x y xa) ≤ 1")

apply assumption

unfolding cts_step_def by auto

5.3 Helly Selection Theorem and Tightness

As described in section 3, for the proof of the Lévy continuity theorem (which
allows us to study weak convergence through characteristic functions), an ana-
logue of the Bolzano-Weierstrass theorem in the space of probability measures
with the topology of weak convergence is needed. In order to prove this, we
need the Helly selection theorem, which is itself an analogue of the Bolzano-
Weierstrass theorem, and a result of independent interest in functional analysis.

5.3.1 Helly Selection Theorem

We begin with some definitions.

Definition 5.9. A function F : R→ R is a subdistribution function iff F is non-
decreasing, right-continuous, and satisfies limx→−∞ F (x) = 0 and
limx→∞ F (x) ≤ 1.

Thus a subdistribution function is the natural analogue of a distribution
function in the case of a measure which has total mass at most 1 (a subprob-
ability measure). The correspondence between subdistribution functions and
subprobability measures can be proved in an analogous manner to the proof of
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the same correspondence between distribution functions and probability mea-
sures.

We now come to the subdistribution function analogue of weak convergence:

Definition 5.10. A sequence 〈Fn | n ∈ N〉 of subdistribution functions con-
verges vaguely to a subdistribution function F iff limn→∞ Fn(x) = F (x) for all
x ∈ R such that F is continuous at x. This is denoted Fn ⇒ F , just as with
weak convergence. The two notions can be easily seen to coincide in case the
functions Fn, F are all distribution functions.

These definitions permit a natural statement of the Helly selection theorem.

Theorem 5.11. Let 〈Fn | n ∈ N〉 be a sequence of distribution functions. Then
there exists a subsequence 〈Fnk | n ∈ N〉 and a subdistribution function F such
that Fnk ⇒ F .

The proof requires an application of the diagonal method.

Lemma 5.12. Suppose, for each n ∈ N, that 〈an,k | k ∈ N〉 is a bounded se-
quence of real numbers. Then there is a uniform subsequence (a single increas-
ing sequence 〈nk | k ∈ N〉 of natural numbers) such that limk→∞ ai,nk exists for
every i ∈ N.

Proof. Invoking the Bolzano-Weierstrass theorem, select 〈n0,k | k ∈ N〉 such
that 〈a0,n0,k

| k ∈ N〉 converges. Now inductively choose 〈ni+1,k | k ∈ N〉 to be
a subsequence of 〈ni,k | k ∈ N〉 such that 〈ai+1,k | k ∈ N〉 converges. It is now
easy to see that the subsequence nk = nk,k is such that limk→∞ ai,nk exists for
every i ∈ N, as required.

We were fortunate that Fabian Immler at Technische Universität München
had already formalized a diagonal subsequence library as part of his effort to
formalize the theory of differential equations.

We are finally ready for an informal presentation of the proof of the Helly
selection theorem.

Helly selection theorem. Using the diagonal method 5.12, obtain a subsequence
〈nk | k ∈ N〉 such that limk→∞ Fnk(q) exists for each rational q. Call the value
of this limit G(q). Define F (x) = inf{G(q) | q ∈ Q, x < q} and note F is
nondecreasing because each Fn is.

Let x ∈ R and ε > 0. By the definition of F there is q ∈ Q, q > x
such that G(q) < F (x) + ε. F is right-continuous because for x ≤ y < q,
F (y) ≤ G(q) < F (x) + ε.

Suppose now that F is continuous at x. Choose y < x such that F (x) <
F (y)+ε, and rationals p, q such that y < p < x < q and G(p) < F (x)+ε. Thus it
follows that F (x)−ε < G(p) ≤ G(q) < F (x)+ε and that Fn(p) ≤ Fn(x) ≤ Fn(q)
for each n ∈ N. Consequently we have that∣∣∣∣lim inf

k→∞
Fnk(x)− F (x)

∣∣∣∣ , ∣∣∣∣lim sup
k→∞

Fnk(x)− F (x)

∣∣∣∣ < ε,

and hence limk→∞ Fnk(x) = F (x), which establishes that Fnk ⇒ F .
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The formal statement of the Helly selection theorem follows; we omit the
very long proof, but note that the first hurdle was to establish a bijection be-
tween the naturals and the rationals! Fortunately this could be handled with
library support for reasoning about countable sets; the bijection did not need
to be constructed explicitly. It should be noted that we did not formalize the
definitions of subdistribution functions and vague convergence, as these are not
needed anywhere else in our formal development. The predicate rcont inc

indicates a function which is nondecreasing and right continuous.

theorem Helly_selection:

fixes f :: "nat ⇒ real ⇒ real"

assumes rcont_inc: "
∧
n. rcont_inc (f n)"

and unif_bdd: "∀ n x. |f n x | ≤ M"

shows "∃ s. subseq s ∧ (∃ F. rcont_inc F ∧ (∀ x. |F x | ≤ M) ∧
(∀ x. continuous (at x) F −→ (λn. f (s n) x) ----> F x))"

5.3.2 Tightness of Sequences of Measures

The applications of Helly’s theorem in which we are interested concern tight-
ness of sequences of measures; this is an analogue of boundedness of ordinary
sequences, and prevents any mass in a sequence 〈µn | n ∈ N〉 from “escaping to
infinity” in the (weak) limit. An example of a sequence of probability measure
which is not tight is 〈µn | n ∈ N〉, where for each n ∈ N, µn is a unit mass at n
(it is intuitively clear that all the mass of this sequence “escapes to infinity.”)

Definition 5.13. Let 〈µn | n ∈ N〉 be a sequence of Borel probability measures
on R. This sequence is called tight iff for each ε > 0 there exist a < b such that
µn(a, b] < 1− ε for every n ∈ N.

It should be clear how the tightness condition keeps mass from getting too
far away and ultimately escaping to infinity. In terms of distribution functions,
the tightness condition is equivalent to the requirement that for each ε > 0 there
exist x, y ∈ R such that Fn(x) < ε and Fn(y) > 1− ε for every n ∈ N.

We can now state the promised analogue of the Bolzano-Weierstrass theorem
for tight sequences of probability measures.

Theorem 5.14. A sequence 〈µn | n ∈ N〉 of probability measures is tight if
and only if for every subsequence 〈µnk | k ∈ N〉 there exists a subsubsequence
〈µnkj | j ∈ N〉 which converges weakly to some probability measure µ.

Proof. (=⇒): Suppose for contradiction that 〈µn | n ∈ N〉 is not tight. Choose
ε > 0 such that for every choice of a < b, µn(a, b] ≤ 1−ε for some n. Using this,
choose nk for each k ∈ N such that µnk(−k, k] ≤ 1− ε. Let 〈µnkj | j ∈ N〉 be a

subsequence of 〈µnk | k ∈ N〉, and suppose for contradiction that µnkj ⇒ µ for

some probability measure µ. Choose a < b nonatoms such that µ(a, b] > 1 − ε
(which is possible as there are only countably many atoms). There exists j0
such that (a, b] ⊆ (−kj , kj ] for j ≥ j0, and thus we have

1− ε ≥ µnkj (−kj , kj ] ≥ µnkj (a, b]→ µ(a, b]
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as j →∞. This implies that µ(a, b] ≤ 1−ε, contradicting the earlier established
fact that µ(a, b] > 1− ε.

(⇐=): Let 〈Fnk | k ∈ N〉 be the sequence of distribution functions corre-
sponding to 〈µnk | k ∈ N〉. Apply the Helly selection theorem to obtain a
subsequence 〈Fnkj | j ∈ N〉 which converges vaguely to a subdistribution func-

tion F . Let µ be the subprobability measure corresponding to F . For ε > 0 use
tightness to obtain a < b such that µn(a, b] > 1−ε for every n ∈ N. Since F has
just countably many discontinuity points, a, b may be chosen to be continuity
points of F . Thus µ(a, b] > 1− ε, and since ε > 0 was arbitrary we see that in
fact µ is a probability measure, and hence the vague convergence Fnkj ⇒ F is

in fact weak convergence, which is to say µnkj ⇒ µ as desired.

The corresponding formalized proof is again very long, so we provide just
the statement (and the formalized definition of tightness).

definition tight :: "(nat ⇒ real measure) ⇒ bool"

where "tight µ ≡ (∀ n. real_distribution (µ n)) ∧ (∀ (ε::real)>0. ∃ a b::real.

a < b ∧ (∀ n. measure (µ n) {a<..b} > 1 - ε))"

theorem tight_iff_convergent_subsubsequence:

fixes µ
assumes "

∧
n. real_distribution (µ n)"

shows "tight µ = (∀ s. subseq s −→ (∃ r. ∃ M. subseq r ∧ real_distribution

M ∧ weak_conv_m (µ ◦ s ◦ r) M))"

A corollary of this result will also be useful.

Corollary 5.15. If 〈µn | n ∈ N〉 is a tight sequence of probability measures
such that each subsequence which has a weak limit in fact has the probability
measure µ as its weak limit, then µn ⇒ µ.

Proof. By the preceding theorem, for every subsequence 〈µnk | k ∈ N〉 there is a
subsubsequence 〈µnkj | j ∈ N〉 which converges weakly; by hypothesis the weak

limit must be µ.
Suppose now for contradiction that µ is not the weak limit of 〈µn | n ∈ N〉.

Then there exists x ∈ R such that µ{x} = 0 but 〈µn(−∞, x] | n ∈ N〉 does not
converge to µ(−∞, x]. Thus for some ε > 0 there are infinitely many i ∈ N such
that |µi(−∞, x]−µ(−∞, x]| > ε. Letting 〈nk | k ∈ N〉 enumerate these i’s gives
a subsequence 〈µnk | k ∈ N〉 no subsequence of which can converge weakly to µ,
which contradicts what was established in the first paragraph.

This is formalized as follows.

corollary tight_subseq_weak_converge:

fixes µ :: "nat ⇒ real measure" and M :: "real measure"

assumes "
∧
n. real_distribution (µ n)" "real_distribution M" and tight:

"tight µ" and
subseq: "

∧
s ν. subseq s =⇒ real_distribution ν =⇒ weak_conv_m (µ ◦

s) ν =⇒ weak_conv_m (µ ◦ s) M"

shows "weak_conv_m µ M"
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proof (rule ccontr)

from tight tight_iff_convergent_subsubsequence

have subsubseq: "∀ s. subseq s −→ (∃ r M. subseq r ∧ real_distribution

M ∧ weak_conv_m (µ ◦ s ◦ r) M)"

using assms by simp

{
fix s assume s: "subseq s"

with subsubseq subseq have "∃ r M. subseq r ∧ real_distribution M ∧ weak_conv_m

(µ ◦ s ◦ r) M"

by simp

then guess r .. note r = this

then guess ν .. note ν = this

hence subsubseq_conv: "weak_conv_m (µ ◦ (s ◦ r)) ν" by (auto simp add:

o_assoc)

from s r have sr: "subseq (s ◦ r)" using subseq_o by auto

with subsubseq_conv subseq ν have "weak_conv_m (µ ◦ (s ◦ r)) M" by auto

with r have "∃ r. subseq r ∧ weak_conv_m (µ ◦ (s ◦ r)) M" by auto

}
hence *: "

∧
s. subseq s =⇒ ∃ r. subseq r ∧ weak_conv_m (µ ◦ (s ◦ r)) M"

by auto

def f ≡ "λn. cdf (µ n)"

def F ≡ "cdf M"

assume CH: "¬ weak_conv_m µ M"

hence "∃ x. isCont F x ∧ ¬((λn. f n x) ----> F x)"

unfolding weak_conv_m_def weak_conv_def f_def F_def by auto

then guess x .. note x = this

hence "∃ ε>0. ∃ s. subseq s ∧ (∀ n. |f (s n) x - F x | ≥ ε)"
apply (subst (asm) tendsto_iff, auto simp add: not_less)

apply (subst (asm) eventually_sequentially, auto)

unfolding dist_real_def apply (simp add: not_less)

apply (subst subseq_Suc_iff)

apply (rule_tac x = e in exI, safe)

proof -

fix e assume e: "0 < e" "∀ N. ∃ n≥N. e ≤ |f n x - F x |"
then obtain n where n: "

∧
N. N ≤ n N" "

∧
N. e ≤ |f (n N) x - F x |"

by metis

def s ≡ "rec_nat (n 0) (λ_ i. n (Suc i))"

then have s[simp]: "s 0 = n 0" "
∧
i. s (Suc i) = n (Suc (s i))"

by simp_all

{ fix i have "s i < s (Suc i)"

using n(1)[of "Suc (s i)"] n(2)[of 0] by simp_all }
moreover { fix i have "e ≤ |f (s i) x - F x |"

by (cases i) (simp_all add: n) }
ultimately show "∃ s. (∀ n. s n < s (Suc n)) ∧ (∀ n. e ≤ |f (s n) x

- F x |)"
by metis

qed
then obtain ε s where ε: "ε > 0" and s: "subseq s ∧ (∀ n. |f (s n) x -

F x | ≥ ε)" by auto

hence "
∧
r. subseq r =⇒ ¬weak_conv_m (µ ◦ s ◦ r) M"
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apply (unfold weak_conv_m_def weak_conv_def, auto)

apply (rule_tac x = x in exI)

apply (subst tendsto_iff)

unfolding dist_real_def apply (subst eventually_sequentially)

using x unfolding F_def apply auto

apply (subst not_less)

apply (subgoal_tac "(λn. cdf (µ (s (r n))) x) = (λn. f (s (r n)) x)")

apply (erule ssubst)

apply (rule_tac x = ε in exI)

unfolding f_def by auto

thus False using subseq * by (metis fun.map_comp s)

qed

5.4 Integration

Improving the integration library of Isabelle was one of the primary motiva-
tions of the central limit theorem formalization project. A complete rewrite of
the library, implementing a change from Lebesgue to Bochner integration, was
completed by Hölzl in response to our feedback concerning the usability of the
integration library. We begin with a general discussion of the problems and
tradeoffs in formalizing integration, and then describe how we used the inte-
gration library in the computation of the limit of the sine integral function at
infinity.

5.4.1 General Remarks on Formalizing Integration

The proofs of the Lévy inversion and continuity theorems required formal work
with integrals, and brought a number of design issues into focus. First, one
frequently wishes to integrate a function only over a subset A of the space on
which it is defined rather than over the whole space. This can be handled in
two ways: The integral over the whole space can be taken as primitive, with the
integral of a function f over a set A defined by

∫
A
f dµ =

∫
f1A dµ, or the inte-

gral over a set can be taken as primitive with the integral of a function f over
the whole space being defined by

∫
f dµ =

∫
X
f dµ. There is some small advan-

tage to taking the integral over a set as primitive, because this avoids failures
of pattern-matching when automated simplifications move indicator functions
around or unfold the definition, but this advantage is not major as far as we
can tell and could easily be outweighed by complications in proving fundamen-
tal lemmata when the domain of integration is an additional parameter. In
particular, the Isabelle Bochner integration library takes integration over the
entire space as primitive. In any case it is certainly useful to have notation for
integration over a set.

One particular type of set occurs particularly frequently as the domain of
integration with respect to Lebesgue measure on R, namely a closed interval.
In calculus the integral (with respect to Lebesgue meausre) of a function f over

a closed interval [a, b] (a ≤ b) is denoted
∫ b
a
f(x) dx, and it is convenient to

have a similar notation for integrals over intervals in Isabelle. A number of
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design issues immediately present themselves: What should be the types of a
and b? One might assume these should be reals, but frequently integrals are
computed over unbounded intervals (

∫∞
0
e−x dx,

∫∞
−∞ e−x

2

dx), and so there is
some advantage to taking a and b to be extended reals to avoid the need for

separate lemmata for integrals of the form
∫∞
a

,
∫ b
−∞ and

∫∞
−∞ (this last form

being a notational variant of
∫

). However, this advantage is achieved at a
cost, because it entails annoying casts between reals and extended reals that we
found in practice frequently prevent automated tools from proving apparently
obvious facts (which they do in fact obtain when the endpoints are taken to be
of type real). This is largely because the extended reals are not as algebraically
well-behaved as the reals (they are not a field, for example).

As noted in the preceding paragraph, for interval integrals with respect to
Lebesgue measure the interval is generally assumed to be closed (so any contin-
uous function defined on it is uniformly continuous, and other nice properties
hold); since Lebesgue measure is continuous, it makes no difference to the value
of the integral whether the endpoints are included. However, for general mea-
sures this does make a difference if one of the endpoints is an atom, and in
particular the interval partition formula, valid for f integrable with respect to
Lebesgue measure and a ≤ b ≤ c:∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

fails in general if
∫ b
a

is defined as
∫
[a,b]

. What holds instead for arbitrary mea-

sures µ (and functions f integrable over [a, c] with respect to µ) is that∫
[a,b]

f dµ+

∫
[b,c]

f dµ =

∫
[a,c]

f dµ+ f(b)µ{b}.

Intuitively this is because the mass of the point b is counted twice. This is ob-
viously less convenient than the ordinary interval partition formula, especially
for partitions into large numbers of pieces. The problem can be fixed by using a
half-open interval such as (a, b] to ensure pieces of an interval partition are dis-

joint; such a solution preserves the equality
∫ b
a
f dµ =

∫
[a,b]

f dµ for continuous

measures, and satisfies the intuitive partition formula∫ b

a

f dµ+

∫ c

b

f dµ =

∫ c

a

f dµ

for all a, b, c with a < b < c.
A further constellation of design issues arises from considering what should

happen if b < a in
∫ b
a
f(x) dx. The natural option is to take

∫ b
a
f(x) dx =

−
∫ a
b
f(x) dx in this case, but this would require introducing a case split in

the definition of
∫ b
a
f(x) dx (e.g.

∫ b
a
f(x) dx =

∫
[a,b]

f(x) dx if a ≤ b, otherwise∫ b
a
f(x) dx = −

∫
[b,a]

f(x) dx), which then causes headaches for formalization
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both for human users and automated tools.
∫ b
a
f(x) dx could also be taken

simply to be notation for
∫
[a,b]

f(x) dx, in which case b < a implies [a, b] = ∅
and so the integral is zero, but this makes it hard to state results such as the
fundamental theorem of calculus or integration by substitution in a natural
manner.

Another set of issues concern integrability. Not all functions have integrals,
and the notation

∫
f dµ only makes sense if f is integrable (over X). Isabelle

requires that all functions be total, so
∫
f dµ necessarily has a value no matter

what f is. If f is not integrable, the value which
∫
f dµ receives is arbitrary.

A proof that
∫
f dµ = c is useless unless f is known to be integrable (for

otherwise it could be that c just happens to be the default value in the case
of integrating f). These are general problems concerning the representation of
partial functions, and we shall pause to briefly consider them in full generality.

A partial function with domain X and codomain Y can be thought of as a
relation R ⊆ X × Y such that for every x ∈ X and y, z ∈ Y , xRy and xRz
implies y = z (a [total] function corresponds to such a relation where in addition
for every x ∈ X there exists y ∈ Y such that xRy, though the higher-order logic
used by Isabelle treats functions somewhat differently [not as relations]). Let
y∗ be some distinguished element of the type of elements of Y , and consider the
function f : X → Y ∪ {y∗} where f(x) = y if there exists y ∈ Y such that xRy,
and otherwise f(x) = y∗. The value y∗ should be thought of as hidden; the
fact that f(x) = y∗ if there does not exist y ∈ Y such that xRy should not be
exploited in proofs. In this case the conclusion that f(x) = y is useless unless
it is known that there exists y ∈ Y such that xRy. Since the existence of y ∈ Y
such that xRy means intuitively that f is “defined” at x; let us denote it by Dx.
Then xRy is equivalent to Dx and f(x) = y. Since f(x) = y is useless without
knowing Dx, the conclusions of computations of f for various arguments should
either be stated in terms of R or have the auxilliary conclusion that Dx for each
argument x of f considered in the computation. xRy is a robust conclusion
and functions well as the fundamental notion in terms of which f and D are
defined, while it is convenient to have f both to allow statement of results in
a manner more similar to mathematical practice, and to allow more convenient
computation with values of the partial function (e.g. f(x1) + f(x2) is easier to
work with than (THE y. x1Ry) + (THE y. x2Ry) or something like that).

The Isabelle libraries we used during the formalization of the central limit
theorem employed an integral operator and an integrability predicate; there
was no instantiation of the relation R from the preceding paragraph. This
could have worked had every use of the integral operator been accompanied
by a corresponding proof of integrability, but unfortunately that was not the
case, and occasionally we needed to either modify a library proof to obtain
integrability as well as the value of an integral, or repeat long arguments from
library lemmata with trivial modifications so as to obtain integrability. This
is striking, because other partial functions such as limits and derivatives had
already been implemented with relations such as has derivative and what one
may think of as has limit (though the actual definition of limits uses two filters
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as described in section 4.3). The problem of partial functions was not new, but
it required experience to determine the best method of implementing them in
Isabelle. Another consideration in the case of integration was that when working
with concrete functions, one often wishes to prove integrability by computing
the integral (e.g. the integral of e−x over [0,∞) is 1), and this is generally very
inconvenient to do when integrability must be verified separately. A better plan
in such cases is to have an instantiation has integral of the relation R from the
preceding paragraph, and obtain integrability by proving that f has integral

c for appropriate c when working with specific integrals. Thus it is convenient
to have not only an integral operator and an integrability predicate, but also
a has integral relation. In some sense it does not matter which is taken as
fundamental, but as noted in the preceding paragraph it seems more natural to
take has integral as fundamental.

The change from a fundamental integral operator and integrability predicate
to a fundamental has integral relation was accomplished by Hölzl when reim-
plementing the integration library using the Bochner integral. This change was
motivated largely by a desire to provide a unified framework for vector-valued
integrals, and was of direct importance to the central limit theorem formaliza-
tion because the complex-valued integrals arising from characteristic functions
can be handled as Bochner integrals.

There is also the question of how to handle improper integrals; for example,
the sinc function (x−1 sinx away from zero, and 1 at zero) is not integrable over
[0,∞), and yet

lim
t→∞

∫ t

0

sincx dx =
π

2
.

Often this is written simply as
∫∞
0

sincx dx = π/2, perhaps with a warning that
notation is being abused (see note regarding this limit in [6], p. 223). Improper
integrals also occur over finite intervals, for example

lim
t→0

∫ 1

t

(−1)bxc+1

bxc
1(0,1] dx = ln 2,

but the integrand is not integrable over (0, 1] because the harmonic series di-
verges. It would be possible to implement the integral over an interval to include
improper integrals, as is standard practice in calculus texts, by including a limit
in the definition of such an integral. However, this seems to carry with it too
many disadvantages, simply because of the complication that a hidden limit
introduces; it is inconvenient for users to constantly need to eliminate the limit
whenever they use integrals, and difficult to set up automated tools to deal with
it effectively.

5.4.2 The Sine Integral Function

First a note on theorems fundamental to working with integrals: The funda-
mental theorem of calculus was present in some form when we started, but we
found it useful to extend it significantly. We also proved lemmata concerning
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integration by substitution (change of variables), and defined integrals over sets
and intervals. During the course of the formalization Hölzl improved our fun-
damental lemmata and our definitions of integrals over sets and intervals and
incorporated them into the integration library he was developing. We do not
include pieces of that library in this paper, but the reader may readily find them
on the Isabelle website (under HOL-Probability).

On p. 223 of [6], Billingsley notes that it is “an important analytic fact”
that

lim
t→∞

∫ t

0

sinx

x
dx =

π

2
.

Partly because of this, but mostly because this important analytic fact is used
in the proof of the Lévy inversion theorem, we decided to formalize the proof of
this limit.

The function sin x
x has a removable discontinuity (due to not being defined)

at zero; the result of filling in that discontinuity (with the value 1) is called the
function sinc: sincx = sin x

x if x 6= 0, sinc 0 = 1. The indefinite integral of the
sinc function, starting at 0, is called the sine integral function:

Si(x) =

∫ t

0

sincx dx.

These definitions, and the basic properties of the sinc and Si functions, are
formalized as expected. Note that LINT is ASCII notation for the Lebesgue
integral, and LBINT is ASCII notation for the Lebesgue integral with respect to
Lebesgue measure (otherwise known as Lebesgue-Borel measure).

abbreviation sinc :: "real ⇒ real" where
"sinc ≡ (λx. if x = 0 then 1 else sin x / x)"

lemma sinc_at_0: "((λx. sin x / x::real) ---> 1) (at 0)"

using DERIV_sin [of 0] by (auto simp add: has_field_derivative_def field_has_derivative_at)

lemma isCont_sinc: "isCont sinc x"

apply (case_tac "x = 0", auto)

apply (simp add: isCont_def)

apply (subst LIM_equal [where g = "λx. sin x / x"], auto intro: sinc_at_0)

apply (rule continuous_transform_at [where d = "abs x" and f = "λx. sin

x / x"])

by (auto simp add: dist_real_def)

lemma continuous_on_sinc[continuous_intros]:

"continuous_on S f =⇒ continuous_on S (λx. sinc (f x))"

using continuous_on_compose[of S f sinc, OF _ continuous_at_imp_continuous_on]

by (auto simp: isCont_sinc)

lemma borel_measurable_sinc[measurable]: "sinc ∈ borel_measurable borel"

by (intro borel_measurable_continuous_on1 continuous_at_imp_continuous_on

ballI isCont_sinc)
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lemma sinc_AE: "AE x in lborel. sin x / x = sinc x"

by (rule AE_I [where N = "{0}"], auto)

definition Si :: "real ⇒ real" where "Si t ≡ LBINT x=0..t. sin x / x"

lemma Si_alt_def : "Si t = LBINT x=0..t. sinc x"

apply (case_tac "0 ≤ t")

unfolding Si_def apply (rule interval_lebesgue_integral_cong_AE, auto)

apply (rule AE_I’ [where N = "{0}"], auto)

apply (subst (1 2) interval_integral_endpoints_reverse, simp)

apply (rule interval_lebesgue_integral_cong_AE, auto)

by (rule AE_I’ [where N = "{0}"], auto)

lemma sinc_neg [simp]: "sinc (- x) = sinc x"by auto

lemma Si_neg:

fixes T :: real

assumes "T ≥ 0"

shows "Si (- T) = - Si T"

proof -

have "LBINT x=ereal 0..T. -1 *R sinc (- x) = LBINT y= ereal (- 0)..ereal

(- T). sinc y"

apply (rule interval_integral_substitution_finite [OF assms])

by (auto intro: derivative_intros continuous_at_imp_continuous_on isCont_sinc)

also have "(LBINT x=ereal 0..T. -1 *R sinc (- x)) = -(LBINT x=ereal 0..T.

sinc x)"

by (subst sinc_neg) (simp_all add: interval_lebesgue_integral_uminus)

finally have *: "-(LBINT x=ereal 0..T. sinc x) = LBINT y= ereal 0..ereal

(- T). sinc y"

by simp

show ?thesis

using assms unfolding Si_alt_def

apply (subst zero_ereal_def)+

by (auto simp add: * [symmetric])

qed

lemma iSi_isCont: "isCont Si x"

proof -

have "Si = (λt. LBINT x=ereal 0..ereal t. sinc x)"

apply (rule ext, simp add: Si_def zero_ereal_def)

apply (rule interval_integral_cong_AE)

by (auto intro!: AE_I’ [where N = "{0}"])

thus ?thesis

apply (elim ssubst)

apply (rule DERIV_isCont)

apply (subst has_field_derivative_within_open [symmetric,

where s = "{(min (x - 1) (- 1))<..<(max 1 (x+1))}"], auto)

apply (rule DERIV_subset [where s = "{(min (x - 2) (- 2))..(max 2 (x+2))}"])

unfolding has_field_derivative_iff_has_vector_derivative

apply (rule interval_integral_FTC2)
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by (auto intro!: continuous_on_sinc continuous_on_id)

qed
lemma borel_measurable_iSi[measurable]: "Si ∈ borel_measurable borel"

by (auto intro: iSi_isCont continuous_at_imp_continuous_on borel_measurable_continuous_on1)

The abbreviation keyword indicates a definition which is always to be
expanded; normally Isabelle does not expand definitions unless explicitly told
to do so in order to avoid the associated explosion in proof search possibilities.
Whether a definition should be made using abbreviation (so it is conveniently
always expanded) or definition is an important design decision affecting the
usability of a library, and there can be many conflicting factors. For example,
case splits are difficult for automated tools to work with, but in the case of the
sinc function we chose an abbreviation because the function was not used in a
sufficiently fundamental way to warrant developing a reasonably complete list
of its basic properties, as is needed for a definition made with the definition

keyword to function well (without requiring that it constantly be expanded).
Billingsely’s proof that limx→∞ Si(x) = π

2 uses Fubini’s theorem, a result
concerning product measures which allows integrals with respect to product
measures to be computed as iterated integrals, in either order, under very
general circumstances. The product of two measure spaces (X1,Σ1, µ1) and
(X2,Σ2, µ2) has as σ-algebra the algebra σ(Σ1 × Σ2) generated by rectangles
A × B where A ∈ Σ1 and B ∈ Σ2, and measure given by (µ1 × µ2)(A × B) =
µ1(A)µ2(B) for A ∈ Σ1 and B ∈ Σ2, extended to the entire σ-algebra σ(Σ1×Σ2)
by Carathéodory’s theorem. For a formal statement of Fubini’s theorem we refer
the reader to any standard treatment of measure theory, such as that in [6]. The
basics of product measures had already been formalized by Hölzl [18], including
Fubini’s theorem. We formalized the result displayed in figure 2 to facilitate the
use of Fubini’s theorem in proofs involving concrete integrals.

Let us now examine the informal computation of the limit of Si(x) at in-
finity, following Billingsley [6] as usual. The fundamental theorem of calculus
immediately yields∫ t

0

e−ux sinx dx
1

1 + u2
[1− e−ut(u sin t+ cos t)].

Taking t→∞, we see that∫ t

0

(∫ ∞
0

|e−ux sinx| du
)
dx =

∫ t

0

x−1| sinx| dx ≤ t,
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so Fubini’s theorem may be used in the integration of e−ux sinx over (0, t)×
(0,∞): ∫ t

0

sinx

x
dx =

∫ t

0

sinx

(∫ ∞
0

e−ux du

)
dx

=

∫ ∞
0

(∫ t

0

e−ux sinx dx

)
du

=

∫ ∞
0

du

1 + u2
−
∫ ∞
0

e−ut

1 + u2
(u sin t+ cos t) du.

It is an elementary fact that
∫∞
0

du
1+u2 = π

2 , and the change of variable
v = ut can be used to see that the second integral in the final result of the
above calculation converges to 0 as t→∞. Hence

lim
t→∞

Si(t) = lim
t→∞

∫ t

0

sinx

x
dx =

π

2
.

Formalizing this argument was quite possibly the most painful part of our
formalization of the CLT, but it paid off with improvements to the integration
library made because of lessons learned; see the preceding section for an outline
of these. I won’t include all the technical lemmata we employed during this
painful formalization, but give formal statements of the main result and the
fact that the subtracted “error term” in the last line of the informal calculation
goes to zero (in inverted order, of course).

lemma Si_at_top_lemma:

shows "
∧
t. t ≥ 0 =⇒ interval_lebesgue_integrable lborel 0 ∞

(λx. exp (- (x * t)) * (x * sin t + cos t) / (1 + x2))"

and
"((λt. (LBINT x=0..∞. exp (-(x * t)) * (x * sin t + cos t) / (1 + x^2)))

---> 0) at_top"

lemma Si_at_top:

shows "(Si ---> pi / 2) at_top"

We shall see more use of the Isabelle integration library when working with
characteristic functions, and in particular the proofs of the Lévy inversion and
continuity theorems. Much more than is outlined in this paper is present in the
full formalization.

5.5 Characteristic Functions

As noted in the summary section 3, in a probabilistic context the Fourier trans-
form of a probability measure (equivalently, of a random variable distributed
as the given measure) is called its characteristic function. Here we describe our
formalization of the definition and basic properties of characteristic functions.

First we need some properties of eix:
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abbreviation iexp :: "real ⇒ complex" where
"iexp ≡ (λx. Exp ( i * complex_of_real x))"

lemma isCont_iexp [simp]: "isCont iexp x"

by (intro continuous_intros)

lemma cmod_iexp [simp]: "cmod (Exp ( i * (x::real))) = 1"

by simp

lemma iexp_alt: "iexp x = cos x + i * sin x"

by (simp add: complex_eq_iff cis_conv_exp[symmetric] cos_of_real sin_of_real)

lemma has_vector_derivative_iexp[derivative_intros]:

"(iexp has_vector_derivative i * iexp x) (at x within s)"

by (auto intro!: derivative_eq_intros simp: Re_exp Im_exp has_vector_derivative_complex_iff)

When we initially began formalizing properties of characteristic functions,
the Isabelle library had no support for integrals of functions of type R → C;
fortunately the formalization of Bochner integration corrects that problem.

lemma interval_integral_iexp:

fixes a b :: real

shows "(CLBINT x=a..b. iexp x) = ii * iexp a - ii * iexp b"

by (subst interval_integral_FTC_finite [where F = "λx. -ii * iexp x"])

(auto intro!: derivative_eq_intros continuous_intros)

Here CLBINT is ASCII notation for the Lebesgue integral of a function of
type R→ C with the canonical Lebesgue measure. As discussed in section 5.4.1,
computing the value of an integral is useless without also showing the function
is integrable, so we do that as well.

lemma ( in prob_space) integrable_iexp:

assumes f: "f ∈ borel_measurable M" "
∧
x. Im (f x) = 0"

shows "integrable M (λx. Exp (ii * (f x)))"

proof (intro integrable_const_bound [of _ 1])

from f have "
∧
x. of_real (Re (f x)) = f x"

by (simp add: complex_eq_iff)

then show "AE x in M. cmod (Exp ( i * f x)) ≤ 1"

using cmod_iexp[of "Re (f x)" for x] by simp

qed (insert f, simp)

We can now define the characteristic function of a measure and prove some
basic properties. Informally, the characteristic function of a probability measure
µ is simply the function ϕ(t) =

∫
eitx µ(dx), which is of course continuous (in

fact uniformly continuous, see [6] p. 343).

definition
char :: "real measure ⇒ real ⇒ complex"

where
"char M t ≡ complex_lebesgue_integral M (λx. iexp (t * x))"

lemma ( in real_distribution) char_zero: "char M 0 = 1"

unfolding char_def by (simp del: space_eq_univ add: prob_space) lemma ( in
real_distribution) cmod_char_le_1: "norm (char M t) ≤ 1"

proof -
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have "norm (char M t) ≤ (
∫
x. norm (iexp (t * x)) ∂M)"

unfolding char_def by (intro integral_norm_bound integrable_iexp) auto

also have " . . . ≤ 1"

by (simp del: of_real_mult)

finally show ?thesis .
qed lemma ( in real_distribution) isCont_char: "isCont (char M) t"

unfolding continuous_at_sequentially

proof safe

fix X assume X: "X ----> t"

show "(char M ◦ X) ----> char M t"

unfolding comp_def char_def

by (rule integral_dominated_convergence[where w="λ_. 1"])

(auto simp del: of_real_mult intro!: AE_I2 tendsto_intros X)

qed lemma ( in real_distribution) char_measurable [measurable]: "char M ∈
borel_measurable borel"

by (auto intro!: borel_measurable_continuous_on1 continuous_at_imp_continuous_on

isCont_char)

It is instrumental to the proof of the central limit theorem that if X and
Y are independent random variables (say on the space (Ω,F ,P)), then the
characteristic function of their sum is the (pointwise) product of their charac-
teristic functions. To see this, note that the random vectors (cosX, sinX) and
(cosY, sinY ) are independent, and so, letting ϕ1 be the characteristic function
of X, ϕ2 be the characteristic function of Y , and t ∈ R, we have (following
Billingsley [6] as usual)

ϕ1(t)ϕ2(t) = (E(cosX) + iE(sinX))(E(cosY ) + iE(sinY ))

= E(cosX)E(cosY )− E(sinX)E(sinY )

+ i(E(cosX)E(sinY ) + E(sinX)E(cosY ))

= E(cosX cosY − sinX sinY + i(cosX sinY + sinX cosY ))

= E(eit(X+Y )).

Since if X ⊥⊥ Y and X ∼ µ, Y ∼ ν, then X + Y ∼ µ ∗ ν, the convulution of µ
and ν, we see that in general the characteristic function of a convolution is the
(pointwise) product of the characteristic functions.

All this is formalized as follows. The setsum version handles finite sums, as
will occur in the proof of the CLT.

lemma ( in prob_space) char_distr_sum:

fixes X1 X2 :: "’a ⇒ real" and t :: real

assumes "indep_var borel X1 borel X2"

shows "char (distr M borel (λω. X1 ω + X2 ω)) t =

char (distr M borel X1) t * char (distr M borel X2) t"

proof -

from assms have [measurable]: "random_variable borel X1" by (elim indep_var_rv1)

from assms have [measurable]: "random_variable borel X2" by (elim indep_var_rv2)

have "char (distr M borel (λω. X1 ω + X2 ω)) t = (CLINT x|M. iexp (t *

(X1 x + X2 x)))"
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by (simp add: char_def integral_distr)

also have " . . . = (CLINT x|M. iexp (t * (X1 x)) * iexp (t * (X2 x))) "

by (simp add: field_simps exp_add)

also have " . . . = (CLINT x|M. iexp (t * (X1 x))) * (CLINT x|M. iexp (t * (X2

x)))"

by (intro indep_var_lebesgue_integral indep_var_compose[unfolded comp_def,

OF assms])

(auto intro!: integrable_iexp)

also have " . . . = char (distr M borel X1) t * char (distr M borel X2) t"

by (simp add: char_def integral_distr)

finally show ?thesis .
qed

lemma ( in prob_space) char_distr_setsum:

"indep_vars (λi. borel) X A =⇒
char (distr M borel (λω.

∑
i∈A. X i ω)) t = (

∏
i∈A. char (distr M borel

(X i)) t)"

proof (induct A rule: infinite_finite_induct)

case (insert x F) with indep_vars_subset[of "λ_. borel" X "insert x F" F]

show ?case

by (auto simp add: char_distr_sum indep_vars_setsum)

qed (simp_all add: char_def integral_distr prob_space del: distr_const)

We shall also need the characteristic function of the standard normal dis-
tribution, in order to show that the product of characteristic functions of in-
dependent identically distributed random variables of finite variance converges
to it. The characteristic function of the standard normal distribution is e−t

2/2;
the detailed calculation and its associated technical lemmata are ommited.

abbreviation
"std_normal_distribution ≡ density lborel std_normal_density"

lemma real_dist_normal_dist: "real_distribution std_normal_distribution"

unfolding real_distribution_def

apply (rule conjI)

apply (rule prob_space_normal_density, auto)

unfolding real_distribution_axioms_def by auto

theorem char_std_normal_distribution:

"char std_normal_distribution = (λt. complex_of_real (exp (- (t^2) / 2)))"

5.6 The Lévy Theorems

Here we formalize some significant results about characteristic functions which
are essential to their usefullness for studying distribution functions. The Lévy
inversion theorem shows that the characteristic function of a distribution uniquely
determines that distribution, while the Lévy continuity theorem shows that
weak convergence of distributions is equivalent to pointwise convergence of the
associated characteristic functions.
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5.6.1 The Lévy Inversion Theorem

In preparation for the informal proof of the Lévy inversion theorem, note that

(*)

∫ t

0

sinxθ

x
dx = sgn θ Si(t|θ|),

where sgnx is the sign of x (sgnx = 1 if x > 0, sgn 0 = 0, and sgnx = −1 if
x < 0).

Theorem 5.16. Let µ be a probability measure, and ϕ be the characteristic
function of µ. If a and b are continuity points of µ and a < b, then

µ(a, b] = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t) dt.

Hence distinct probability measures have distinct characteristic functions.

Proof. Define

I(T ) =
1

2π

∫ T

−T

eita − eitb

it
ϕ(t) dt.

Since [−T, T ]×R has finite measure with respect to λ×µ (where λ is Lebesgue
measure), and |ϕ(t)| ≤ 1 and∣∣∣∣eita − eitbit

∣∣∣∣ ≤ |b− a|
for all t, we have by Fubini’s theorem that

I(T ) =
1

2π

∫ ∞
−∞

∫ T

−T

eit(x−a) − eit(x−b)

it
dt µ(dx).

Using DeMoivre’s formula to rewrite the integrand and noting (∗) (from before
the statement of the theorem) and the fact that sin is an odd, and cos an even,
function reveals that

I(T ) =

∫ ∞
−∞

(
sgn(x− a)

π
Si(T |x− a|)− sgn(x− b)

π
Si(T |x− b|)

)
µ(dx).

Since limT→∞ Si(T ) = π
2 , we have that Si is bounded, and hence the integrand

is bounded. Moreover, the integrand converges to the function given by

ψa,b(x) =



0 if x < a,
1
2 if x = a,

1 if a < x < b,
1
2 if x = b,

0 if b < x.

Thus by the bounded convergence theorem we have that I(T ) →
∫
ψa,b dµ as

T →∞, which implies the desired conclusion when µ{a} = µ{b} = 0.
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Uniqueness follows because if two Borel probability measures µ, ν have the
same characteristic function, they agree on the π-system of half-open intervals
(a, b] where µ{a} = ν{a} = µ{b} = ν{b} = 0 (this is a π-system generating
the Borel sets because µ and ν each have countably many atoms), and hence
everywhere by the Carathéodory extension theorem.

The bound ∣∣∣∣eita − eitbit

∣∣∣∣ ≤ |b− a|
is formalized as

lemma Levy_Inversion_aux2:

fixes a b t :: real

assumes "a ≤ b" and "t 6= 0"

shows "cmod ((iexp (t * b) - iexp (t * a)) / (ii * t)) ≤ b - a"

( is "?F ≤ _")

proof -

have "?F = cmod (iexp (t * a) * (iexp (t * (b - a)) - 1) / (ii * t))"

using ‘t 6= 0‘ by (intro arg_cong[where f=norm]) (simp add: field_simps

exp_diff exp_minus)

also have " . . . = cmod (iexp (t * (b - a)) - 1) / abs t"

apply (subst norm_divide)

apply (subst norm_mult)

apply (subst cmod_iexp)

using ‘t 6= 0‘ by (simp add: complex_eq_iff norm_mult)

also have " . . . ≤ abs (t * (b - a)) / abs t"

apply (rule divide_right_mono)

using equation_26p4a [of "t * (b - a)" 0] apply (simp add: field_simps

eval_nat_numeral)

by force

also have " . . . = b - a"

using assms by (auto simp add: abs_mult)

finally show ?thesis .
qed

The formal statements of the inversion and uniqueness theorems follow; both
proofs are long and omitted, though it should be noted that obtaining uniqueness
from inversion was not as straightforward as it appears it ought to be from the
informal proof.

theorem Levy_Inversion:

fixes M :: "real measure"

and a b :: real

assumes "a ≤ b"

defines "µ ≡ measure M" and "ϕ ≡ char M"

assumes "real_distribution M"

and "µ {a} = 0" and "µ {b} = 0"

shows
"((λT :: nat. 1 / (2 * pi) * (CLBINT t=-T..T. (iexp (-(t * a)) -

iexp (-(t * b))) / (ii * t) * ϕ t)) ---> µ {a<..b}) at_top"

( is "((λT :: nat. 1 / (2 * pi) * (CLBINT t=-T..T. ?F t * ϕ t)) --->
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of_real (µ {a<..b})) at_top")

theorem Levy_uniqueness:

fixes M1 M2 :: "real measure"

assumes "real_distribution M1" "real_distribution M2" and
"char M1 = char M2"

shows "M1 = M2"

5.6.2 The Lévy Continuity Theorem

We are finally ready to connect characteristic functions to weak convergence.

Theorem 5.17. Let 〈µn | n ∈ N〉 be a sequence of probability measures with
characteristic functions 〈ϕn | n ∈ N〉, and µ be a probability measure with
characteristic function ϕ. Then µn ⇒ µ iff ϕn → ϕ pointwise.

Proof. (=⇒): Since eitx has bounded modulus and is continuous in x for each
t ∈ R, this follows immediately from the portmanteau theorem applied to the
real and imaginary parts of eitx.

(⇐=): We have another opportunity to use Fubini’s theorem.

1

u

∫ u

−u
(1− ϕn(t)) dt =

∫ ∞
−∞

(
1

u

∫ u

−u
(1− eitx) dt

)
µn(dx)

= 2

∫ ∞
−∞

(1− sincux)µn(dx)

≥ 2

∫
|x|≥2/u

(
1− 1

|ux|

)
µn(dx)

≥ µn{x ∈ R | |x| ≥ 2

u
}.

Since ϕ is continuous and ϕ(0) = 1, for every ε > 0 there exists u ∈ R such that

1

u

∫ u

−u
(1− ϕ(t)) dt < ε.

Because ϕn → ϕ pointwise, by the bounded convergence theorem there is n0 ∈ N
such that

1

u

∫ u

−u
(1− ϕn(t)) dt < 2ε.

for n ≥ n0. Thus µn{x ∈ R | |x| ≥ 2u−1} < 2ε, and so for some a ≥ 2u−1 we
have µn{x ∈ R | |x| ≥ a} < 2ε. Consequently the sequence 〈µn | n ∈ N〉 is tight.

By the corollary concerning tightness (see the end of section 5.3) it is suffi-
cient to show that every subsequece 〈µnk | k ∈ N〉 which has a weak limit in fact
converges weakly to µ. If µnk ⇒ ν for some probability measure ν, then by the
first half of the theorem we have that limk→∞ ϕnk(t) = ϕ(t) is the characteristic
function of ν, and hence ν = µ by the uniqueness theorem.
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As the reader may anticipate, the formal proof is long and difficult. The
formal statement of the Lévy continuity theorem suffices to be written here.

theorem levy_continuity1:

fixes
M :: "nat ⇒ real measure" and
M’ :: "real measure"

assumes
real_distr_M : "

∧
n. real_distribution (M n)" and

real_distr_M’: "real_distribution M’" and
measure_conv: "weak_conv_m M M’"

shows
"(λn. char (M n) t) ----> char M’ t"

5.7 The Central Limit Theorem

All the pieces are now in place for the proof of the central limit theorem; we
just need to put them together. To remind the reader: we shall show that if µ
is the distribution of a random variable with finite nonzero variance and ϕ is
the characteristic function of µ, then ϕ(σ−1n−1/2x)n → e−x

2/2 for each x ∈ R,

where e−x
2/2 is the characteristic function of a standard normal distribution.

From this and facts proven earlier about characteristic functions of independent
random variables it follows that the normalized sums 1

σ
√
n

∑n
k=0(Xk − E(Xk))

converge weakly to a standard normal distribution. For the remainder of this
section, we assume without loss of generality that the random variables we work
with have mean zero and variance one (otherwise a random variable with finite
nonzero variance can be translated and scaled).

The central limit theorem is proved simply by showing that if X is a random
variable with zero mean and unit variance, then the characteristic function ϕ of
x satisfies ϕ(t) = 1− t2/2 + o(t2), as follows from Taylor expansion about zero.
Thus

ϕ

(
t√
n

)n
=

(
1− t2

2n
+ o

(
t2

n

))
→ e−t

2/2,

by basic facts about limits. Since e−t
2/2 is the characteristic function of a

standard normal distribution, and the characteristic function of 1√
n

∑n
k=0Xk is

ϕ(t/
√
n)n, we have by the Lévy continuity theorem that

1√
n

n∑
k=0

Xk ⇒ N,

where N is a random variable with standard normal distribution, as desired.
Because it is the primary goal of our formalization, we present the formal

proof of the central limit theorem in full.

theorem ( in prob_space) central_limit_theorem:

fixes
X :: "nat ⇒ ’a ⇒ real" and
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µ :: "real measure" and
σ :: real and
S :: "nat ⇒ ’a ⇒ real"

assumes
X_indep: "indep_vars (λi. borel) X UNIV" and
X_integrable: "

∧
n. integrable M (X n)" and

X_mean_0: "
∧
n. expectation (X n) = 0" and

σ_pos: "σ > 0" and
X_square_integrable: "

∧
n. integrable M (λx. (X n x)2)" and

X_variance: "
∧
n. variance (X n) = σ2" and

X_distrib: "
∧
n. distr M borel (X n) = µ"

defines
"S n ≡ λx.

∑
i<n. X i x"

shows
"weak_conv_m (λn. distr M borel (λx. S n x / sqrt (n * σ2)))

(density lborel std_normal_density)"

proof -

def S’ ≡ "λn x. S n x / sqrt (n * σ2)"

def ϕ ≡ "λn. char (distr M borel (S’ n))"

def ψ ≡ "λn t. char µ (t / sqrt (σ2 * n))"

have X_rv [simp, measurable]: "
∧
n. random_variable borel (X n)"

using X_indep unfolding indep_vars_def2 by simp

interpret µ: real_distribution µ
by (subst X_distrib [symmetric, of 0], rule real_distribution_distr, simp)

have µ_integrable [simp]: "integrable µ (λx. x)"

apply (simp add: X_distrib [symmetric, of 0])

using assms by (subst integrable_distr_eq, auto)

have µ_mean_integrable [simp]: "µ.expectation (λx. x) = 0"

apply (simp add: X_distrib [symmetric, of 0])

using assms by (subst integral_distr, auto)

have µ_square_integrable [simp]: "integrable µ (λx. x^2)"

apply (simp add: X_distrib [symmetric, of 0])

using assms by (subst integrable_distr_eq, auto)

have µ_variance [simp]: "µ.expectation (λx. x^2) = σ2"

apply (simp add: X_distrib [symmetric, of 0])

using assms by (subst integral_distr, auto)

have main: "
∧
t. eventually (λn. cmod (ϕ n t - (1 + (-(t^2) / 2) / n)^n)

≤
(t2 / (6 * σ2) * (LINT x|µ. min (6 * x2) ( |t / sqrt (σ2 * n) | * |x |

^ 3))))

sequentially"

proof (rule eventually_sequentiallyI)

fix n :: nat and t :: real

assume "n ≥ nat (ceiling (t^2 / 4))"

hence n: "n ≥ t^2 / 4" by (subst nat_ceiling_le_eq [symmetric])

let ?t = "t / sqrt (σ2 * n)"
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def ψ’ ≡ "λn i. char (distr M borel (λx. X i x / sqrt (σ2 * n)))"

have *: "
∧
n i t. ψ’ n i t = ψ n t"

unfolding ψ_def ψ’_def char_def apply auto

apply (subst X_distrib [symmetric])

apply (subst integral_distr, auto)

by (subst integral_distr, auto)

have 1: "S’ n = (λx. (
∑

i < n. X i x / sqrt (σ2 * n)))"

by (rule ext, simp add: S’_def S_def setsum_divide_distrib ac_simps)

have "ϕ n t = (
∏

i < n. ψ’ n i t)"

unfolding ϕ_def ψ’_def apply (subst 1)

apply (rule char_distr_setsum)

apply (rule indep_vars_compose2[where X=X])

apply (rule indep_vars_subset)

apply (rule X_indep)

apply auto

done
also have " . . . = (ψ n t)^n"

by (auto simp add: * setprod_constant)

finally have 2: "ϕ n t =(ψ n t)^n" .

have "cmod (ψ n t - (1 - ?t^2 * σ2 / 2)) ≤
?t2 / 6 * (LINT x|µ. min (6 * x2) ( |?t | * |x | ^ 3))"

unfolding ψ_def by (rule µ.aux, auto)

also have "?t^2 * σ2 = t^2 / n"

using σ_pos by (simp add: power_divide)

also have "t^2 / n / 2 = (t^2 / 2) / n" by simp

finally have **: "cmod (ψ n t - (1 + (-(t^2) / 2) / n)) ≤
?t2 / 6 * (LINT x|µ. min (6 * x2) ( |?t | * |x | ^ 3))" by simp

have "cmod (ϕ n t - (complex_of_real (1 + (-(t^2) / 2) / n))^n) ≤
n * cmod (ψ n t - (complex_of_real (1 + (-(t^2) / 2) / n)))"

apply (subst 2, rule norm_power_diff)

unfolding ψ_def apply (rule µ.cmod_char_le_1)
apply (simp only: norm_of_real)

apply (auto intro!: abs_leI)

using n by (subst divide_le_eq, auto)

also have " . . . ≤ n * (?t2 / 6 * (LINT x|µ. min (6 * x2) ( |?t | * |x | ^
3)))"

by (rule mult_left_mono [OF **], simp)

also have " . . . = (t2 / (6 * σ2) * (LINT x|µ. min (6 * x2) ( |?t | * |x | ^
3)))"

using σ_pos by (simp add: field_simps min_absorb2)

finally show "cmod (ϕ n t - (1 + (-(t^2) / 2) / n)^n) ≤
(t2 / (6 * σ2) * (LINT x|µ. min (6 * x2) ( |?t | * |x | ^ 3)))"

by simp

qed

have S_rv [simp, measurable]: "
∧
n. random_variable borel (λx. S n x / sqrt
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(n * σ2))"

unfolding S_def by measurable

have "
∧
t. (λn. ϕ n t) ----> char std_normal_distribution t"

proof -

fix t

let ?t = "λn. t / sqrt (σ2 * n)"

have *: "
∧
n. integrable µ (λx. 6 * x^2)" by auto

have **: "
∧
n. integrable µ (λx. min (6 * x2) ( |t / sqrt (σ2 * real n) |

* |x | ^ 3))"

by (rule integrable_bound [OF *]) auto

have ***: "
∧
x. (λn. |t | * |x | ^ 3 / |sqrt (σ2 * real n) |) ----> 0"

apply (subst divide_inverse)

apply (rule tendsto_mult_right_zero)

using σ_pos apply (subst abs_of_nonneg, simp)

apply (simp add: real_sqrt_mult)

apply (rule tendsto_mult_right_zero)

apply (rule tendsto_inverse_0_at_top)

by (rule filterlim_compose [OF sqrt_at_top filterlim_real_sequentially])

have "(λn. LINT x|µ. min (6 * x2) ( |?t n | * |x | ^ 3)) ----> (LINT x|µ.
0)"

apply (rule integral_dominated_convergence [where w = "λx. 6 * x^2"])

using σ_pos apply (auto intro!: AE_I2)

apply (rule tendsto_sandwich [OF _ _ tendsto_const ***])

apply (auto intro!: always_eventually min.cobounded2)

done
hence "(λn. LINT x|µ. min (6 * x2) ( |?t n | * |x | ^ 3)) ----> 0" by simp

hence main2: "(λn. t2 / (6 * σ2) * (LINT x|µ. min (6 * x2) ( |?t n | *
|x | ^ 3))) ----> 0"

by (rule tendsto_mult_right_zero)

have **: "(λn. (1 + (-(t^2) / 2) / n)^n) ----> exp (-(t^2) / 2)"

by (rule tendsto_exp_limit_sequentially)

have "(λn. complex_of_real ((1 + (-(t^2) / 2) / n)^n)) ---->

complex_of_real (exp (-(t^2) / 2))"

by (rule isCont_tendsto_compose [OF _ **], auto)

hence "(λn. ϕ n t) ----> complex_of_real (exp (-(t^2) / 2))"

apply (rule Lim_transform)

by (rule Lim_null_comparison [OF main main2])

thus "(λn. ϕ n t) ----> char std_normal_distribution t"

by (subst char_std_normal_distribution)

qed
thus ?thesis

apply (intro levy_continuity)

apply (rule real_distribution_distr [OF S_rv])

unfolding real_distribution_def real_distribution_axioms_def

apply (simp add: prob_space_normal_density)

unfolding ϕ_def S’_def by -

qed
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6 Conclusion: Opportunities for Improvement
and Extension

The version of the central limit theorem we proved is not the most general
presented in Billingsley [6]. With some more calculational effort we could for-
malize the Lindeberg central limit theorem, which relaxes the condition that
the random variables being summed be identically distributed (they merely
need to not deviate too much in distribution, as made precise by the Linde-
berg condition given on p. 359 of [6]). Even the condition that the variables
being summed be independent can be weakened to a condition of weak depen-
dence; Billingsley begins to outline this on p. 363. Both of these are good
candidates for further formalization now that the background theory of charac-
teristic functions is in place, with the dependent variables generalization being
the more ambitious. Other generalizations include the CLT for random vectors
([6], p. 385) and various versions of the CLT for martingales ([6], pp. 475–478).
Many other refinements and generalizations for the central limit theorem exist
in the mathematical literature.

During the formalization process, it was often surprising how far the analysis
libraries of Isabelle extend, but at the same time frustrating that the automated
tools would get stuck on seemingly trivial matters like determining whether an
instance of zero should be interpreted as a real or an extended real. Clearly
much more remains to be done to encode basic human analytical intuition into
proof procedures.

Our formalization sometimes approximated an informal presentation quite
well, but as the reader can perceive looking through the proof scripts we have
presented formal proofs still tend to be much longer. This should be remedied
as the library is developed further and automated tools are improved.

Our main goal for the central limit formalization project was to improve the
Isabelle integration libraries, and this succeeded very well, first with the author
and Avigad extending them as needed for proofs, and then with Hölzl unifying
everything as he rewrote the library to accomodate vector-valued integrals, such
as integrals of functions of type R→ C, natively.

As remarked in section 5.4.2, calculating with integrals was perhaps the
most painful part of the formalization, and it is interesting to speculate how
computer algebra systems could help remedy this situation. Perhaps a computer
algebra system could be modified to keep track of enough information for Isabelle
to reconstruct a proof (including a proof of integrability), or alternatively an
interactive proof assistant could be used to verify the correctness of a computer
algebra system and then the results obtained by that system could be used
freely.

The depth of formalized analysis has increased dramatically in recent years,
and we hope that our addition of the central limit theorem is valuable both
as a milestone in the formalization of probability and statistics, and for the
library infrastructure which was developed to support it (integration, Fourier
transforms, cumulative distribution functions, etc.).
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