Carnegie Mellon University « May 2015

EuclidZ3 — a Computational
Proof-Checker for the Language E:

Possible Backend for Interactive Geometric Proof Environments

KELVIN J. RojASs*

Carnegie Mellon University
krojas@andrew.cmu.edu

Abstract

This paper is an undergraduate thesis intended as partial fulfillment of a Bachelors of Science degree in
Logic and Computation at Carnegie Mellon University. As mentioned in "A Formal System for Euclid’s
Elements,” [Avigad, Dean, Mummad], "it is possible to design a computational proof checker based on
[the language E] that takes as input, proofs that look like the ones in the Elements and verifies their
correctness against the rules of [language E].” The goal of this thesis project was to implement such a
program. The result, EuclidZ3, was implemented in the python programming language using 73, an
automated theorem proving technology by Microsoft [fe Moura, Bjernet], as a backend. The program is
faithful to the language E’s construction, metric, and inference rules. With EuclidZ3 users can construct
linear Euclidean proofs and check the validity of construction steps and demonstration steps. EuclidZ3
has no parsing capabilities nor supports suppositional reasoning. However, EuclidZ3 should continue
to evolve and the design of the program makes it extensible. Possible applications of the program as a

backend for interactive geometric proof making in geometry tutoring software is also discussed.

I. INTRODUCTION

ric definitions, postulates, propositions,

and proofs of those propositions. Start-
ing from simple to complex, from demonstra-
tions on how to construct a line to proofs of
the pythagorean theorem and its converse, Eu-
clid’s Elements is a remarkable human achieve-
ment.

For millenia, proofs like those presented in
the Elements represented mathematical rigor.
The propositions presented were studied and
used without problem. However, in the 19th
century new developments in mathematics,
led by David Hilbert, rose the bar on math-
ematical rigor; the sentiment was that appro-
priate logical analysis of geometric inference
should be cast in terms of axioms and rules
of inference. Indeed, Euclidean proofs come
close to this ideal but it is their use of diagrams

E uclid’s Elements is a collection of geomet-

that presented an obvious gap in reasoning.

Consider proofs in the Elements. All Eu-
clidean proofs maintain a diagram, i.e. config-
urations of geometric objects like points, lines,
etc. These objects are constructed according
to various rules and then inferences are made
about those objects until some new proposi-
tion is shown to follow. For the most part,
these inferences are justified by propositions
and definitions previously justified.

However, to understand Euclid’s Elements
one requires an intuitive understanding of the
diagrams and the implicit inferences Euclid
makes about them; some steps implicitly re-
quire reading properties from a diagram. For
a more detailed description of the shortcom-
ings of Euclidean diagrammatic inference and
its significance in the history of mathematics
see [Avigad, Dean, Mummal.

It is precisely this reliance on intuitive di-

*First, I would like to thank my family and friends, especially those who edit my engrish and cope with my eccentrici-
ties: Mom, Allan, Rebecca, Samantha, Catala. I'm indebted also to Dr. Jeremy Avigad, Joel Smith, Dr. Cavalier, Mr. Steve
Macissac, and Dr. Peter Spirtes for their boundless patience and guidance.

mailto:krojas@andrew.cmu.edu

Carnegie Mellon University « May 2015

agrammatic reasoning that offended 19th cen-
tury mathematicians. If some argument is to
deliver mathematical certainty then it should
not depend on imprecise drawings, instead
certainty should be established by sets of sen-
tences where a sentence is either a premise or
derived from some sound rule of inference.

There has been attempts to formalize the
Elements, most notably are Pasch (1882), Peano
(1889), Hilbert (1899), and Tarski (1959). These
systems are fully axiomatized and show all
the same results as the Elements. Yet, proofs
in these languages look little like Euclidean
proofs.

The language E by [[Avigad, Dean, Mumma]
is more faithful to the style of Euclidean
proofs because it precisely defines the dia-
grammatic reasoning used in Euclid’s Ele-
ments. The system was shown to be sound
and complete and is based on a simple set
of inference rules, construction rules, and di-
agrammatic relations. More details of this
language will be discussed in a later section.

[Avigad, Dean, Mumma] mentions the
possibility of designing a computational proof
checker "based on E that takes, as input,
proofs that look like the ones in the Ele-
ments and verifies their correctness against
the rules of the system." The goal of this the-
sis project is to implement a computational
proof checker for the laguage E based on Z3,
an automated theorem prover developed by
microsoft [de Moura, Bjerner]]. EuclidZ3 has
been built in the python programming lan-
guage. In what follows, we will talk about
some of the features of the language E, some
details about EuclidZ3’s implementation, and
discuss possible extensions/applications for
EuclidZ3.

II. LaNcGuaGe E

This section will gloss over details of this lan-
guage. For a complete listing of the various ax-
ioms, definitions, and the rules of inference of
the language E, see [Avigad, Dean, Mummal].
In mathematics and computer science a for-
mal language is a set of strings of symbols that

may be constrained by rules that are specific
to it. The language E is a six-sorted language
with sorts for lines, points, circles, angles, ar-
eas, and segments. It has various rules, called
axioms, that apply to these sorts. These ax-
ioms spell out precisely what inferences can
be "read off" from the diagram. The language
has a set of relations:
e on(a, L): point a is on line L
e same-side(a, b, L): points a and b are on
the same side of line L
e between(a, b, ¢): points a, b, and c are
distinct and collinear, and b is between a
and c
on(a,): point a is on circle
inside(a,): point a is inside circle
center(a,): point a is the center of circle
intersects(L , M): line L and M intersect
intersects(L ,): line L intersects circle
intersects(,): circles and intersect
segment(a, b): the length of the line seg-
ment from a to b, written ab
e angle(a, b, c¢): the magnitude of the angle
abc, written abc
e area(a, b, c): the area of triangle abc,
written abc
The language also has addition, equality,
and the less-than relationship that apply to
the magnitude sorts, i.e. angles, area, and seg-
ments. It also has the constants 0 and "right-
angle."

Proofs in E

For the purposes of this project, it’s important
to understand what proofs are like in E. The-
orems in E, the objects one "proves," have the
following form:

Va,L,a(¢p(a, L) — 3b, M, By(a,b,L, M, B))
)

In English this reads as: Given a diagram con-
sisting of some points, a, some lines, L, and
some circles, «, satisfying assertions ¢, one can
construct points b, lines M, and circles g, such
that the resulting diagram satisfies assertions

.

Carnegie Mellon University « May 2015

Theorems have assumed objects and as-
sumed properties of those objects. This is rep-
resented as the left-hand side of the implica-
tion above. Theorems also have desired ob-
jects and desired properties/conclusions. This
is on the right-hand side. Proofs of these theo-
rems are sequences of steps that transform the
diagram through construction of geometric ob-
jects or demonstrations of properties of those
objects. Success in proving a theorem occurs
when we have constructed the required objects
and shown that those objects have the desired
properties.

To summarize, with no small amount of
handwaving, there are two types of steps in
a Euclidean proof: construction steps, which
introduce new objects into the diagram, and
deduction/demonstration steps, which infer
facts about objects that have already been in-
troduced. Proofs in E, like in the Elements, are
largely linear, one step follows the previous,
but occasionally the proof can be broken down
by cases or a proof by contradiction.

Construction steps are constrained by var-
ious pre-conditions and assert various proper-
ties to the proofs as post-conditions to success-
ful construction. For example, a construction
step like:

Let a be a point on L between b and c

requires that: bison L, cison L, b = c. Af-
ter construction, the following conclusions are
added to the proof: a is on L, a is between b
and c. Construction steps assert the existence
of new objects with properties asserted. For a
complete list see [Avigad, Dean, Mumma].

In demonstration steps we apply various
rules of inference to the proof. In the language
E there are four types of inference rules: di-
agrammatic, metric, diagram-metric, and su-
perposition. For the sake of this paper, we can
understand these as lists of axioms that allow
us to infer, e.g. diagrammatic assertions from
the diagrammatic information currently avail-
able to us in a proof. Again, for more details
see [Avigad, Dean, Mummal.

Demonstration steps do not assert the ex-
istence of new objects. Instead they assert

properties about existing objects that are direct
consequences of the objects and properties al-
ready in play.

III. AutoMATED THEOREM PROVING
COMPONENT

The purpose of EuclidZ3 is to check proofs
in the language E. At the heart of checking
proofs is what we’ll call the proof engine.

The proof engine is given expressions in
the language E. It then checks that those ex-
pressions are satisfiable given the various as-
sumptions and rules of a given formal lan-
guage. The proof engine is a kind of blackbox.
It is an automated theorem prover that can
determine if expressions asserted in the lan-
guage are direct consequences of the objects
and properties in a given context.

EuclidZ3’s proof engine is based on an au-
tomated theorem proving technology called
Z3. It was developed by Microsoft. Z3 is
a satisfiability modulo theories solver — SMT
solver for short. SMT solvers combine a vari-
ety of decision procedures for the provability
of universal sentences modulo the combina-
tion of disjoint theories whose universal frag-
ments are decidable. For purposes of this pa-
per, this amounts to determining the validity
of sentences in the language E given various
constraints, e.g. the axioms of the language,
any assumptions asserted to the solver.

SMT solvers are particularly good at doing
linear arithmetic with real numbers. This is
ideal for our proof engine because the metric
inferences are of the Real sort, e.g. the sum of
two angles is less than some other angle. How-
ever, SMT solvers don’t usually have decision
procedures for sets of consequences of arbi-
trary universal axioms like the diagrammatic
axioms of the language E.

However, Z3 is special because it has
heuristic methods for instantiating quantifiers.
This means that Z3 should be capable of veri-
fying sentences of the language E.

Carnegie Mellon University « May 2015

IV. EucrLinZ3

This section introduces EuclidZ3.

Recall that all Euclidean proofs maintain
a diagram, i.e. configurations of geometric
objects like points, lines, etc. These objects
are constructed according to various rules and
then inferences are made about those objects
until some new proposition is shown to follow.
EuclidZ3 parallels this. In essence, EuclidZ3 is
a proof building program.

The user can construct geometric objects
according to rules, assert relationships be-
tween those objects, and most importantly
check inferences they make about those ob-
jects and their properties.

High level overview

In essence, the idea of a proof-checker is to val-
idate steps in a proof. Validating means check-
ing for inconsistencies. For example, if in my
proof I assert that P and Q are distinct points
then asserting that P equals Q is an inconsis-
tency because the statement "P equals Q" con-
tradicts my assumptions that P and Q are dis-
tinct.

As the user constructs new objects or as-
serts new theorems, EuclidZ3 checks if the
steps they take cause a contradiction. Any con-
tradiction that results from a user’s activity ei-
ther contradicts the axioms of the language E
or some assumption they have made.

To achieve this, EuclidZ3 uses the pro-
gram Z3 in the background to check assertions
against the rules of the language E.

Implementation details

This section will discuss some of the object ori-
ented design involved in the implementation.
Whenever a word like Point is capitalized it
refers to a class of objects in the software. If it
is not capitalized then it refers to the language
E. For example, the LanguageE is a software
object but the language E is a formal system
for Euclidean geometry.

The EuclidZ3 system is made of two main
classes and one abstract class, the LanguageE,

Proof, and ConstructableObject. Their rela-
tionships, fields, and methods are shown in
the object model in the appendix A.

The main class that users will interact with
is the Proof class. Using EuclidZ3 is analogous
to making proofs in the language E. So, there
are construction steps and demonstration
steps. The methods of the Proof class reflect
this. These are construct(ConstructableObject),
hence(ExprRef), assert(Proof), and QEDJ().

To make a new proof object:

pc = Proof ();

Constructing Objects in a Proof

To construct a geometric object in the proof,
first the user must configure an instance
of a ConstructableObject. There are three
concrete implementations of ConstructableOb-
jects, these are Point, Line, and Circle. Each
of these objects have certain constructions that
are available to them. In the language E, con-
structions are akin to theorems that you can
always apply, given that the construction’s pre-
conditions are met.

Here is an example of how to create a line
between two points:

= Point("a"
Point("b")
= Line("L")
.through(a,b)

oo

The objects can then be passed to a partic-
ular proof:

pc.construct(a)
pc.construct(b)
pc.construct (L)

When the user enters this construction
command, construct(L), the Proof object
checks that the prerequisites required by the
language E are consequences of the facts al-
ready asserted to the proof engine, creates the
new objects, and asserts their properties. In
the case of constructing L, the prerequisites
are that a#b and the properties asserted in the
proof are: ais on L, b is on L. Note that, both

Carnegie Mellon University « May 2015

Points a and b are constructed in the proof
first. Otherwise, the requirements for con-
structing L would not be met. Again, a full list
of construction requirements and conclusions
are available in [Avigad, Dean, Mummad].

The LanguageE core class, expressions, and
the Z3 proof engine

Before discussing the details of demonstration
steps we'll look at the LanguageE class. This
is the core class of the EuclidZ3 system. It is
a collection of definitions and functions that
allow users to make expressions in the lan-
guage E. The LanguageE class is where the
proof engine resides. Whenever a Proof object
is created, a fresh instance of the proof engine,
Solver, is created and prepared with all the ax-
ioms, definitions, and sorts of the language E.
The expressions that users can build using the
LanguageE can then be passed to Proof.

Building expressions for EuclidZ3 can be
tricky. In its current implementation, there is
no wrapper for Z3 commands. For example,
if a user wants to assert that the point a is not
on the line L:

b = Point("b")
pc.construct(b)

let L be a distinct line
through a and b"

L = Line("L")
L.through(a,b)
pc.construct (L)

hence a == , Proof should
complain because this is
is false.

pc.hence(a == b)

let m be the line through a and
b"

M = Line ("M")

M. through(a,b)

pc.construct (M)

hence M does not equal L"

Proof should complain because
it follows logically that

L =M

pc.hence (Not(L == M))

lang = LanguageE ()
pc.hence(Not(lang.OnLine(a,L))

This means that logical components of ex-
pressions like Not, Implies, etc., depend on
73 functions. For most purposes, And(), Im-
plies(), Not(), Or(), are sufficient. For their doc-
umentation see Z3 python bindings.

Demonstration steps with hence

Here is an example, note that # denotes a com-
ment in python. We want to show that if some
line L and M both go through 2 points a and
b, then those two lines are the same.

pc = Proof ()
let a be a distinct point"
a = Point("a"

pc.construct(a)

let b be a distinct point"

When a user enters hence A, the proof-
checker checks that A is a consequence of the
facts already asserted and, if so, asserts it ex-
plicitly to the proof engine, to speed up subse-
quent checks.

QED and finishing a Proof

Success in proving a theorem occurs when
we have constructed the desired objects and
shown that they have the claimed properties.
Q.ED. is an initialism of the Latin phrase
quod erat demonstrandum, meaning "which
had to be proven." It marks the end of a proof.

When the user calls QED(), Proof checks
that the negation of the theorems conclusion
is inconsistent with the facts that have been
asserted thus far. In this way, QED checks
that the desired conclusions and objects follow
from the hypothesis. Once QED is called on
a proof, it is marked as proven and no furter
steps can be applied to it.

Carnegie Mellon University « May 2015

The Not-so-good and missing features of Eu-
clidZ3

Proofs in the language E begin with a theo-
rem that is to be proven. The theorem has
assumed objects and properties, and desired
objects and properties. EuclidZ3 works in a
different way. The Proof object is treated as
a theorem in itself. It is like a theorem that
hasn’t been proven yet. To assert a theorem
to the current proof is a bulky endeavor at the
current implementation of EuclidZ3.

Calling the assert method on a Proof object
requires a Proof as an argument. This Proof
object represents the proof of a theorem. So,
to assert a theorem in EuclidZ3 is to assert the
proof of that theorem.

When the user asserts a theorem,the proof-
checker declares the new objects (points, lines,
and circles) to the proof engine, asserts the as-
sumptions to the proof engine, and stores the
conclusion.

This implementation of asserting theorems
is a gap in representation between the soft-
ware and the domain of formal languages.
This flaw is likely to be overhauled entirely in
EuclidZ3’s next iteration.

V. POSSIBLE APPLICATIONS TO
GEOMETRY TUTORING SOFTWARE

Archivo Edita Visualiza

DSE

[~ Objetos libres

o selecciona objetos (Esc)

@ Entrada - ~ |a| ¥ |comando . v

Figure 1: Geogebra — Interactive Geometry Software

By leveraging new media like visualizations
to teach mathematics, the learning experience

can become more dynamic, interactive, and ul-
timately make concepts more tangible to stu-
dents. This is the claim of interactive tutors
like the mathematics software platform Ge-
ogebra. I will refer to interactive and visual
education software like Geogebra collectively
as interactive geometry software (IGS). At the
core, these systems are essentially digital play-
grounds for drawing and manipulating geo-
metric objects on a screen.

The EuclidZ3 proofbuilding plugin

A proofchecking program for the language E
like EuclidZ3 might work as a plugin for IGS
with public Application Programming Inter-
face (API).

An APl is a set of routines, protocols, and
tools for building software applications, in this
case, an IGS with a public API means that soft-
ware components are available to any software
developer.

These software components can then be
customized and their behaviours modified. A
developer with access to an IGS’s API could
write a "plugin”" — an extension/customiza-
tion of the original program. A silly example
might be a plugin that changes the color of the
lines drawn in the IGS depending on the time
of day.

As a plugin, EuclidZ3 could be a fruitful
backend for interactive proof environments.
Essentially, by communicating to the IGS the
various constraints on geometric objects that
have been asserted to EuclidZ3, the IGS can
display geometries on the screen. In addi-
tion, all the capabilities of the IGS are avail-
able. Users should be able to make proofs that
inform diagrams, and make diagrams that in-
form proofs.

Teaching proof based mathematics

Such a platform for interactive geometric
proof making would be a valuable pedagogi-
cal tool.

There are many theories that attempt to de-
scribe how students learn geometry. In 1957 as
part of their doctoral dissertations, Dina van

Carnegie Mellon University « May 2015

Hiele-Geldof and Pierre van Hiele (wife and
husband), described how students learn ge-
ometry. At the core of the van Hiele’s model
of learning are four levels of comprehension,
summarized in appendix B.

This model for learning has greatly in-
fluenced geometry curricula throughout the
world through emphasis on analyzing proper-
ties and classification of shapes at early grade
levels. However, with the ubiquitousness of
computers and the fact that the age for digital
literacy gets younger and younger, it’s possi-
ble to take this a step further and expose chil-
dren to proof-based concepts earlier than ever
before in history.

Programs like EuclidZ3 can enable interac-
tive geometrical proof-making programs and
in turn supports the development of 2"d and
34 levels of apprehension for students learn-
ing geometry.

Possible design of plugin

A natural extension point for EuclidZ3 is in
the abstract class ConstructableObject. In one
implementation, ConstructableObjects might
queue themselves — passing it's own label,
sort (point, line, circle, etc), and any relevant
graphical constraints — to a renderer that ar-
ranges the various ConstructableObjects into
a datastructure that represents a geometric di-
agram the IGS’s api can understand. What
results is that as the proof is built in the Eu-
clidZ3 plugin, objects are constructed in the
IGS.

Building the infrastructure required to
interface EuclidZ3 with an IGS would be
straightforward since public API have clear
methods for sending messages between plug-
ins and their frameworks. The real challenge
would be in designing an algorithm which ar-
ranges geometric objects in a diagram given
relationships between those objects. Ironically,
the difficulty lies in the vagueness of the de-
scriptions of diagrams.

However, such algorithms for arranging
geometric objects according to relationships
amongst those objects exist. For example,

many computer-aided design programs like
SolidWorks or AutoCAD employ similar algo-
rithms to correctly display geometry dynami-
cally. That is, they display geomtries such that
the geometric objects obey constraints placed
on them - like intersections, verticality, etc —
as constraints and other geometric objects are
continually added.

VI. FuTtureE WORK

The following is a list of features that would
greatly improve EuclidZ3:

o Creating a visual cue for proofs that re-
quire suppositional reasoning, like proof
by cases or proof by contradiction. Sup-
port of suppositional reasoning is not
user friendly for EuclidZ3. It would
greatly improve the user’s experience to
be able to visualize proof trees.

e Overhauling the Proof class. Creating a
Theorem class with fields for: assumed
objects and conclusions, desired objects
and conclusions. The Theorem class can
store justifications, which could be sets
of other Theorems that justify them.

e Saving Proofs of theorems to persistant
storage. This is called cacheing and it
has the potential to significantly improve
performance since EuclidZ3 would have
to call Z3, its proof engine and computa-
tional bottle neck, only on unproven the-
orems.

e Parsing proofs directly from text. Eu-
clidZ3 does not parse Euclidean proofs.

Carnegie Mellon University « May 2015

REFERENCES Bjorner, N. (2008). Z3: An efficient SMT

solver. In Tools and Algorithms for the Con-

[Avigad, Dean, Mumma] Jeremy Avigad, Ed- struction and Analysis of Systems (TACAS)
ward Dean, John Mumma (2009). A For- 2008. Berlin: Springer

mal System For Euclid’s Elements. The Re- _ _ _
view of Symbolic Logic, vol 2 #4, December [van Hiele] van Hiele, Pierre (1985) [1959].

2009 The Childs Thought and Geometry,
Brooklyn, NY: City University of New
[de Moura, Bjerner] de Moura, L. M., & York, pp. 243252

Carnegie Mellon University « May 2015

A.

EucrLipZ3 OBjecT MODEL

Language E

ExprRef is a type from the Z3 AFI. This type
| represents "constramts, formulas, and terms are
expressions in £3." See 23 documentation for

- axioms: List<ExprRefs o-—-—-—'—'—*_'_'_—._ﬂ_

- solver: Solver

- PointSort: SortRef
- LineSort: SortRef D\
- CircleSort: SortRef

- RightAngle: ExprRef

maore details.

I Solver is a class from the Z3 APL
Omne can add/retract constraints to this solver.
The Solver can also check if the constraints are
consistent. Basically, this is the bridge to 3%

+ Between(PointSort, PointSort, PointSort): BoolSort
+ OnLine{PointSort, LineSort): BoolSort

+ 0OnCircle(PointSort, CircleSort): BoolSort

+ Inside(PointSort, CircleSort): BoolSort

+ Center(PointSort, CircleSort): BoolSort

+ SameSide (PointSort, PointSort, LineSort): BoolSort
+ Intersectsll{LineSort, LineSort): BoolSort

+ Intersectsic(LineSort, CircleSort): BoolSort

+ Intersectsce{CircleSon, CircleSort): BoolSort

+ Segment(PointSort, PointSort): RealSort

+ Angle(PointSort, PointSart, PointSor): RealSort

+ Area(PointSort, PointSort, PointSort): RealSort

automated proving.

\ SortRef is a type from the Z3 API. The documentation

reads "A sort is essentially a tvpe. Every Z3 expression
has asort. A sort 1s an AST node." From this, it should be
clear that BoolSort, RealSort, FointSort, etc, refer to a

SortRef in £3 corresponding to boolean, real and point
s01ts respectively.

Proof

Compnad - points: Set=Points

al

- lines: Set<Line=
- circles: Set<Circle>
- assumptions: Set<ExprRef=

EuclidZ3

Object Model With
Notes

Circle

+ centerThrough(Point, Point): void

Line

+ through(Point, Point): void

Paint

+onLine(Line): void
+onCircle(Circle): void

+ between(Point, Point): void

+ sameside(Point, Line): void

+ 0pposite(Point, Line): void

+ inside(Circle): void

+ outside(Circle): void

+ intersectsLines(Line, Line): void

+ intersectsCircleLine(Circle, Line): void

+ intersectsCircleCircle(Circle, Circle): void

- conclusions: Set<ExprRefs
- isProved: boolean
-language: LanguageE

- solver: LanguageE solver

This Solver is
primed with the
axioms of the ——0
LanguageE
+ construct{ConstructableObject): void
+ hence(ExprRef): void
+ assertiProof): void
+ QED{): void
Has many
<<absiract>>
ConstructableObject In the language E. one asserts
theorems in a proof. However, in this
- Z3Expr: ExprRef software doain, we can think of
- label: String theorems as Proof objects that aren't
- sort: String "proved” vet.
s & - prereqs: List<ExprRef=
- conclusions: List<ExprRef=
- isDistinct: boolean
+ equals(Obj) : boolean
9

Carnegie Mellon University « May 2015

B.
VAN HieLE LEVELS OF GEOMETRIC LEARNING

These descriptions are courtesy of wikipedia.

Level 0 VISUALIZATION

The focus of a child’s thinking is on individual shapes, which the child is learning to classify
by judging their holistic appearance. Children simply say, "That is a circle,” usually without
further description.

Level 1 ANALYSIS

The shapes become bearers of their properties. The objects of thought are classes of shapes,
which the child has learned to analyze as having properties. A person at this level might
say, "A square has 4 equal sides and 4 equal angles. Its diagonals are congruent and perpen-
dicular, and they bisect each other." The properties are more important than the appearance
of the shape. However, at this level, properties do not overlap and children will often intro-
duce erroneous properties. All reasoning at this level is inductive; students learn properties
from many examples.

Level 2 DEDUCTION

Students at this level understand the meaning of deduction. The object of thought is de-
ductive reasoning (simple proofs), which the student learns to combine to form a system
of formal proofs (Euclidean geometry). Learners can construct geometric proofs at a sec-
ondary school level and understand their meaning. They understand the role of undefined
terms, definitions, axioms and theorems in Euclidean geometry. However, students at this
level believe that axioms and definitions are fixed, rather than arbitrary, so they cannot yet
conceive of non-Euclidean geometry. Geometric ideas are still understood as objects in the
Euclidean plane.

Level 3 RiGor

10

At this level, geometry is understood at the level of a mathematician. Students understand
that definitions are arbitrary and need not actually refer to any concrete realization. The
object of thought is deductive geometric systems, for which the learner compares axiomatic
systems.

	Introduction
	Language E
	Proofs in E

	Automated Theorem Proving component
	EuclidZ3
	High level overview
	Implementation details
	Constructing Objects in a Proof
	The LanguageE core class, expressions, and the Z3 proof engine
	Demonstration steps with hence
	QED and finishing a Proof
	The Not-so-good and missing features of EuclidZ3

	Possible Applications to Geometry Tutoring Software
	The EuclidZ3 proofbuilding plugin
	Teaching proof based mathematics
	Possible design of plugin

	Future Work
	EuclidZ3 Object Model
	Van Hiele Levels of Geometric Learning

