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Chapter 1

Introduction

One finds the following declaration of love in Bertrand Russell’s autobiogra-
phy: “At the age of eleven, I began Euclid, with my brother as my tutor.
This was one of the great events of my life, as dazzling as first love. I had
not imagined that there was anything so delicious in the world” [11]. It is
unclear whether or not young master Russell’s edition of the Elements in-
cluded actual diagrammatic figures, but it is clear that later in life, Russell
had little sympathy for diagrammatic proof: “In the best books there are no
figures at all” [10]. Apparently, by 1901 the nearly 30-year-old Russell had
outgrown his childish proclivities. As one of the foremost early progenitors
of modern logic, Russell’s mature aversion to diagram-based reasoning can
be seen as the “party line” of late-19th and early-20th century logic.

Let us consider a typical proof from Euclid’s Elements, that of Proposition
12 from Book I. The goal: given a line L and a point p not on L, to construct
line N through p perpendicular to L. First pick a point q on the opposite
side of L from p. Then draw the circle α through q which is centered at p.
Take the intersection points a, b of L and γ. By Proposition 9, construct a
line N that bisects ∠apb. (The resulting diagram is given by Figure 1.1.)
Using earlier Propositions, namely those involving SAS and SSS, Euclid can
conclude that N is indeed perpendicular to L.

Certain diagrammatic information is crucial to the above proof; for in-
stance, q must lie on the given side of L in order for the intersection points
a, b to exist. But what is it about such diagrammatic proofs that leads figures
such as Russell to discount them? The primary concerns are these:

1. Inferences drawn from diagrams are sometimes based on spatial intu-
ition rather than precisely formulated logical rules.

1
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Figure 1.1: Book I, Proposition 12

2. General conclusions are drawn, without basis, from particular dia-
grams.

These are certainly valid concerns, as we tend to prefer to believe that we
have firmer epistemological grounds for mathematical conclusions than what
would be provided by methods which are open to these objections.

But Manders [3] has argued that common objections to Euclid’s methods
of proof are overblown. Concerning objection (1), for instance, the appear-
ance of such impropriety is often a case of simple omission due to a lack of
formality rather than of rigor ; let us explain what we mean by this. Con-
sider Euclid’s proof of Proposition 1 of Book I. Given a segment from point
a to point b, the construction of an equilateral triangle on the segment is
sought. Euclid constructs two circles, one centered at a and passing through
b, and vice versa; he then takes an intersection point c of the two circles.
(See Figure 1.2.) But if one examines Euclid’s postulates, there is nothing

b

c

a

Figure 1.2: Book I, Proposition 1

that guarantees that there is such an intersection point to take; there is a gap
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in the argument. This is seen as a very minor omission, however, when one
considers the usual practice of informal mathematics, in which one is not as
attentive to such matters as when dealing with formalizations. In any case,
one could certainly imagine a time-travelling interlocutor with a knowledge
of Cartesian analytic geometry objecting to Euclid, “But your plane might
consist only of points with rational coordinates!” and a brought-up-to-speed
Euclid replying, “But of course that’s not the kind of plane I have in mind!”
Bottom line, such omissions are real, but they can be closed without much
ado.

The second kind of objection is more telling. A useful distinction Manders
makes in this regard is between exact and co-exact properties of a diagram.
Manders observes that information which is recorded diagrammatically in
Euclidean proofs is only of a topological or regional sort, e.g. the incidence
of points, lines and circles, or betweenness facts, or which side of a line a
point lies in. Manders terms this kind of information “co-exact.” In contrast,
“exact” metric information, e.g. the congruence of two segments or angles,
must be made explicit textutally.

With this observation Manders can explain how Euclid manages to avoid
drawing improper inferences from a diagram. But something which Manders’
analysis does not capture is how a diagrammatic proof involving construc-
tions of new objects can be general. That is, he does not answer how Euclid
rules out improper construction that rely on particular features of a given
diagram. Now we seek to craft a formal system E for ruler-and-compass con-
structions that faithfully captures Euclidean diagrammatic reasoning, and in
particular we aim to codify Euclid’s methodology both for drawing inferences
from diagrams and for constructing new diagrams; in Manders’ terminology,
Euclid’s “diagram discipline.” With our formalization come explicit precon-
ditions for performing constructions and drawing inferences, by which we can
answer objection (2); our preconditions are the means by which we guarantee
that general conclusions drawn from a diagram do not improperly depend on
particular features of the diagram.

Before getting to our system E, let us consider two previous formalizations
of diagrammatic proof. Nathaniel Miller, in his doctoral dissertation [4],
created a formal system called FG. This system bears little relation to our E
in form, and no relation in its origins. We will not comment on FG here, but
instead give the interested reader a pointer: Miller has a book [5] which is
based on his dissertation, and Mumma has written a thoroughgoing review
[7] which sheds light on differences between the approaches embodied by FG
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and the kind of approach we take. All we will say here is that (1) FG is
not all that faithful to Euclidean methods of proof, despite its diagrammatic
nature, and (2) FG is not as amenable as one would like to metamathematical
investigations (e.g. the question of completeness, which we address for E
below).

Mumma himself, in his own doctoral dissertation [6], was inspired by
Manders’ take on the Euclidean diagram and set about creating a formal
system Eu for Euclidean diagrammatic proof; the system E expounded below
is in many respects an outgrowth of Eu due to Avigad, Mumma and the
author. While it is rather different in form, it was created in the same spirit
and with the same goal of extending Manders’ analysis.

The present thesis is but a piece of a larger paper forthcoming from
Avigad, Mumma and the author [1]. The particular goal of this paper is a
metamathematical investigation of E; namely, we will prove that it is sound
and complete with respect to a certain fragment of the ruler-and-compass
theorems.



Chapter 2

The Diagrammatic Proof
System E

In this second chapter we will detail a formal system E which is intended
to codify the diagram discipline Euclid implicitly maintains in the Elements.
The idea is to craft E so that it truly is faithful to the manner of Euclidean
proof, and then ultimately to show that it is sound and complete with respect
to ruler-and-compass constructions. Those matters are addressed in later
parts of the paper; for now we simply want to lay the system down.

2.1 Syntax and Structure of Proofs

Our language is many-sorted, and we use differing notations for differing
sorts:

Points: p, q, r, . . .
Lines: L,M,N, . . .
Circles: α, β, γ, . . .
Segment Lengths: pq, qr, . . .
Angle Magnitudes: ∠pqr,∠abc, . . .

There is also a constant r intended to denote the magnitude of a right angle.
We have an assortment of atomic predicates, listed here with their intended
meanings (though they are mostly self-explanatory):

5



6 CHAPTER 2. THE DIAGRAMMATIC PROOF SYSTEM E

on(p, L) Point p is on line L.
bet(p, q, r) Point q lies (strictly) between p, r.
same(p, q, L) Points p, q are on the same side of L.
on(p, γ) Point p is on circle γ.
in(p, γ) Point p lies within γ.
intersect(L,M) Lines L,M intersect.
intersect(L, α) Line L intersects circle α (twice).
intersect(α, β) Circles α, β intersect (twice).

ab = pq The segment lengths are the same.

ab < pq The first segment is shorter.
∠abc = ∠pqr The angles are the same.
∠abc < ∠pqr The first angle is lesser.

Statements in E are written as “sequents”

Γ(�p, �L, �α)� (∃�q, �M, �β)Δ(�p, �q, �L, �M, �α, �β),

where Γ and Δ are just lists of literals (atomic or negated atomic assertions),
or ⊥. Unlike sequents found in standard sequent calculi for first-order logic,
both of the lists Γ and Δ are intended to be read as conjunctions of their
components, rather than Δ being read disjunctively. Given the intended
meaning of our sequents, there is a natural first-order sentence in the many-
sorted language of E that corresponds to any E-sequent as above, namely

∀�p, �L, �α
[∧

Γ(�p, �L, �α) → ∃�q, �M, �β
∧

Δ(�p, �q, �L, �M, �α, �β)
]
.

This is the logical form taken by Euclid’s Propositions. NB: Given an E-
sequent Γ � (∃�q, �M, �β)Δ we will, in the sequel, often abuse notation and

also use Γ � (∃�q, �M, �β)Δ to refer to this first-order sentence; the context
will always be sufficient to avoid confusion.

Now proofs in E are simply trees whose nodes are such sequents, and
whose edges correspond to various kinds of inference rules:

1. Logical Rules

2. Construction Rules

3. Demonstration Rules

• Diagrammatic Inferences
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• Metric Inferences

• Transfer Inferences

We explain each of these sorts of rules in turn.

2.2 Logical Rules

2.2.1 Theorem Application

We would like to have an inference rule that corresponds to the practice of
applying a previously established result. Supposing that said result takes the
sequent form Λ � (∃�r, �N,�γ)Θ, then the theorem application inference rule
is

Γ� (∃�q, �M, �β)Δ Λ� (∃�r, �N,�γ)Θ
Γ� (∃�x, �q �M, �β)Δ,Δ′

subject to several restrictions. (1) The sequent Λ � (∃�r, �N,�γ)Θ can be

relettered, obtaining Λ′ � (∃�r, �N,�γ)Θ′ whose free variables are a subset of

those of Γ� (∃�q, �M, �β)Δ, and such that every element of Λ′ is an immediate
consequence of Γ,Δ. (2) Δ′ ⊆ Θ′. (3) �x consists of those variables among

�r, �N,�γ that appear in Δ′.
Some bit of explanation is in order. The idea is that we arrive at the se-

quent Γ� (∃�q, �M, �β)Δ, and so have a configuration of objects with proper-

ties Γ,Δ. We also have an established result Λ� (∃�r, �N,�γ)Θ. By condition
(1), the objects with properties Γ,Δ also have the properties Λ′, and so we
may conclude the existence of some subset of the objects guaranteed to exist
by the theorem.

2.2.2 Case Splits

We allow ourselves case splits on atomic formulas. This is in keeping with
Euclid’s practice; see Proposition 8 from Book I, for instance. Formally, our
case splitting rule takes the following form:

Γ� (∃�p, �L, �α)Δ Γ,Δ, ϕ� ψ Γ,Δ,¬ϕ� ψ

Γ� (∃�p, �L, �α)Δ, ψ

where ϕ is atomic and ψ is any literal.
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2.3 Construction Rules

By construction rules we mean inference rules of E which, given some configu-
ration of objects, asserts the existence of new objects with certain properties.
To wit, they take the general form

Γ� (∃�q, �M, �β)Δ

Γ� (∃�x, �q, �M, �β)Δ,Θ

where �x is a sequence of new point, line and/or circle variables with the
properties expressed in Θ.

Such rules are conceptually no different than theorem application. That
is, each can be seen as the application of a theorem Λ � (∃�x)Θ, in the
sense of the previous section. The �x are the objects constructed by the
rule, and Λ consists of the preconditions for applying it. We present our
construction rules below by presenting sequents of the form Λ� (∃�x)Θ, and
the corresponding rule is the corresponding theorem application.

2.3.1 Adding Points

In this section we will present the sequents Λ� (∃�x)Θ in words. In fact, we
will present the consequent in the main column, and any preconditions (the
Λ) will be presented in parentheses. We use the locution “new” to mean that
the point p being added can, in addition to what is stated, be asserted to be
distinct from elements already in the diagram. For instance, supposing we
have a line L with points a, b already on it, rule (2.2) can be read as allowing
us to construct the point p on L and furthermore assert that p is distinct
from a and/or b.

Let p be a “new” point (2.1)
Let p be a “new” point on L (2.2)

Let p be a “new” point between q and r on L (q, r distinct points on L) (2.3)
Let p be a “new” point extending qr on L (2.4)

Let p “new” be opposite L from q (q not on L) (2.5)
Let p “new” be on the same side of L as q (q not on L) (2.6)
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Let p be a “new” point on γ (2.7)

Let p be a “new” point inside γ (2.8)

Let p be a “new” point outside γ (2.9)

Let p be the center of γ (2.10)

2.3.2 Adding Lines and Circles

Let L be a line through p, q (p �= q) (2.11)

Let γ be the circle through q with center p (p �= q) (2.12)

2.3.3 Adding Intersections

Here, a blanket precondition (which is not stated in the list) for each rule, is
that the objects in question do indeed intersect, in the sense of the diagram-
matic intersection rules found below among the demonstration rules.

Let p be the intersection of L, M (2.13)

Let p be an intersection of α and L (2.14)

Let p �= q be two intersections of α and L (2.15)

Let p be an intersection of L, α between q, r (on(r,L),¬in(r, α),¬on(r, α)) (2.16)

Let p be an intersection of L, α extending rq (on(q, L), on(r, L), r �= q, in(q, α) (2.17)

Let p be an intersection of α, β (2.18)

Let p �= q be intersections of α, β (2.19)

Let p be the intersection of α, β
on the same side of L as q

(center(r, α), center(s, β),
on(r, L), on(s, L),¬on(q, L)) (2.20)

Let p be the intersection of α, β
on the opposite side of L from q

(center(r, α), center(s, β),
on(r, L), on(s, L),¬on(q, L)) (2.21)

2.4 Demonstration Rules

In contrast to construction rules, our demonstration rules do not introduce
new objects; that is, they take the general form

Γ� (∃�q, �M, �β)Δ

Γ� (∃�q, �M, �β)Δ,Θ
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As with construction rules, these are again instances of theorem applica-
tion. So again we present these rules by presenting the appropriate se-
quent/theorem which is applied by the rule.

2.4.1 Diagrammatic Inferences

With the consideration of what we term diagrammatic inferences, we will
briefly interrupt our simple listing of rules for a bit of discussion. As we
said, below we indicate a plethora of inference rules in the form of initial
theorems that can be applied. But the one-step diagrammatic inferences our
system E is to license are not merely the indicated instances of theorem ap-
plication; rather, we want our notion of a one-step diagrammatic inference to
correspond more closely with the kinds of inferences that Euclid immediately
“reads off” of a diagram.

To better illustrate the point we are getting at, let us suppose we have
distinct points a, b, c, d, e, and we know that c is between a and e, b is between
a and c, and d is between c and e. Well, we have a series of several rules below
concerning betweenness, using which we could construct a chain of inferences
and conclude that we know all of the betweenness relations encapsulated in
Figure 2.1. But Euclid would engage in no such involved chain of reasoning

a
b

c
d

e

Figure 2.1: Points on a line

in order to reach this conclusion; to the contrary, if one constructs a diagram
by placing c between a and e, and then b between a and c, and then d between
c and e, one gets exactly Figure 2.1, and the conclusions are immediate!

This is exactly the kind of situation in which, according to the modern
logical party line, Euclid is doing something like appealing to intuition and
has left a logical gap. To this way of thinking, Euclid’s move is improper,
and we should prefer instead a chain of reasoning as described. For instance,
this is the way a proof would proceed in Tarski’s typical formal system for
plane geometry.1 But we claim that Euclid’s one-step inference is not at all

1See Chapter 4 if you are unfamiliar with Tarski’s system.
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improper, and we want E to reflect this ability to make such inferences in
one step.

To this end, the official diagrammatic inference rule for E is as follows:

A literal A may be concluded as an immediate diagrammatic con-
sequence of a set of diagram assertions Γ, provided that A is in
the smallest set of assertions which contains Γ and is closed under
the rules listed below.2

The crucial point is that there is nothing untoward about this definition;
if we are given Γ and A, it is decidable whether or not A is an immediate
diagrammatic consequence in the defined sense. All undecidability in E is
pushed into the construction rules.3

Now, on with the lists.

Generalities

The following give the uniqueness of a line through two points, the uniqueness
of a circle’s center, and the fact that the center lies inside the circle.

p �= q, on(p, L), on(q, L), on(p,M), on(q,M) � L = M (2.22)

center(p, γ), center(q, γ) � p = q (2.23)

center(p, γ) � in(p, γ) (2.24)

2For clarity we note that as part of this definition of consequence we take it to be the
case that if ⊥ is among Γ, then anything counts as a diagrammatic consequence.

Moreover, each of the rules is presented as an implication

A1, . . . , An � B,

where the Ai’s and B are literals in the language of E. But the rules we intend to close
under for our notion of diagrammatic consequence do not include just the implications
presented; rather, each such stands also for the various contrapositive formulations

A1, . . . , Aj−1, Aj+1, . . . , An,¬B � ¬Aj

as well, which we intend to be included in the list of rules under which we close.
3As discussed further in a footnote below, Ziegler [15] has shown that any finitely

axiomatized theory which is includes all ruler-and-compass theorems is undecidable. We
suspect (though have not settled) that the same holds for the fragment of ruler-and-
compass theorems that our E completely finitely axiomatizes. The point here is just that,
while the system as a whole might be undecidable, the notion of immediate diagrammatic
consequence given here is not.



12 CHAPTER 2. THE DIAGRAMMATIC PROOF SYSTEM E

We also have the following equality rules; here x refers to a variable of any
of our sorts, and ϕ to any atomic formula.

� x = x (2.25)

x = y, ϕ(x) � ϕ(y) (2.26)

x = y, ϕ(y) � ϕ(x) (2.27)

Betweenness Rules

bet(r, q, p) � bet(p, q, r), p �= q, p �= r,¬bet(q, p, r) (2.28)
bet(p, q, r), on(p, L), on(r, L) � on(q, L) (2.29)
bet(p, q, r), on(p, L), on(q, L) � on(r, L) (2.30)

bet(p, q, r), bet(p, s, q) � bet(p, s, r), bet(s, q, r) (2.31)
bet(p, q, r), bet(p, s, q) � bet(s, q, r) (2.32)
bet(p, q, r), bet(q, r, s) � bet(p, r, s), bet(p, q, s) (2.33)

on(p, L), on(q, L), on(r, L), p �= q, p �= r, q �= r,¬bet(p, q, r),¬bet(q, p, r)� bet(p, r, q) (2.34)

Same-side Rules

¬on(p, L) � same(p, p, L) (2.35)

same(p, q, L) � ¬on(p, L), same(q, p, L) (2.36)

same(p, q, L), same(p, r, L) � same(q, r, L) (2.37)

¬on(p, L),¬on(q, L),¬on(r, L),¬same(p, q, L),¬same(p, r, L)� same(q, r, L) (2.38)

Pasch Rules

bet(p, q, r), same(p, r, L) � same(p, q, L) (2.39)

bet(p, q, r), on(p, L),¬on(q, L) � same(q, r, L) (2.40)

bet(p, q, r), on(q, L) � ¬same(p, r, L) (2.41)

p �= r, q �= r, p �= q, L �= M, on(p, M), on(q, M),¬same(p, q, L)� bet(p, r, q) (2.42)
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Triple-Incidence

on(r, M), on(r, N), on(r, L), on(q, M), on(p, N),
same(s, p, M), same(s, q, N), on(s, L) � ¬same(p, q, L) (2.43)

on(r, M), on(r, N), on(r, L), on(t, M), t �= r, on(p, N),
same(s, p, M),¬same(s, t, N), on(s, L),¬on(s, N)

� same(p, t, L) (2.44)

on(r, M), on(r, N), on(r, L), on(t, M), on(p, N), same(s, p, M),
¬same(s, t, N), on(s, L),¬on(s, N), same(u, t, N), same(u, p, M) � same(p, u, L) (2.45)

Circle Rules

in(p, γ), on(q, γ), on(r, γ), on(p, L), on(q, L), on(r, L)� bet(p, q, r) (2.46)

in(p, γ), on(q, γ),¬in(r, γ),¬on(r, γ), on(p, L), on(r, L)� bet(p, r, q) (2.47)

in(p, γ),¬in(q, γ), bet(p, q, r), on(p, L), on(q, L)� ¬in(r, γ),¬on(r, γ) (2.48)

in(p, γ), in(q, δ), on(p, δ),¬in(q, γ), on(p, L),
on(q, L), on(r, γ), on(r, δ), on(s, γ), on(s, δ), r �= s

� ¬same(r, s, L) (2.49)

Intersection Rules

Here we give conditions under which various pairs of objects intersect. Note
that we mean intersection in a strong sense; namely when we say that two
circles intersect, or that a line and a circle do, we mean that there are two
intersection points, rather than tangency.

on(p, M), on(q, M),¬on(p, L),¬on(q, L),¬same(p, q, L) � intersect(L, M) (2.50)

on(p, L), in(p, α) � intersect(L, α) (2.51)

in(p, α), on(p, β), in(q, β), � in(q, α) � intersect(α, β) (2.52)

in(p, α),¬in(p, β), in(q, β),¬in(q, α), in(r, α), in(r, β) � intersect(α, β) (2.53)
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2.4.2 Metric Inferences

Segment Magnitudes

We include inference rules for the binary operation + and the binary relation
< on segment magnitudes that amount to:

+ is associative and commutative, with identity 0 (2.54)

< is a linear order with least element 0 (2.55)

x < y � x+ z < y + z (2.56)

With the exception that Euclid had in mind only positive magnitudes (we
include 0 merely for convenience), these are exactly the general properties
which Euclid assumes of magnitudes. The further property which we include
it seems that Euclid takes to be clear by definition:

� pq = qp (2.57)

Angle Magnitudes

As with segment magnitudes, we have

+ is associative and commutative, with identity 0 (2.58)

< is a linear order with least element 0 (2.59)

x < y � x+ z < y + z (2.60)

And our further property is just

p �= q, p �= r � ∠pqr = ∠rqp (2.61)

2.4.3 Transfer Inferences

Diagram-Segment Rules

p = q � pq = 0 (2.62)

pq = 0 � p = q (2.63)

bet(p, q, r) � pq + qr = pr (2.64)

center(p, α), center(p, β), on(q, α), on(r, β), pq = pr � α = β (2.65)

center(p, α), on(q, α), pr = pq � on(r, α) (2.66)

center(p, α), on(q, α), on(r, α) � pr = pq (2.67)

center(p, α), on(q, α), pr < pq � in(r, α) (2.68)

center(p, α), on(q, α), in(r, α) � pr < pq (2.69)
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Diagram-Angle Rules

p �= q, p �= r, on(p, L), on(q, L), on(r, L),¬bet(q, p, r) � ∠qpr = 0 (2.70)

p �= q, p �= r, on(p,L), on(q, L),∠qpr = 0 � on(r, L),¬bet(q, p, r) (2.71)

on(p,L), on(q, L), bet(p, r, q),¬on(s, L),∠prs = ∠srq � ∠prs = r (2.72)

on(p, L), on(q, L), bet(p, r, q),¬on(s,L),∠prs = r � ∠prs = ∠srq (2.73)

L �= M, on(p,L), on(p,M), on(q, L), on(r,M), p �= q, p �= r,
¬on(s, L),¬on(s, M),∠qpr = ∠qps + ∠spq � same(q, s, M), same(r, s, L)

(2.74)

L �= M, on(p, L), on(p, M), on(q, L), on(r,M), p �= q, p �= r,
¬on(s, L),¬on(s, M), same(q, s, M), same(r, s,L) � ∠qpr = ∠qps + ∠spq (2.75)

on(a, L), on(b, L), on(b, M), on(c, M), on(c, N), on(d, N),
b �= c, same(a, d, N), (∠abc + ∠bcd < r + r)

� intersect(L, N) (2.76)

2.5 Derived Rules

We should expect to be able to make the following inference,

Γ� (∃�p, �L, �α)Δ Λ� (∃�q, �M, �β)Θ

Γ,Λ� (∃�p, �q, �L, �M, �α, �β)Δ,Θ

a sort of “conjunction” rule. We note here that this is indeed a derived rule
of our system. If we have a proof of Γ� (∃�p, �L, �α)Δ, we can obtain a proof

of Γ,Λ� (∃�p, �L, �α)Δ simply by adding in Λ to the antecedent of every line

of the proof. Similarly, we obtain a proof of Γ,Λ � (∃�q, �M, �β)Θ. But then
we can conclude

Γ,Λ� (∃�p, �L, �α)Δ Γ,Λ� (∃�q, �M, �β)Θ

Γ,Λ� (∃�p, �q, �L, �M, �α, �β)Δ,Θ

as an instance of theorem application.
We note further that proof by contradiction is a derived rule of E, given

our apparatus for case splits. Supposing that ⊥ follows from ¬A, then A cer-
tainly does as well (recalling that our notion of diagrammatic consequence
allows us to infer anything from a collection of diagram assertions that in-
cludes ⊥). As A follows from A, of course, a case split allows us to conclude
A outright.
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2.6 A Conservative Extension

For the purpose of translating between formal systems in our completeness
proof, we will want to work with a conservative extension of the above system.
We add some new constants and some new axioms. The constants we add
are

{cL
1 | L a line variable} ∪ {cL

2 | L a line variable},
{cγ

1 | γ a circle variable} ∪ {cγ
2 | L a circle variable}.

The idea is that the constants cL
1 , c

L
2 denote two arbitrary, distinct points on

L, and cγ
1 , c

γ
2 denote, repsectively, the center of γ and an arbitrary point on

γ. Thus we add the following axiom schemes:

� cL
1 �= cL

2 , on(cL
1 , L), on(cL

2 , L),

� center(cγ
1 , γ), on(cγ

2 , γ).

It is clear that this is indeed a conservative extension of E. For instance,
any use of cL

1 , c
L
2 in a proof can be replaced by a construction of two distinct

points p �= q on L (where the variables p, q do not already appear in the
proof); then use p, q in place of cL

1 , c
L
2 in the proof and you still have a proof.

For the rest of the paper, we assume for the sake of our completeness proof
that these constants and axiom schemes are a part of E.



Chapter 3

Illustrative Constructions in E

3.1 Some Elements

Here we will present semi-formal E proofs of some of the early propositions
from the Elements. Note that though the proofs are indeed less than formal,
in another sense they in fact go overboard as compared to what is allowed
in E. Specifically, our notion of immediate diagrammatic consequence would
allow us to make certain inferences below in one go, whereas we choose to
indicate the chain of reasoning involving the demonstration rules of E. This
is done simply in order to give the reader a feel for the adequacy of the lists
of rules given in the previous chapter. The reader will find it instructive to
construct a diagram as he goes, and also verify our use of various inference
rules.

E-Proposition 3.1 (Proposition I.1). Given distinct points a, b, construct a
point c such that triangle abc is equilateral.

Proof. As a �= b, we can construct circle α through b centered at a, and also
circle β through a centered at b (2.12). By (2.24), a is inside α and b is inside
β. Thus, since a is inside α and on β, and vice versa for b, we know that
α, β intersect (2.52). So we take point c on both α and β (2.18). Now using
(2.67) we can arrive at the fact that triangle abc is equilateral.

We note that our rules allow us to prove a variant of the above, where we
take the two distinct intersection points of the circles (i.e. using rule (2.19),
and thus obtaining two equilateral triangles abc and abd. We will reference
this fact below.

17
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E-Proposition 3.2 (Proposition I.2). Let a �= b on L. Let c be any other
point. Construct a point f such that cf = ab.

Proof. First we apply Proposition 1, obtaining an equilateral triangle acd.
Construct circle α through b, centered at a (2.12). Draw line M through a, d
(2.11).1 We know that M and α intersect (2.24, 2.51). So take point e on α
such that bet(d, a, e) (2.17).

Now construct circle δ through e, centered at d (2.12). Draw line N
through d, c (2.11). We know that N and δ intersect (2.24, 2.51). Further-
more, we know that dc = da < de since a is between d and e (2.64). Thus c
is inside δ (2.68). Therefore we may take f on δ such that bet(d, c, f) (2.17).

From here straightforward uses of metric inferences, transfer inferences,
and equality rules yields

cf = ab.

We leave it to the reader to check this.

E-Proposition 3.3 (Proposition I.3). Let a �= b. Let c be any other point,
on some line L. Construct a point e on L such that ab = ce.

Proof. Apply 3.2 to obtain a point d such that ab = cd. As c �= d, construct
circle γ through d centered at c. As L and γ intersect (2.24, 2.51), we can
take e on both L and γ (2.14). It is easy to derive that ce = ab.

We skip ahead a few propositions and see how a proof of Proposition 12
in E compares and contrasts with what we indicated in the introduction. As
there, we will assume the earlier propositions from the Elements.

E-Proposition 3.4 (Proposition I.12). Suppose point p lies off of line L.
Then there is a line M through p such that L and M form a right angle.

Proof. Let q be a point on the other side of L from p. Construct circle α with
center p, passing through q (2.12). As p, q are on opposite sides of L, they
are distinct. So draw the line M through p, q. M and L intersect (2.50), and
so we can take the intersection point r (2.13). By (2.42), r is between p and
q. Thus pr + rq = pq (2.64). As rq �= 0, pr < pq. Thus r is inside α (2.68).

1Even here we have left a small gap, though one which our rules do close. Specifically,
in order to apply this line construction rule, we need a �= d. But this follows from the
facts that a �= c, ac = ad, and our metric transfer rules. We will leave similar gaps at
times; thus the semi-formal nature of the presented proofs.
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Thus L and α intersect (2.51). So we may take points a �= b on L which are
also on α (2.15). (See Figure 3.1.)2

L

p

q

α

r

M

b

a

Figure 3.1: Book I, Proposition 12

And here he would proceed using earlier Propositions from the Elements.

3.2 Some More Technical Constructions

In this section we prove some results in E that are not all that inherently in-
teresting as geometric constructions; they are presented both to offer further
illustration of the workings of E and, in fact, to prove steps in the coming
completeness proof.

First, here is a slight variant of Proposition I.3 above, which we present
because it ties in directly with one of Tarski’s first-order axioms for plane
geometry.

E-Proposition 3.5. Let a, b, c, d be distinct points, with c, d on line L. Con-
struct point e on L such that (1) ab = de, (2) bet(c, d, e).

Proof. We proceed as before, but apply a different construction rule at the
end when taking our intersection point. Namely:

2Note that our proof looks like what was done in the introduction, but now we have
used our explicitly formulated rules in order to justify taking the intersection points a, b.
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Apply 3.2 to get f such that df = ab. Construct δ through f centered at
d. As before, L, δ intersect (2.24, 2.51). But now we have a rule that allows
us to take e with precisely the properties of the conclusion (2.17).

Lemma 3.6 (Uniqueness of Perpendiculars). Suppose point p is on line L.
Suppose p is also on lines M,N , and that each of these is perpendicular to
L. Then M = N .

Proof. Suppose for contradiction that M �= N . Let q �= p be on M (2.2).
We leave it to the reader to construct a point r �= p on N such that
same(q, r, L). The same can be repeated in order to obtain s �= p on L such
that same(r, s,M). But in this scenario, we can apply (2.75) to conclude
that

∠qpr + ∠rps = ∠qps.

By hypothesis, then, ∠qpr + r = r, so that ∠qpr = 0. But now we have
that r is on M (2.71). Thus M = N (2.22); contradiction.

E-Proposition 3.7. Suppose p �= q are on the same side of L. Then there
are points r, s, t such that: (1) s, t are on L, (2) r is the intersection of the
line through p, s and the line through q, t.

Proof. Using 3.4, drop a perpendicular N from p to e on L, and M from q
to f on L.

Case: e �= f . Then we set s := f and t := e. First of all, p, t are on the
same side of M .

Then draw line O through p, s. Since p, t are on the same side of M and
p, q are on the same side of L, we know by (2.43) that q, t are on opposite
sides of O. (See Figure 3.2.)

M

O

p q

L

t

s

N

Figure 3.2: E-Proposition 3.7
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Thus when we draw line P through q, t, we get our desired intersection
point r.

Case: e = f . In this case, the uniqueness of perpendiculars yields M =
N . We now have two subcases; how we handle them can be pictured thus as
in Figure 3.3.

L

N

e

{p, q}

{s, t}

Figure 3.3: E-Proposition 3.7

Subcase: q is between p and e. Let t be a point on L distinct from e.
Connect line P through q, t. Now choose a point s on L that is between t
and e. We know that e, s are on the same side of P (2.40), and that e, p are
not on the same side of P (2.41). Thus p and s are on opposite sides of P
(2.37). So when we draw line O through p, s we get our desired intersection
point r.

Subcase: p is between q and e. Proceed symmetrically.

E-Proposition 3.8. Suppose we have a line L, and points p, q, r, s, t satis-
fying (1) and (2) from the previous theorem. Then p, q are on the same side
of L.

Proof. This is immediate from a couple uses of (2.40).
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Chapter 4

The Adequacy of E

We can judge the success of E, given the intentions behind its creation, by
answering the following questions:

(i) Is it really faithful to Euclid’s diagrammatic approach?
(ii) Does it suffice for all (and only) ruler-and-compass constructions

of the form of those in the Elements?

Question (i) is partly logical and partly philological, depending on a close
reading of Euclid’s Elements ; we have indicated above that we feel it can
be answered in the affirmative, but we wish to discuss the matter no further
here.1 Our present interest is in answering the purely mathematical question
(ii).

4.1 What Form Completeness?

There are two well-known, equivalent ways to characterize the ruler-and-
compass theorems. One is semantic, involving Cartesian plane structures
which are built on Euclidean fields; the other is syntactic, an axiomatization
(in a more restricted language than that of E) of the ruler-and-compass the-
orems which is due to Tarski. Before presenting these characterizations, let
us outline the coming completeness proof.

We use the locution “Γ � (∃�x)Δ is valid” as shorthand for Γ � (∃�x)Δ
being valid in the class of structures marked out in the semantic character-
ization below. Later on we will craft a modification T of Tarski’s original

1A more probing account of the degree to which E is faithful to the Elements will be a
part of [1].

23
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system that still characterizes the body of theorems in question, but which
also has some nice formal properties not shared by the original. We will
define a translation π : L(E) → L(T) that maps E-sequents to regular sen-
tences (defined below), and a re-translation ρ : L(T) → L(E). Ultimately,
we will show that the systems and translations involved have the following
properties:

1. Γ� (∃�x)Δ is valid if and only if T 	 π(Γ� (∃�x)Δ).

2. If T 	 ϕ where ϕ is regular, then E 	 ρ(ϕ).

3. If E 	 ρ(π(Γ� (∃�x)Δ)), then E 	 (Γ� (∃�x)Δ).

Establishing those facts is sufficient; it immediately follows that E 	 (Γ �
(∃�x)Δ) for any valid Γ � (∃�x)Δ. First things first, let us now describe the
semantic picture of things.

4.1.1 Arithmetic Cartesian Planes

We seek a semantics for ruler-and-compass constructions, by which we can
judge the strength of E. Since the time of Descartes, it has been common
practice to arithmetize geometry. For instance, in standard Euclidean plane
geometry we can think of ourselves as working in a Cartesian plane structure
that is based on a real closed field F:

(1) 〈F,+·, 0, 1 ≤〉 is an ordered field,
(2) F |= ∀x(x > 0 → ∃y(y2 = x))

(positive elements have square roots),
(3) F satisfies an axiom stating that any

odd-degree polynomial has a root.

Given an ordered field F, we now spell out exactly what we mean, formally,
by the Cartesian plane structure on F in the language of E. It will look
something like this:

F := 〈F2, LF, CF, AF,MF, . . .〉.

Here the set F
2 of all ordered pairs from F is the universe of points. LF , CF

AF and MF denote the universes of lines, circles, angles and magnitudes,
respectively. The . . . elide over the relations that are the interpretations in F
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of the various relation symbols of L(E). We will not go into the details here
of how these interpretations are defined in terms of elements of the structure.
Instead we will just point out that they are defined exactly as you (probably)
remember from grade-school arithmetic geometry; for the gist of things, see
the simplified semantics below, for which we do spell out the details.

We can now give a formal criterion for when some Γ� (∃�x)Δ is a theorem
of Euclidean plane geometry:

F |= (Γ� (∃�x)Δ) for all real closed fields F ?

In fact, this criterion can be simplified a bit. Tarski [12] showed, via quan-
tifier elimination, that the theory of real closed fields (RCF) is complete and
decidable. The completeness result in particular implies that all models of
RCF are elementarily equivalent; thus we can simplify the criterion above by
stating it in terms of a particular real closed field. Take, say, R, built upon
the standard real numbers R (which is certainly a real closed field). Then
we can restate the criterion above:

R |= (Γ� (∃�x)Δ) ?

Now that is all well and good for plane geometry as we often think of
it in, say, physics; that is, when we want to deal with the complete ordered
field R. But we are interested in Euclid’s mathematics in particular; namely,
our focus is on ruler-and-compass constructions. We want to live in a plane
consisting only of points that can be pinpointed (or, “constructed”) from a
given starting point using ruler-and-compass. A contrast: in R, it is true
that for any points a, b, c, there are points d, e such that the lines through ad
and ae trisect the angle ∠bac. (This is a consequence of the compeleteness of
R.) But it is well-known that there are angles which cannot be trisected using
ruler-and-compass (e.g. π/3); the problem is that the points d, e which exist
in R

2 cannot be pinpointed with the restricted method of ruler-and-compass.

So what sort of ordered field gives rise to this sparser, more limited Carte-
sian plane? Real closed fields are no longer the answer; rather, the perti-
nent notion is that of a Euclidean field K: an ordered field in which every
x > 0 has a square root (so, a real closed field minus condition (3)). Es-
sentially, condition (2) gives us enough points so that circles intersect when
they should, while the omission of (3) corresponds to the fact that we lose
out on points such as those needed to trisect π/3. The question of whether
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some Γ � (∃�x)Δ is a theorem in the ruler-and-compass setting reduces to
the following:

K |= (Γ� (∃�x)Δ) for all Euclidean fields K ?2

In light of the foregoing discussion, our ultimate goal is this: for any
E-proposition Γ� (∃�x)Δ we claim that the following hold.

Soundness: If E 	 (Γ� (∃�x)Δ), then K |= (Γ� (∃�x)Δ) for all
Euclidean fields K.

Completeness: If K |= (Γ� (∃�x)Δ) for all Euclidean fields K,
then E 	 (Γ� (∃�x)Δ).

4.1.2 A Simplified Semantics

In demonstrating the completeness of E, we will be making use of Tarski’s
completeness results for his first-order axiomatization of plane geometry. The
language L of Tarski’s system T−, defined below, has only a single sort and
(in addition to the ubiquitous =) only predicates B(xyz) and xy ≡ vu, which
are intended to mean “y is between3 x and z” and “the distance from x to y
is the same as that from v to u.” Just as we defined, given an ordered field
F, the L(E)-structure F , we can define a Cartesian plane structure for this
language; namely,

FL := 〈F2, BF,≡F〉,
where

BF :=

⎧⎨
⎩(x, y, z) ∈ (F2)3 |

(x1 − y1) · (y2 − z2) = (x2 − y2) · (y1 − z1),
(x1 − y1) · (y1 − z1) ≥ 0,
(x2 − y2) · (y2 − z2) ≥ 0.

⎫⎬
⎭

and

≡F := {(x, y, u, v) ∈ (F2)4 | (x1 −y1)
2 +(x2 −y2)

2 = (u1−v1)
2 +(u2−v2)

2}.
Note that, as promised above, these defining conditions are exactly the fa-
miliar ones seen in the earliest of algebra classes . Again, we are interested in

2We remark that this criterion cannot be simplified as in the case above. The reason
for this is that the theory in question here is not complete. See footnote 4 for more detail.

3In Tarski’s system this is a non-strict betweenness (i.e. it could be that x = y or
y = z), in contrast to the strict betweenness of E.
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this simpler kind of structure because it enjoys a tight connection (exposited
below) with Tarski’s formal system. As it turns out, we will in fact be inter-
ested in a modification of Tarski’s T−. We will call this system T, and it is
also defined below. At some point we will want to indicate a semantics for
T that is closely related to that for T−; but we will postpone our discussion
of this until after we have introduced the Tarskian systems.

4.1.3 Tarskian Axiomatizations of Geometry

As indicated above, we will now turn to Tarski’s axiomatization of plane ge-
ometry, which continued the march toward formalized geometry initiated by
Hilbert’s (still informal) Grundlagen der Geometrie [2], for a syntactic char-
acterization of the class of theorems that we are interested in. As indicated
above, Tarski’s original formal system for plane geometry is in the language
L, whose only non-logical predicates are B and ≡. Its axiomatization consists
of (the universal closures of) the following (see, e.g. [14]):

Equidistance Axioms

(E1) ab ≡ ba
(E2) (ab ≡ pq) ∧ (ab ≡ rs) → (pq ≡ rs)
(E3) (ab ≡ cc) → a = b

Betweenness Axiom

(B) B(abd) ∧ B(bcd) → B(abc)

Segment Construction Axiom

(SC) ∃x(B(qax) ∧ (ax ≡ bc))

Five-Segment Axiom

(5S) [¬(a = b) ∧B(abc) ∧ B(pqr) ∧ (ab ≡ pq)
(bc ≡ qr) ∧ (ad ≡ ps) ∧ (bd ≡ qs)] → (cd ≡ rs)

Pasch Axiom

(P) B(apc) ∧ B(qcb) → ∃x(B(axq) ∧B(bpx))

2-Dimension Axioms

(2L) ∃a, b, c[¬B(abc) ∧ ¬B(bca) ∧ ¬B(cab)]

(2U) ¬(a = b) ∧ ∧3
i=1 xia ≡ xib

→ (B(x1x2x3) ∨ B(x2x3x1) ∨ B(x3x1x2)



28 CHAPTER 4. THE ADEQUACY OF E

Euclid’s Axiom (Parallel Postulate)

(PP) B(adt) ∧ B(bdc) ∧ ¬(a = d)
→ ∃x, y(B(abx) ∧ B(acy) ∧ B(ytx))

Continuity Axiom Scheme

(C)ϕ ∃a∀x, y(ϕ(x) ∧ ψ(y) → B(axy)) → ∃b∀x, y(ϕ(x) ∧ ψ(y) → B(xby))

(In this last, ϕ contains no free a, b, y, and ψ contains no free a, b, x.) We
call the above theory T+. Tarski proved the following:

Fact 4.1 (Tarski [13]). T+ is sound and complete for real closed fields:

T+ 	 ϕ ⇐⇒ RL |= ϕ.

So T+ is sufficient to prove any theorem of Euclidean plane geometry; this
is greater strength than E is meant to have, as discussed above. We would
like to judge the strength of E against a weakening of T+. In fact, Tarski
already established how to appropriately weaken T+ so that the result proves
exactly the ruler-and-compass theorems in the language L. By T− we mean
the theory obtained from T+ by doing away with the full Continuity scheme
(which is what makes T+ jibe with the completeness of R), and to have in
its stead the following:

Intersection Axiom

(Int) (ax ≡ ax′) ∧ (az ≡ az′) ∧B(axz) ∧B(xyz)
→ ∃y′((ay ≡ ay′) ∧ B(x′y′z′))

Intuitively, this axiom says that any line through a point lying inside a circle
intersects the circle (see Figure 4.1).

Fact 4.2 (Tarski [13]). The weakened system T− is sound and complete for
ruler-and-compass theorems:

T− 	 ϕ ⇐⇒ KL |= ϕ for all Euclidean fields K.4

4Note that T− is finitely axiomatized; for we have replaced the lone axiom scheme of
T+ with a single axiom. Ziegler [15] proved that any finitely axiomatizable theory of fields
that has among its models an algebraically closed field, a real closed field or a field of
p-adic numbers, is an undecidable theory. It is clear from the present result that T− has a
real closed field among its models (since a real closed field is, a fortiori, Euclidean). Thus
T− is undecidable, hence incomplete. In light of this and the characterization given by
Fact 4.2, it is clear that the criterion

K |= (Γ� (∃�x)Δ) for all Euclidean fields K ?

discussed above cannot be replaced by a criterion referencing satisfaction in a single struc-
ture.
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a x y z

x′

z′

y′

Figure 4.1: Intersection Axiom

4.1.4 A Useful Reformulation of T−

A theory is called geometric if all of its axioms are sentences of the following
form:

(�) ∀x
⎡
⎣ m∧

i=1

Bi(x) →
n∨

j=1

⎛
⎝∃yj

�j∧
k=1

Aj,k(x,yj)

⎞
⎠
⎤
⎦ ,

where the A’s and B’s are atomic formulas (including � and ⊥), and each
of x, y or the antecedent of the conditional could be empty. Formulas of
the form (�) are called geometric; note that this class includes the regular
formulas as a special case (namely, where there is only a single disjunct).
Sara Negri [8], building on earlier joint work with Jan von Plato [9], has
established a cut-elimination theorem for geometric theories that we can put
to use in our completeness proof. Suppose we have a geometric theory G,
formulated in a standard two-sided sequent calculus.5 Then G can be recast
equivalently by replacing each of its geometric axioms like the one above with
a corresponding inference rule, called a geometric rule scheme (GRS):

�A1,·(x,y1),Γ ⇒ Δ · · · �An,·(x,yn),Γ ⇒ Δ

�B(x),Γ ⇒ Δ

where the variables in the yj ’s do not appear free in �B, Γ or Δ.6

5For concreteness, we fix one such sequent calculus; see the appendix.
6It is a straightforward exercise to verify that this inference rule has the same strength

as assuming the corresponding geometric formula as a non-logical axiom. We also note
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Henceforth, when we speak of the geometric theory G, we refer to its
GRS formulation. Negri’s principal result is the following theorem, whose
corollary we will apply later.

Theorem 4.3. Any geometric theory G has cut-elimination.

Corollary 4.4 (Weak Subformula Property). If G 	 ϕ, then there is a proof
of ϕ that mentions only subformulas of ϕ, and possibly some other atomic
formulas.

Proof. Among the logical rules, only cut removes formulas. And inspection
of the GRS above reveals that a GRS can only remove atomic formulas.

Expanding the Language of T

Tarski’s axiomatization for T− is nearly geometric. The only stumbling block
is that in (�) the conjunctions are required to be conjunctions of atomic
formulas, not literals. Thus, for instance, the lower 2-dimensional axiom

∃a, b, c(¬B(abc) ∧ ¬B(bca) ∧ ¬B(cab))

is not geometric. We remedy this situation by introducing explicit predicates
for the negations of = and B and ≡; that is, we expand our language to one
called L(T) by adding predicates �= and B and �≡; and we add the (geometric)
axioms

∀x, y[(x = y) ∨ (x �= y)], ∀x, y[(x = y) ∧ (x �= y) → ⊥]

(as well as analogous ones for B,B and ≡, �≡) to T. We will call these
“negativity axioms” below. Also, we replace any negated instances of = or B
(there are no such negated instances of ≡) from the previous axiomatization
of T− with the new corresponding predicate, thus obtaining a geometrically
axiomatized theory. Finally, for technical reasons seen below, we will add
constants cN

1 , c
N
2 and cγ

1 , c
γ
2 for all line and circle variables of L(E), as in

that the form given here is not quite that which appears in [8]; the reason is that the
rules must be presented with the �B(x) repeated in the premises in order for Negri to
prove the admissibility of the structural rules of contraction and weakening, along with
cut-elimination. The variant we are using is notationally simpler, and for our purposes
just as good; using the original formulation would not alter our completeness proof in any
essential way.
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Chapter 1. We call the resulting theory simply T, and denote its language
by L(T).

Before going further we make one remark. Let σ : L(T) → L be the
obvious, natural translation (which maps, e.g., occurrences of B(xyz) to
¬B(xyz), and so on). Then we have:

Fact 4.5. Let ϕ ∈ L(T). Then

T 	 ϕ ⇐⇒ T− 	 σ(ϕ).

Proof. This is just true by virtue of the negativity axioms of the expanded
T, which guarantee that the new predicates really behave like the negations;
that’s why we have added those axioms after all.

GRS’s for Non-Logical Axioms

Now we go further and put the non-logical axioms of T into the form of
geometric rule schemes. First of all, the negativity axioms look like this:

(x = y),Γ ⇒ Δ (x �= y),Γ ⇒ Δ
Neg

Γ ⇒ Δ

⊥, (x = y), (x �= y),Γ ⇒ Δ
Neg

(x = y), (x �= y),Γ ⇒ Δ

And similarly for the other predicates. The remaining axioms are as follows:

Equidistance GRS’s

ab ≡ ba,Γ ⇒ Δ
E1

Γ ⇒ Δ

(pq ≡ rs), (ab ≡ pq), (ab ≡ rs),Γ ⇒ Δ
E2

(ab ≡ pq), (ab ≡ rs),Γ ⇒ Δ

(a = b), (ab ≡ cc),Γ ⇒ Δ
E3

(ab ≡ cc),Γ ⇒ Δ

Betweenness GRS

B(abc),Γ ⇒ Δ
B

B(abd), B(bcd),Γ ⇒ Δ
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Segment Construction GRS

B(qax), (ax ≡ bc),Γ ⇒ Δ
SC(x)

Γ ⇒ Δ

Five-Segment GRS

(cd ≡ rs),Γ ⇒ Δ
5S

a �= b, B(abc), B(pqr), (ab ≡ pq), (bc ≡ qr), (ad ≡ ps), (bd ≡ qs),Γ ⇒ Δ

Pasch GRS

B(axq), B(bpx), B(apc), B(qcb),Γ ⇒ Δ
P(x)

B(apc), B(qcb),Γ ⇒ Δ

2-Dimension GRS’s

¬B(abc),¬B(bca),¬B(cab),Γ ⇒ Δ
2L(a, b, c)

Γ ⇒ Δ

B(x1x2x3), �P ,Γ ⇒ Δ B(x2x3x1), �P ,Γ ⇒ Δ B(x3x1x2), �P ,Γ ⇒ Δ
2U

�P ,Γ ⇒ Δ

Note that �P := {a �= b, (x1a ≡ x1b), (x2a ≡ x2b), (x3a ≡ x3b)} in the above.

Parallel Postulate GRS

B(abx), B(acy), B(ytx),Γ ⇒ Δ
PP(x, y)

B(adt), B(bdc), a �= d,Γ ⇒ Δ

Intersection GRS

(ay ≡ ay′), B(x′y′z′),Γ ⇒ Δ
Int(y′)

(ax ≡ ax′), (az ≡ az′), B(axz), B(xyz),Γ ⇒ Δ
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Semantics for T

Recall our definition of FL for an ordered field F. The analogous structure
for the expanded language L(T) ⊇ L is the following expansion of FL:

FT := 〈F2, BF,≡F, B
F

, �≡F, �=F〉,

where

B
F

:= F
2 \BF,

�≡F := F
2 \ (≡F),

�=F := F
2 \ {(x, x) | x ∈ F}.

Note that these last definitions are appropriate because B, �≡ and �= are
intended to be interpreted as the negations of the corresponding predicates.

Now a quick note for later use. Let σ : L(T) → L be the natural transla-
tion from before.

Fact 4.6. Let F be an ordered field, and let ϕ ∈ L(T). Then

FT |= ϕ ⇐⇒ FL |= σ(ϕ).

Proof. Straightforward from the definitions of FT, FL and σ.

Corollary 4.7 (Tarski’s Fact Reformulated). For any ϕ ∈ L(T) we have:

T 	 ϕ ⇐⇒ KT |= ϕ for all Euclidean fields K.

Proof. Immediate from established results:

T 	 ϕ ⇐⇒ T− 	 σ(ϕ)

⇐⇒ all KL |= σ(ϕ)

⇐⇒ all KT |= ϕ.

These hold, respectively, by the earlier Fact 4.5, Tarski’s Fact 4.2, and the
preceding fact.
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A Technical Lemma

Here we will give a result indicating a particular relationship between the
structures K and KT when K is a Euclidean field.

For a fixed first-order language, we call a formula of the form

∀x
[∧

i

Pi(x) → ∃y
∧
j

Qj(x,y)

]
,

where the Pi’s and Qj ’s are atomic, regular ; a formula of the same form, but
where the Pi’s and Qj’s are allowed to be literals, we will call pseudo-regular.7

Note that any Γ� Δ is a pseudo-regular L(E)-sentence.
We will now define a translation π : L(E) → L(T) in such a way that the

range of π is included in the regular sentences; the idea is that we want to
represent (in a ruler-and-compass-equivalent way) the pseudo-regular L(E)-
sentences Γ � (∃�x)Δ as regular L(T)-sentences. Again, we want to do this
for purely technical proof-theoretic reasons that become clear below.

For the purpose of getting a mapping π to regular formulas, we first want
to determine ways to express the E-literals in T using only formulas of an
even more restricted form. Specifically, for each E-literal A we will define a
corresponding L(T)-formula π(A) of the following form:

∃z
(∧

k

Mk(z)

)

where the Mk’s are atomic. (Formulas of this form are sometimes referred to
as positive primitive formulas.) Without further ado, here is the listing for
each E-literal.

• on(p,N) �→ ∃a, b(cN
1 a ≡ cN

1 b ∧ cN
2 a ≡ cN

2 b ∧ pa ≡ pb︸ ︷︷ ︸
=: ζ(cN

1 ,cN
2 ,p,a,b)

).

• ¬on(p,N) �→ B(cN
1 cN

2 p) ∧B(cN
1 pc

N
2 ) ∧ B(pcN

1 cN
2 )︸ ︷︷ ︸

=: χ(cN
1 ,cN

2 ,p)

.

• same(p, q, N) �→
∃r, s, t, a, b(ζ(cN

1 , c
N
2 , s, a, b) ∧ ζ(cN

1 , c
N
2 , t, a, b) ∧ χ(cN

1 , c
N
2 , r) ∧B(prs) ∧B(qrt)).

7A note on usage: the term regular is employed in this way in the literature; as far as
we know, pseudo-regular is not used by anyone.
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• ¬same(p, q, N) �→ ∃r, a, b(ζ(cN
1 , c

N
2 , r, a, b) ∧B(prq)).

• bet(p, q, r) �→ B(pqr) ∧ p �= q ∧ q �= r ∧ p �= r.

• ¬bet(p, q, r) �→

∃a, b, f, g, h, x, y, z

⎡
⎢⎣
χ(a, b, q) ∧ a �= p ∧ a �= q ∧ a �= r ∧ b �= p ∧ b �= q ∧ b �= r∧
B(apx) ∧B(aqy) ∧B(arz) ∧ p �= x ∧ q �= y ∧ r �= z∧
B(bpf) ∧B(bqg) ∧B(brh) ∧ p �= f ∧ q �= g ∧ r �= h∧
B(xyz) ∧B(fgh)

⎤
⎥⎦

• xy = zw �→ xy ≡ zw.

• xy �= zw �→ xy �≡ zw.

• xy < zw �→ ∃a(a �= w ∧ z �= w ∧B(zaw) ∧ xy ≡ za).

• xy �< zw �→ ∃a(B(xay) ∧ xa ≡ zw).

• on(p, γ) �→ cγ
1p ≡ cγ

1c
γ
2 .

• ¬on(p, γ) �→ cγ
1p �≡ cγ

1c
γ
2 .

• in(p, γ) �→ ∃x(B(cγ
1px) ∧ p �= x ∧ (cγ

1x ≡ cγ
1c

γ
2)).

• ¬in(p, γ) �→ ∃x(B(cγ
1xp) ∧ (cγ

1x ≡ cγ
1c

γ
2)).

• ∠xyz = ∠x′y′z′ �→
∃u, v, u′, v′(B(xuy) ∧ B(yvz) ∧ B(x′u′y′) ∧ B(y′v′z′) ∧ (uy ≡ u′y′) ∧ (yv ≡ y′v′) ∧ (uv ≡ u′v′)).

• ∠xyz �= ∠x′y′z′ �→
∃u, v, u′, v′(B(xuy) ∧ B(yvz) ∧ B(x′u′y′) ∧ B(y′v′z′) ∧ (uy ≡ u′y′) ∧ (yv ≡ y′v′) ∧ (uv �≡ u′v′)).

We have not yet indicated the π-images for literals involving the intersect
predicate. The positive literals in this regard are straightforwardly expressed
in positive primitive manners by combining the π-images of things like on(p, L)
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and on(p, α), and we omit the details.. The negative literals, which assert
non-intersection, require something more roundabout. For instance,

¬intersect(α, β) �→ ∃p, a, b
⎡
⎣ cα

1 cα
2 ≡ cα

1a ∧ cβ
1 c

β
2 ≡ cβ

1b∧
a �= p ∧ a �= b ∧ b �= p∧
B(cα

1ap) ∧ B(cβ
1bp) ∧ B(apb)

⎤
⎦

Appropriate positive primitive π-images for the literals ¬intersect(L, α) and
¬intersect(L,M) can be found using π-images from above, notably that for
∠xyz = r. For instance, to say that ¬intersect(L, α), we assert the existence
of points a, b, c, where a is on α, b �= c are on L, a is strictly between cα

1 ,
and ∠abc = r. Similarly, ¬intersect(L,M) can be expressed by asserting the
existence of a, b, c, d, where a �= b are on L, c �= d are on M , and the angles
∠abc, ∠bcd, ∠cda, ∠cab are all right.

We now extend π to a translation π : L(E) → L(T) that maps every
Γ� (∃�x)Δ to a regular sentence. Suppose our Γ� (∃�x)Δ is of the form

A1, . . . , Ak � (∃�x)B1, . . . , Bm,

where we have

π(Ai) = ∃zi

(
ni∧

q=1

Mq

)
, π(Bi) = ∃yi

(
pi∧

q=1

Nq

)
.

Then we define

π(Γ� (∃�x)Δ) = ∀z1, . . . , zk

[
k∧

i=1

(
ni∧

q=1

Mq

)
→ ∃y1, . . . ,ym

m∧
i=1

(
pi∧

q=1

Nq

)]
.

Note that this is a regular sentence. The following lemma captures all that
we need to know about π.

Lemma 4.8. For any Euclidean field K

K |= (Γ� (∃�x)Δ) ⇐⇒ KT |= π(Γ� (∃�x)Δ).

Proof. In first-order logic, π(Γ � (∃�x)Δ) is equivalent to
∧

i π(Ai) →∧
j π(Bj), where the Ai’s are the literals from Γ and the Bj ’s those from Δ.

So it suffices to verify that for every E-literal A in the table above,

K |= A ⇐⇒ KT |= π(A).
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Many of the cases are immediate, and at base verifying any of the cases just
comes down to doing some algebra involving the coordinates (x1, x2) ∈ K

2

of the collections of points involved. We will only indicate a couple of cases.

• on(p,N): Suppose that p is on N . Certainly cN
1 and cN

2 are as well.
Construct the equilateral triangles acN

1 cN
2 and bcN

1 cN
2 à la Proposition

1. We need only check that ap = bp. This is just a matter of picking
coordinates for the points and checking the algebra.

Conversely, suppose that points a and b are equidistant from each of cN
1 ,

cN
2 and p. By Tarski’s Fact, we can appeal to the upper 2-dimensional

axiom and conclude that the three points all lie on one line. And this
line clearly must be N .

• same(p, q, N): For this case we have done the work in the previous
chapter. See E-Propositions 3.7 and 3.8.

4.2 Completeness Proof

The reason we are interested in the above reformulation of Tarski’s system
is that, being a geometric theory cast in that manner, we can apply Negri’s
cut-elimination theorem (and the weak subformula property it implies) to it.
The overall strategy for what remains of the completeness proof is as follows:

• Suppose T 	 π(Γ� (∃�x)Δ).

• (Reduction Lemma) Use Negri’s theorem to obtain a “nice” proof of
π(Γ� (∃�x)Δ) in T.

• (Main Lemma 1). Read off a proof of an appropriate E-sequent

ρ(π(Γ� (∃�x)Δ))

in E from the nice proof in T.

• (Main Lemma 2). Show that, from the preceding E-proof, we can in
fact recover a proof of Γ� (∃�x)Δ itself.
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First we define the translation ρ taking us from regular sentences of L(T)
to E-sequents. For the base cases, where we just have a single atomic formula,
we map as follows:

B(pqr) �→ (∃L, a, b).[a �= b, a �= p, a �= q, a �= r, b �= p, b �= q, b �= r,
on(a, L), on(b, L), on(p, L), on(q, L), on(r, L), bet(a, q, b),
¬bet(a, q, p),¬bet(p, a, q),¬bet(q, b, r),¬bet(r, q, b)]

B(pqr) �→ ¬bet(p, q, r), p �= q, q �= r
p = q �→ p = q
p �= q �→ ¬(p = q)
xy ≡ vu �→ xy = vu
xy �≡ vu �→ xy �= vu

Why the first two are appropriate should be clear upon reflection (remem-
bering that bet(p, q, r) is meant to be strict, while B(pqr) is not), and the
others are obvious. For the inductive step, suppose that the regular formula

∀x
[∧

i

Pi(x) → ∃y
(∧

j

Qj(x,y)

)]

maps to Γ� Δ under ρ. Then we just make the obvious definitions, mapping

∀x, z
[
M(x, z) ∧

∧
i

Pi(x) → ∃y
(∧

j

Qj(x,y)

)]

to Γ, ρ(M(x, z))� Δ, and mapping

∀x
[∧

i

Pi(x) → ∃y, z
(
M(x,y, z) ∧

∧
j

Qj(x,y)

)]

to Γ � ρ(M(x,y, z)),Δ. (A remark: when adding B(pqr) clauses induc-
tively, we use a new line variable for the ρ image each time.)

Our next main step is to analyze proofs of regular theorems ϕ in T, and to
construct corresponding proofs of ρ(ϕ) in E. But first of all, we need to make
a preparatory reduction. As will be indicated below (and as might already
be clear to the reader), our system E essentially has much of the same logical
machinery as does T; for instance, the case-splitting rules built into E give
us the strength of negativity axioms. But there are items that can appear in
regular formulas, for which E has no corresponding apparatus—specifically
→ and ∀.

In order to show that we can read off proofs in E from proofs of regular
theorems in T, then, we will show that sequent calculus rules governing
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→ and ∀ need not play any meaningful role in the T proofs. To wit, the
following lemma shows that we can (rather literally) think of such rule uses
as afterthoughts tacked onto the end of a proof of a regular theorem. (As a
side note, we remark that the lemma is proved in the general setting of an
arbitrary geometric theory G and its regular theorems.)

Lemma 4.9 (Reduction Lemma). Suppose a geometric theory G proves the
regular formula

ϕ := ∀x
[∧

i

Pi(x) → ∃y
(∧

j

Qj(x,y)

)]
.

Then there is a proof which ends thus:

d1

...∧
Pi(x) ⇒ ∃y

(∧
Qj(x,y)

)
R →

⇒
∧

Pi(x) → ∃y
(∧

Qj(x,y)
)

R∀
...

R∀
⇒ ∀x

(∧
Pi(x) → ∃y

(∧
Qj(x,y)

))
And the only rule uses in d1 are R∧, L∧, L⊥, R∃, as well as GRS instances.

Proof. Given that ϕ is provable, it is clear that∧
Pi(x) ⇒ ∃y

(∧
Qj(x,y)

)
is provable as well. By Negri’s theorem, this sequent has a cut-free proof d1,
which is as stated in the conclusion of the lemma.

The foregoing lemma shows, in particular, that any regular theorem ϕ
of T has a very nice cut-free proof in which the R → and R∀ rules do not
interweave with the “axioms” (i.e. geometric rule schemes) in any way in
proving the regular theorem. In essence, the contentful part of the proof is
just the
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d1

...∧
Pi(x) ⇒ ∃y

(∧
Qj(x,y)

)
Our ultimate claim, embodied in the lemmas below, is that derivations of the
form d1 can be closely mirrored by proofs in E. From here on out, we focus
not on the regular sentences themselves which are theorems, but rather the
sequents of the form

∧
i

Pi(x) ⇒ ∃y
(∧

j

Qj(x,y)

)

that are the conclusions of derivations like d1. Note that we can just as well
think of ρ as acting on such sequents, rather than the corresponding regular
sentence; this is how we think of ρ below.

With the foregoing machinery in place, the following two lemmas are
largely straightforward dealings with the formal apparatus of E. The first of
them shows that the ρ-image of any regular theorem from T has a proof in
E.

Lemma 4.10 (Main Lemma 1). If T 	 ϕ, where ϕ is regular, then E 	 ρ(ϕ).

Proof Outline.

• We consider a cut-free proof of ϕ of the form indicated in the previous
lemma, and focus on the proof d1 of the sequent∧

i

Pi(x) ⇒ ∃y
∧
j

Qj(x,y).

Inducting on the structure of the proof d1, our task reduces to showing
that every step carried out in d1 can be mirrored by a proof in E.

• Essentially, logical axioms and the logical rules which can appear in d1

are already incorporated into the machinery of the formal system E;
ditto for the Negativity axioms.
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• With one exception, the GRS’s we consider are of the form

A1, . . . , An,Γ ⇒ Δ
GRS

B1, . . . , Bm,Γ ⇒ Δ

(That is, these GRS’s correspond to the Tarskian axioms which are
regular.) In these cases, it suffices by the induction hypothesis to show
that

ρ(B1), . . . , ρ(Bm)� ρ(A1), . . . , ρ(An).

The details for certain of these cases are given below.

• The remaining case is the sole GRS which is not regular (the Upper
2D axiom). Our task in this case is not really all that different from
the previous cases; there is just one wrinkle.

Proof Details: Logical.

• (L∧,R∧): We note that we do not have the symbol ∧ in the language
of E; instances of it get unpacked via the translation ρ. The L∧ rule
becomes essentially vacuous, and the R∧ rule is mirrored by the derived
conjunction rule of Chapter 2.

• (R∃,L⊥): These rules are subsumed under the notion of diagrammatic
consequence detailed in Chapter 2.

Proof Details: Regular GRS.

• (E1,E2,E3). Given the trivial nature of ρ for ≡, it is easy to see that
these cases are handled by our metric rules.

• (2L). Let a be a point. Construct point b �= a. Construct line L
through a, b. Construct point c that is not on L. Each of bet(a, b, c) or
bet(b, a, c) or bet(a, c, b) leads to on(c, L), hence a contradiction. Thus
we can conclude ¬bet for each, which is what we need.

• (SC). One can check that E-Propositions 3.3 and 3.5 provide the con-
structions that we need here to supplement the inductive hypothesis.
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• (Int). By inductive hypothesis, we need to prove

ax = ax′, az = az′, on(a, L), on(x, L), on(z, L),¬bet(a, z, x),¬bet(x, a, z),
on(x, M), on(y, M), on(z, M),¬bet(y, x, z),¬bet(x, z, y)
�

(∃y′, N).ay = ay′, on(x′, N), on(y′, N), on(z′, N),¬bet(x′, z′, y′),¬bet(y′, x′, z′)

Given the antecedent, we first note that uniqueness of lines yields L =
M . We now reason by cases; as with other times, we present only the
case in which all points concerned are distinct, as the other cases are
only easier.

Draw line N through x′ and z′. We thus seek a y′ between x′, z′ such
that ay = ay′. So we draw the circle γ through y centered at a. Since
bet(a, x, y), we know (2.48) that x is inside γ; as ax = ax′, x′ is also
inside. Similarly, z′ is outside; thus (2.16) we can construct y′ on γ
(hence ay = ay′ as well) that is also between x′ and z′.

• We omit the remaining cases for the axioms (5S), (P), (PP) and (B),
leaving the details to the interested reader. Like the previous cases, all
that is involved are fairly straightforward uses of the rules of E.

Proof Details: Upper 2-Dimensional. Suppose we have a �= b, and xia = xib
(i = 1, 2, 3). We argue by cases concerning equalities among the xi’s. But
we only present the case in which all are distinct; the other cases are only
easier.

For each i, construct cricle γi with center xi, passing through b. Construct
line L through a, b. By the reasoning used earlier in E-Proposition 3.4, each
xi is on the line perpendicular to L, call it M .

Now we reason by cases, considering each parity for each bet(xi, xj , xk);
there are eight cases (omitting symmetry in the bet arguments). In the four
for which two positive bet relations hold, we get contradictions. In the other
four cases, we have two negative instances holding. But that is precisely
what we need, given the inductive hypothesis.

Given the previous lemma, we are halfway home. For suppose we have
some E-sequent (Γ � (∃�x)Δ). This has its corresponding regular L(T)-
formula π(Γ � (∃�x)Δ), and we now know that when we map this back
to E via ρ, the image has a proof. This is almost enough; the trouble of
course is that ρ(π(Γ� (∃�x)Δ)) is not quite the same thing as (Γ� (∃�x)Δ);
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typically the former features extra structure in both the antecedent and con-
sequent. The following lemmas demonstrate that, from the E proof of the
more “populated” proposition, we can in fact recover a proof of the original
(Γ� (∃�x)Δ).

Lemma 4.11. Let M be any literal of E. Then

1. E 	 (M � ρ(π(M))),

2. E 	 (ρ(π(M))�M).

Proof. In an effort to avoid some needless tedium, we will not give the details
for every such M . And as we will note, some of the work has already been
done in the previous chapter.

• ¬on(p, L): We need to prove

¬on(p, L)� cN
1 �= cN

2 , cN
1 �= p, cN

2 �= p,¬bet(cN
1 , cN

2 , p),¬bet(cN
1 , p, cN

2 ),¬bet(cN
2 , cN

1 , p)

and the converse. The first direction is immediate. Supposing any of
those on the RHS were to hold positively, our betweenness rules yield
on(p,N), contradiction.

Conversely, suppose we have the RHS above. Suppose for contradic-
tion that on(p,N). Since p , cN

1 and cN
2 are all distinct, one of the

betweenness conditions on the RHS will hold positively; contradiction.

• bet(p, q, r): We note that ρπ(bet(p, q, r)) comes to

(∃L).[on(p, L), on(q, L), on(r, L),¬bet(p, r, q),¬bet(q, p, r), p �= q, q �= r, p �= r].

Suppose bet(p, q, r). Then a couple applications of (2.28) yield p �= q,
q �= r, p �= r ¬bet(q, p, r) and ¬bet(p, r, q). Then construct line L
through p, q; by (2.29), r is on L too.

Conversely, suppose the above ρ(π(bet(p, q, r))) holds. We are done by
(2.33).

• ¬bet(p, q, r): Here ρ(π(¬bet(p, q, r))) comes to

(∃a, b, f, g, h, x, y, z,X). on(a, Y ), on(q, Y ),¬on(b, Y ),
bet(a, p, x), bet(a, q, y), bet(a, r, z),
bet(b, p, f), bet(b, q, g), bet(b, r, h),
¬bet(x, y, z), x �= y, y �= z,
¬bet(f, g, h), f �= g, g �= h]



44 CHAPTER 4. THE ADEQUACY OF E

after a bit of simplification.

Suppose ρ(π(¬bet(p, q, r))) and assume for contradiction that we have
bet(p, q, r). Then we can draw line M through p, q, r. From the fact
that a, b, q are not collinear, we know that one of a, b (WLOG, say
a), is not on M . It now follows straightforwardly from our Pasch and
triple-incidence rules that bet(x, y, z) (draw a picture for guidance);
contradiction.

Conversely, suppose ¬bet(p, q, r). There are several cases based on
whether p, q, r are distinct from one another or not, and whether p, q, r
are collinear or not. We present the most involved construction case,
where all three points are distinct, and they are not collinear.

Draw line L through p, q. Take a point on u on L between p and q
(2.3). Draw line Z through u, r, and take point a on Z extending ur
(2.4). Now just draw lines X through a, p and Y through a, q, and take
points x extending ap, y extending aq and z extending au. As above,
the Pasch and triple-incidence rules yield bet(x, z, y) and the necessary
properties follow.

We then do the analogous construction involving b, this time starting
with a point v between q and r. We are done.

• on(p, γ) or ¬on(p, γ): Each is immediate using (2.66, 2.67).

• xy = zw or xy �= zw: Similarly straightforward.

• xy < zw: In this case ρ(π(xy < zw)) is

(∃a, L).on(z, L), on(a, L), on(w, L), a �= w, z �= w,¬bet(a, z, w),¬bet(z, w, a), xy = za.

Suppose xy < zw. From this, zw > 0, hence z �= w. So construct the
line L through z and w. In case x = y, then z itself will be our a. Let’s
work in case x �= y then. We apply E-Proposition 3.2 to get b such
that xy = zb. Draw circle β through b centered at z. As z is inside β
and on L, we know that β and L intersect (2.51). Since zb = xy < zw,
we know that w lies outside β (2.67, 2.69). Thus we may take the
intersection point a of β and w such that bet(z, a, w) (2.16). It is clear
that this is the a we need.

Conversely, suppose that we have the above ρ(π(xy < zw)). In case
z �= a, it follows that bet(z, a, w) (2.33). Then za + aw = zw (2.64).
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As a �= w, aw > 0 (2.62, 2.55). By the metric rules, then, zw > xy. In
case z = a, then xy = za = 0 (2.62) and zw = aw. Again, as a �= w,
aw > 0. So zw > xy as desired.

• xy �< zw: Similar to the previous.

• We leave the verification for literals involving angles to the interested
reader.

Lemma 4.12 (Main Lemma 2). Consider an E-proposition (Γ � (∃�x)Δ),
and suppose that we have E 	 ρ(π(Γ� (∃�x)Δ)). Then E 	 (Γ� (∃�x)Δ).

Proof. Let Γ = A1, . . . , Am and Δ = B1, . . . , Bn. Furthermore, let us write
A′

i := ρ(π(Ai)) and B′
i := ρ(π(Bi)). It is easy to verify that ρ ◦ π acts

“componentwise” in the sense that

ρ(π(Γ� (∃�x)Δ)) = A′
1, . . . , A

′
m � B′

1, . . . , B
′
n.

So our supposition amounts to E 	 A′
1, . . . , A

′
m � B′

1, . . . , B
′
n.

But the previous lemma tells us that E 	 (Γ � A′
1, . . . , A

′
m), and also

that E 	 (B′
1, . . . , B

′
n � Δ). Simply stringing these facts together yields the

desired E 	 (Γ� (∃�x)Δ).

With the foregoing lemmas in hand, the completeness we seek is just a
stone’s throw away. Putting everything from this chapter together, we get:

Theorem 4.13 (Completeness). If K |= (Γ� (∃�x)Δ) for every Euclidean
field K, then E 	 (Γ� (∃�x)Δ).

Proof. Suppose that every K |= (Γ� (∃�x)Δ). By Lemma 4.8, every KT |=
π(Γ� (∃�x)Δ). By Corollary 4.7 (the reformulation of Tarski’s Fact),

T 	 π(Γ� (∃�x)Δ).

As we have seen, π(Γ� (∃�x)Δ) is regular, and so Lemma 4.10 tells us that
E 	 ρ(π(Γ� (∃�x)Δ)). Finally, then, Lemma 4.12 yields

E 	 (Γ� (∃�x)Δ).
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4.3 Conclusions

4.3.1 Soundness

We have focused above on the completeness of E; let us say a few words about
its soundness. One could give a direct argument involving the semantics, but
the framework erected for our completeness proof includes most of the work
needed for a proof-theoretic demonstration of soundness.

Specifically, the same argument of Main Lemma 2 reverses to show the
converse: that E 	 (Γ � (∃�x)Δ) implies E 	 ρ(π(Γ � (∃�x)Δ)). Linking
that with the biconditional facts appealed to in Theorem 4.13, the only
missing ingredient for a soundness proof is a converse to Main Lemma 1:
E 	 ρ(ϕ) implies T 	 ϕ. The proof would look much like our Main Lemma
1, except mirroring E-proofs with T-proofs; this task is easier than the other
direction given the logical strength of T.

4.3.2 The Upshot

In a rough sense, our result shows that E is much like a cut-free regular
fragment of T. One might then object that there is not much new about E.
We remind the reader that in devising E, we were not aiming for something
brand new. Rather, we sought a straightforward formalization of some very
old mathematics, that of Euclid’s Elements. Our claim was that it enjoys
more solid logical underpinnings than is often suggested; the fact that our
E closely resembles a natural fragment of (a slight reworking of) Tarski’s
20th-century axiomatization is merely a reflection of the fact that Euclid’s
informal methods of proof, diagram-based though they are, really are not
all that far removed from those of modern logic. The crux of the difference
between a formalization like Tarski’s and our more faithfully Euclidean one
is not that the former enjoys a more precise and rigorous foundation than
the latter; rather, the difference lies primarily in the type of inferences one
which one considers to be immediate.



Appendix A

Sequent Calculus

For concreteness we have fixed a standard two-sided sequent calculus in which
our formalization of T resides. Its logical axioms are sequents of the form
P,Γ ⇒ Δ, P with P atomic, and its inference rules are as follows:

A,B,Γ ⇒ Δ
L∧

A ∧ B,Γ ⇒ Δ

Γ ⇒ Δ, A Γ ⇒ Δ, B
R∧

Γ ⇒ Δ, A ∧B
A,Γ ⇒ Δ B,Γ ⇒ Δ

L∨
A ∨ B,Γ ⇒ Δ

Γ ⇒ Δ, A,B
R∨

Γ ⇒ Δ, A ∨B
Γ ⇒ Δ, A B,Γ ⇒ Δ

L→
A→ B,Γ ⇒ Δ

A,Γ ⇒ Δ, B
R→

Γ ⇒ Δ, A→ B

L⊥⊥,Γ ⇒ Δ

A(t/x), ∀xA,Γ ⇒ Δ
L∀∀xA,Γ ⇒ Δ

Γ ⇒ Δ, A(y/x)
R∀

Γ ⇒ Δ, ∀xA
A(y/x),Γ ⇒ Δ

L∃∃xA,Γ ⇒ Δ

Γ ⇒ Δ, ∃xA,A(t/x)
R∃

Γ ⇒ Δ, ∃xA
Here y cannot appear free in Γ,Δ, ∀xA in rule R∀, nor can it appear free in
∃xA,Γ,Δ in rule L∃.
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