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Abstract

In many modern applications the aim of the statistical analysis is to identify ‘inter-

esting’ or ‘differentially behaved’ regions from noisy spatial measurements. From a

statistical standpoint the task is both to identify a collection of regions which are

likely to be non-null, and to associate to this collection a measure of uncertainty.

Viewing this task as a large scale multiple testing problem, we present methods for

controlling the clusterwise false discovery rate, defined as the expected fraction of

reported regions that are in truth null. Our methods extend the recent work of Sieg-

mund, Zhang, and Yakir [41], and can be applied whenever the high level excursions

of the noise process are well approximated by a (potentially inhomogeneous) Poisson

process.

Borrowing ideas from the Poisson clumping heuristic literature, we show that the

widely used pointwise procedure generally fails to control the clusterwise FDR. We

also draw connections between the proposal of Siegmund et al. [41], random field-

based familywise error rate control methods, and the STEM procedure introduced by

Schwartzman, Gavrilov, and Adler [39].

As one of our extensions we describe a general framework for incorporating various

measures of cluster significance into the clusterwise false discovery control procedure.

We show that incorporating cluster size can result in a significant increase in power.

In particular, we show that the augmented procedure can have better power than

even the pointwise procedure, while still controlling the clusterwise false discovery

rate.
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Chapter 1

Introduction

In many modern applications the aim of the statistical analysis is to identify ‘in-

teresting’ or ‘differentially behaved’ regions from noisy spatial measurements. Some

examples include (a) copy number variation studies where the goal is to identify

contiguous regions of gain or loss from measurements obtained at ordered probe loca-

tions; (b) neuroimaging studies seeking to identify activated regions of the brain from

measurements recorded at individual voxels; and (c) spatial epidemiology studies,

such as those aiming to identify geographical clusters of elevated disease incidence

from health information obtained at hospitals/clinics or from survey data. Figure

1.1 shows examples of the kind of data that may be encountered in these application

areas.

The scientific interest in each of these cases lies in identifying spatial regions or

clusters that deviate from the expected null behaviour. Note that in the settings

we consider, the regions of interest are not delineated in advance. From a statistical

standpoint the task is therefore both to identify a collection of regions which are likely

to be non-null, and to associate to this collection a measure of uncertainty. This task

is commonly viewed as a large scale multiple testing problem, for which the false

discovery rate (FDR) is often the error criterion of choice.

A widely used approach to this type of spatial inference problem is to apply an

1



CHAPTER 1. INTRODUCTION 2

FDR controlling procedure (e.g., Benjamini-Hochberg) to p-values calculated at each

measurement location. This line of analysis, which we term the pointwise procedure,

was introduced in the neuroimaging literature through the highly influential paper of

Genovese, Lazar, and Nichols [21]. The approach has since been applied in hundreds

of studies spanning a broad range of application areas, including but not limited to

the three mentioned above. As we will see shortly, there are two main issues with the

pointwise procedure: (i) the FDR is being controlled with respect to the wrong signal

support; and (ii) given that the units of inference are regions, it isn’t clear that the

pointwise procedure is even attempting to control a meaningful error criterion.

Chapter outline

We begin in Section 1.1 by laying out the basic notation that will be used throughout

the dissertation. In Section 1.2 we give a more precise statement of the pointwise pro-

cedure, and discuss the two key issues with this line of analysis. Having discussed the

deficiencies of the pointwise procedure, we proceed in Section 1.3 to describe mosaic

processes, which are widely applicable models for the occurrence of falsely detected

regions under a broad range of noise distributions. We then summarize the recent

work of Siegmund, Zhang, and Yakir [41], in which the authors present a clusterwise

estimation and control procedure that can be applied when false discoveries are well

modeled by a mosaic process. The introduction concludes with a review of relevant

literature.
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(a) Genetics (copy number variation). (b) Neuroimaging (fMRI).

(c) Spatial epidemiology.

Figure 1.1: This Figure shows examples of the kinds of applications in which the
spatial inference problem arises. Figure (a) originally appeared in Tibshirani and
Wang [46], in which the authors present a fused lasso approach to detecting hot spots
in CGH data. Figure (b) comes from Beyer and Rushton [12], and Figure (c) is taken
from a review paper by Vaghela et al. [47].
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1.1 Statement of the problem

We begin here by giving a more formal statement of the spatial inference problem. We

also summarize some of the notation and key definitions that will be used throughout

this dissertation.

We assume that we observe data y(t) corresponding to a noisy version of a sparse

signal µ(t) defined on an observation region D. The noise process will be denoted

by ε(t), and it will often be convenient to think of the noise as being additive, in the

sense that y(t) = µ(t) + ε(t). While the additivity assumption is not necessary, it

is satisfied in a broad range of settings. The region D is assumed to be a subset of

Euclidean space, Rd, and can be either discrete or continuous. When d = 1, we will

typically denote D = {1, 2, . . . , T} or D = [0, T ].

The region D will be thought of as being partitioned into two disjoint sets, D =

D0 ∪ D1. D0 is the set of ‘null locations’, which are locations that do not contain

signal (D0 = {t ∈ D : µ(t) = 0}). D1 is the set of ‘non-null locations’, which is the

support of the signal µ(t) (D1 = {t ∈ D : µ(t) 6= 0}). For example, in the leftmost

panels of Figure 1.4, D1 is the union of the five shaded squares, and D0 is all the

white space. It will generally be assumed that µ(t) ≥ 0 ∀t ∈ D, and hence that we

are interested in identifying regions where the signal is positive. The case where µ(t)

can be both positive and negative can often be reduced to the positive case by taking

absolute values, squaring or similar operations. We revisit this point in Section 1.5.2.

We define a cluster C ⊂ D to be a false discovery or false rejection if C ⊂ D0. A

cluster is a true discovery or correct rejection if C ∩ D1 6= ∅. This is a rather weak

notion of true discovery as it only asks that C overlaps with the support D1, and does

not require that the overlap exceed some minimal size. As we discuss in Section 1.7,

criteria requiring minimal overlap do appear in several other places in the literature.

When discussing pointwise error rates, we will adopt the natural definition that a

location t ∈ D is a false discovery if t ∈ D0. Correspondingly, a location t ∈ D is a

true discovery if t ∈ D1.
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In studying the false discovery properties of a discovery procedure, we will use the

following notation.

Key notation.

V = The set of false rejections

S = The set of correct rejections

V = # of false rejections = |V|

S = # of correct rejections = |S|

R = total # of rejections = V + S

FDP = V/R = False discovery proportion (FDP)

FDR = E[V/R;R > 0] = False discovery rate (FDR)

This notation applies whether a discovery is considered to be a single location

t ∈ D or a cluster C ⊂ D. For the most part we will be referring to clusterwise

quantities. In general it should be clear from the context whether the notation is

being used to refer to pointwise or clusterwise quantities. When there is potential for

confusion, subscripts C and P will be used to refer to the clusterwise and pointwise

quantities, respectively.
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1.2 Standard approach: Pointwise procedure

We begin by giving an overview of the pointwise procedure, which can be summarized

as follows.

Pointwise procedure.

(i) At each location t, apply a local smoother to obtain ỹ(t) based on y(t) and

{y(s)} for s in a neighbourhood of t.

(ii) For each t, calculate a p-value pt = P(ε̃(0) ≥ ỹ(t)).1

(iii) Apply an FDR control procedure (e.g., Benjamini-Hochberg) to the set of

p-values {pt : t ∈ D} to obtain a cutoff zα that controls the FDR at level α.

(iv) Report as discoveries the spatial clusters of the set Ezα = {t : ỹ(t) > zα}

1Here ε̃(0) is the marginal distribution of the smoothed noise process. We are thinking of ỹ(t)

as fixed, and calculating the probability that the random variable ε̃(0) exceeds level ỹ(t).

As previously mentioned, there are two key issues with this line of analysis: (i)

the FDR is being controlled with respect to the wrong signal support; and (ii) given

that the units of inference are regions, it isn’t clear that the pointwise procedure is

even attempting to control a relevant error criterion. We now elaborate on both of

these points.

Failure to control pointwise FDR. For concreteness, consider a setting in which

the observation y(t) = µ(t) + ε(t) is smoothed with a linear filter to form ỹ(t) =

µ̃(t) + ε̃(t). Even if the original noise ε(t) is uncorrelated, the smoothed noise ε̃(t)

will be (positively) auto-correlated. This implies that the test statistics {ỹ(t)}t∈D will

generally be positively dependent, and thus some care should be taken to ensure that

the FDR control procedure being applied is robust to positive dependence.

In the case of Benjamini-Hochberg, Benjamini and Yekutieli [11] establish that the

BH procedure conservatively controls the FDR provided that the test statistics satisfy
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Underlying signal
Gaussian smooth
Box smooth

Figure 1.2: Illustration of the effect of smoothing on the support of the signal. The
black curve shows the original box function signal. The two colored curves show the
kernel-smoothed signal for two choices of kernel, both of which have considerably
larger support compared to the original box function.

a certain positive dependence condition called PRDS. This condition is satisfied if,

for instance, ε̃(t) is multivariate Gaussian with non-negative correlation. Even if

the PRDS condition cannot be verified in a particular problem instance, the authors

show that a modification of the BH procedure controls the FDR under arbitrary

dependence. This modification is to carry out the BH procedure with α replaced

with the smaller quantity, α/(
∑m

i=1
1
i
), where m is the total number of tests. Since

m is large in all the settings we consider, one can simply take α/ log(m).

The real issue, however, is that smoothing ‘smears’ the original signal, meaning

that even though the control procedure may be valid, it is conducted with respect

to the smoothed signal µ̃(t). This phenomenon is illustrated in Figure 1.2, which

shows the effect of applying a kernel smoother to a box function. Smoothing has the

effect of enlarging the support of the signal. Thus when the BH procedure is applied

to p-values derived from {ỹ(t)}, any significant location in supp(µ̃) ⊃ supp(µ) gets

treated as a true detection. In other words, the BH procedure gives pointwise FDR

control for detecting locations in supp(µ̃), but not for the more restricted target set,

supp(µ).

The left panel of Figure 1.3 shows the results of a small simulation study conducted

to investigate how close the BH(α) procedure comes to controlling the pointwise FDR

with respect to supp(µ). Details of the simulation setup are described in the Figure

caption. The observed pointwise FDR measured with respect to supp(µ̃) is also
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shown for reference. As dictated by the theory, the observed FDR curve with respect

to supp(µ̃) is lower than the target for all values of α. Despite this, however, we see

that for all values of the target FDR level, α, the observed pointwise false discovery

rate is considerably higher than the target.

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Target level α

FD
R

target

FDRpoint

FDR~ point

(a) Pointwise FDR. The solid curve shows
observed pointwise FDR measured with re-
spect to supp(µ̃). Dashed curve shows ob-
served pointwise FDR measured with re-
spect to supp(µ). The pointwise procedure
fails to provide FDR control for detecting
the support of µ(t).

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Target level α

FD
R

target

FDRclust

(b) Clusterwise FDR. The solid curve
shows the observed clusterwise FDR for the
BH(α) procedure. Observed clusterwise
FDR is nearly two times higher than the
target, indicating the the pointwise proce-
dure fails to control clusterwise FDR. The
still higher dashed curve shows clusterwise
FDR when each box function in the sup-
port of µ(t) has a 5% chance of having
width 5w. The pointwise procedure be-
comes even more anti-conservative in the
latter setting.

Figure 1.3: These plots present the results of a small simulation conducted to investi-
gate the pointwise and clusterwise FDR control properties of the pointwise procedure.
The underlying signal, µ(t) is a sparse train of 10 box functions of equal amplitude,
and the noise is generated iid Gaussian. Except as indicated in the caption of plot (b),
the signal regions all have equal width, w. A box kernel smoother with bandwidth w
is applied to the data to produce ỹ(t). Both panels show the results of applying the
pointwise procedure with BH(α) at the value of α indicated on the horizontal axis.
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Failure to control clusterwise FDR. While the failure to control pointwise FDR

with respect to supp(µ) is problematic, our focus is on a different deficiency of the

pointwise procedure. The main issue stems from the fact that the scientific interest

in the problems we consider is in identifying and making inference on spatial regions.

Despite the widespread use of the pointwise procedure, the connection between point-

wise and clusterwise false discovery control remains largely uninvestigated. Notably,

a recent paper of Chumbley and Friston [15] discussing this issue has received con-

siderable attention within the neuroimaging community.

As Figure 1.4 illustrates, there can be a large discrepancy between pointwise and

clusterwise false discovery proportions. In general, pointwise FDR control fails to

provide any assurance that the expected proportion of falsely discovered clusters

is similarly controlled. Figure 1.3(b) shows the observed clusterwise FDR of the

pointwise procedure applied using BH(α). We see that the observed clusterwise FDR

can be more than twice the target level, and that performance further degrades in the

presence of a small proportion of large signal regions. Using machinery introduced

in the next section, we can show that the pointwise procedure is in general anti-

conservative. We present a mathematical characterization of the discrepancy between

pointwise and clusterwise inference in Section 2.1.

Summary. The main takeaway of the present discussion is that the pointwise proce-

dure is simply counting the wrong thing. When the scientific interest is in identifying

differentially behaved regions, a pointwise statistical analysis is inappropriate and can

even give misleading results. This issue is already receiving attention from the broader

scientific community. Lastly, even if one is content with measuring error pointwise,

the standard procedure ensures FDR control only with respect to the support of the

smoothed signal.
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(a) Of the 8 discoveries shown, 5 are true detections. The clusterwise
FDP here is therefore 3/8 = 0.375. This is considerably greater than the
pointwise FDP of 0.17.

(b) All 5 discoveries overlap the support of the signal, so the clusterwise
FDP is zero. However, due to the large number of location-wise false
detections in the bottom-right cluster, the pointwise FDP is very large
(0.4).

Figure 1.4: The examples shown here illustrate that there isn’t a clear correspondence
between clusterwise and pointwise false discovery proportions. Shown here are 2-
dimensional examples where a region with five clusters is corrupted with Gaussian
white noise. Center panels show data smoothed via local averaging. Right panels
show locations from center panel whose values exceeded a certain cutoff. Black:
correct detection; Red: false detection; Gray: false non-detection.
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1.3 Poisson clumping heuristic and mosaic pro-

cesses

We argued in the previous section that the main problem with the pointwise procedure

is that it fails to correctly account for the occurrence of falsely detected clusters. In

this section we proceed to describe a widely applicable model for the occurrence of

clusters of the excursion set Ez = {t : ε̃(t) ≥ z} at high thresholds z. Characterizing

these clusters provides us with a model for Vz, the number of falsely detected clusters

at level z, under the global null. The key idea can be summarized as follows.

At high levels z, clusters of the excursion set Ez are well modeled as random sets

centered at points of a Poisson process.

This idea forms the basis of the Poisson clumping heuristic (PCH), which is

an effective and broadly applicable method for approximating probabilities of rare

events (such as high-level excursions) associated with random sequences, processes,

and fields. Aldous [2] gives an extensive overview of many of the most interesting

cases in which the PCH applies. For our purposes, we will rely heavily on the follow-

ing characterization from the PCH literature: Clusters of Ez are well approximated

by mosaic processes1.

Definition (Mosaic process). Let F be a distribution on sets in Rd. Think of F

as generating small sets located near the origin 0. A mosaic or mosaic processes

is described by the following procedure

1. Generate points x1, x2, . . . according to a Poisson process with rate λ on Rd.

2. Generate random sets A1, A2, . . . iid from F

1Also called mosaics for short.



CHAPTER 1. INTRODUCTION 12

3. Output the random set

A =
⋃
i

xi ⊕ Ai

which is the union of the sets Ai shifted to be centred at the points xi.
1

1Given a point y and a set B, y ⊕B = {y + b : b ∈ B} is the translation of the set B by y

When the mosaic approximation holds we therefore have that Vz ∼ Poisson(λz),

for some mean parameter λz.
2 Moreover, we may also be able to incorporate into our

analysis other properties of the clusters (e.g., size) by understanding F . We further

develop this idea in Section 3.3. As a starting point, we will show that we are able

to get a lot of mileage just out of the mean parameter λz. We defer our discussion

of when the mosaic approximation applies and how to calculate or estimate λz until

Section 1.6. In the interim, we hope the reader is encouraged by the following excerpt.

“It turns out that [the] ‘sparse mosaic limit’ behavior for rare events is as ubiquitous

as the Normal limit for sums; essentially, it requires only some condition of ‘no long

range dependence’. ” pp. 6, Aldous [2]

1.4 Presence of signal

The mosaic process model characterizes the excursion set of the smoothed noise pro-

cess ε̃(t). When there is no signal present, this is the same as the smoothed observation

ỹ(t). In the presence of signal, however, the smoothed observation ỹ(t) is comprised

of the smooth signal µ̃(t) and the smoothed noise ε̃(t). Since the main application of

the current work is in cases where multiple signal regions are expected to exist, it is

important to understand how the occurrence of null excursion sets is affected by the

presence of signal.

2It will be more convenient to parameterize the Poisson in terms of a mean instead of a rate, so
unless stated otherwise we take λ = λ(D) to refer to the Poisson mean parameter.
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(a) Underlying signal

(b) Smoothed signal

(c) Smoothed noise

(d) Smoothed data (smoothed signal + smoothed noise)

Figure 1.5: This figure illustrates the individual components comprising the observed
smoothed data, ỹ(t). In this example the underlying signal, µ(t) consists of there
are 5 regions, which are the supports of the bumps in plot (a). Plot (b) shows the
smoothed data µ̃(t), which is obtained by applying a gaussian kernel smoother to
the signal µ(t). Plot (c) shows the smoothed noise process ε̃(t). The noise in this
instance is generated iid Gaussian. Lastly, plot (d) shows the observed smooth data
for this problem instance, which is the sum of the smoothed signal and smoothed
noise components: ỹ(t) = µ̃(t) + ε̃(t).



CHAPTER 1. INTRODUCTION 14

Consider a simple additive model in which we observe y(t) = µ(t) + ε(t), with ε

assumed to be stationary. Suppose that the observed data is linearly smoothed using

a compactly supported kernel, and that the mosaic process approximation holds for

high-level excursions of the smoothed noise ε̃(t).

Figure 1.5 shows the smoothed signal and smoothed noise processes that comprise

the observed process ỹ(t) = µ̃(t) + ε̃(t). Given a threshold z > 0, the excursion set

Ez can be decomposed into three types: (i) the true detections, which are intervals

that intersect D1, the support of the underlying signal; (ii) the borderline detections,

which are intervals that intersect the support of µ̃(t), which we will denote by D̃1,

but not the support of µ(t) itself; and (iii) intervals that do not intersect the support

µ̃(t).

Assuming that the underlying signal and smoother are sufficiently well behaved,

components of type (ii) are highly unlikely occur. Thus to understand the false

discovery process we really need only consider components of type (iii). Type (iii)

components are simply components of the excursion set of the smoothed noise process

ε̃(t). In other words, in the presence of signal, the occurrence of false detections is

well modeled by a mosaic process on the complement of D̃1.

This observation translates into a simple calculation of the mean parameter λz in

the presence of signal. Define π̃0 = 1− |D̃1|/|D| to be the fraction of the observation

region that does not contain smoothed signal. Let λεz denote the expected number of

clusters comprising the excursion set of ε̃(t). The preceding argument implies that in

the presence of signal, the expected number of false detections is approximately given

by λz = π̃0λ
ε
z. That is, in the presence of signal, we expect that V ∼ Poisson(π̃0λ

ε
z).

Remark. Just as in the standard multiple testing setting, it may be advantageous

to estimate the quantity π0 and to incorporate it into the estimation and control

procedures. Note that since π0 is not a clusterwise quantity (i.e., it is the same

regardless of whether inference is conducted pointwise or clusterwise), the standard

estimators can still be used. A simple approach might be to use the now-standard

estimator proposed in Storey [42], or the empirical Bayes upper bound described in

Efron et al. [17].
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1.5 Proposal of Siegmund, Zhang and Yakir

Now that we have a good model for the occurrence of false discoveries, we can describe

a clusterwise FDR estimation and control procedure that relies on the Poisson distri-

bution of V . This procedure is due to a recent paper of Siegmund, Zhang, and Yakir

[41] (SZY), in which the authors pursue the line of investigation that we advocated

above. Their construction can be thought of as a parallel to Storey et al. [43] for the

case where V ∼ Poisson(λ). We devote this section to describing their proposal. The

remainder of the thesis largely takes up the task of formalizing and extending the

proposal of SZY.

As in the pointwise procedure, we begin with data y(t), and at each location t

evaluate a statistic ỹ(t) based on y(t) and y(s) for s in a neighbourhood of t. Just as

before, given a cutoff z, the clusters that comprise the excursion set Ez = {t : ỹ(t) > z}
are reported as the discoveries (see Figure 1.6). The departure from the pointwise

procedure comes at the inference stage, where instead of treating the ỹ(t) as unordered

test statistics and relying on a pointwise FDR procedure to select the cutoff z or to

estimate the FDR, the FDR is estimated directly in a clusterwise manner.

The SZY approach to clusterwise inference can be stated fairly simply. From the

mosaic approximation we expect that the excursion set Ez on average contains λz

null clusters. Thus if for a given realization we make R discoveries (i.e., observe R

clusters in Ez), it is reasonable to estimate that λz of the R are due to noise, and

hence estimate the FDR by λ/R. It turns out that this estimator is biased, but a

simple modification of it, where the denominator is replaced by R + 1, works out to

be unbiased.

Having laid out some intuition, we now provide the details as given in [41]. The

validity of the clusterwise FDR control and estimation procedure rests on the following

two assumptions.

(1) The number of false discoveries, V , is distributed V ∼ Poisson(λz)

(2) The number of correct discoveries, S, is independent of V
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Figure 1.6: Underlying signal µ(t) is shown in black. D1, the support of µ, is the
union of the six intervals on which µ > 0. Solid grey points are the observed data.
The solid blue curve is ỹ(t), obtained by gaussian kernel smoothing the observed data.
Dashed horizontal orange line is the cutoff z. Six intervals comprising the excursion
set Ez = {t : ỹ(t) > z} are shown in orange on the x-axis. The last of these is a
false discovery, while the remaining five are true discoveries. There is a false negative
around location 650, where the signal region fails to be detected by the procedure.

We have already provided justification for assumption (1) by invoking the mosaic

process approximation and Poisson clumping heuristic. The second assumption will

at least approximately be satisfied when the dependence in ỹ(t) is sufficiently short

range. We begin by giving the estimation procedure.

Theorem (Estimation procedure. SZY Theorem 1). Under assumptions (1) and (2),

the estimator

F̂DR =
λ

R + 1



CHAPTER 1. INTRODUCTION 17

is an unbiased estimator of the clusterwise FDR, in the sense that

E(F̂DR) = E(V/R;R > 0).

This estimator also appears in a slightly different context in Efron et al. [17].

Controlling the FDR in this setting entails selecting a value of the cutoff z, thought

of as a data-dependent random variable, in such a way that E(V (z)/R(z)) < α for the

desired FDR level α. Here we are thinking of V and R as quantities that depend on

z. As z varies, so does λ = λ(z), so we can look at Vλ and Rλ as quantities depending

on λ. Define

Λ = max{λ ≤ λ̄ : Rλ ≥ λ/α}

and let zΛ be the corresponding cutoff.3 The procedure that reports the RΛ clusters

comprising the excursion set EzΛ controls the FDR at level α.

Theorem (Control procedure. SZY Theorem 2). Suppose that Vλ is a Poisson process

of rate 1 on [0, λ̄], and Vλ is independent of the process Sλ. Then, E(VΛ/RΛ) ≤ α.

We will frequently refer back to these procedures throughout the thesis.

1.5.1 A note on the independence assumption

In Chapter 3 we will describe several extensions of the base estimation and control

procedures. Each extension will require that the corresponding false discovery process

and the true discovery process are independent. While independence of S and V will

not in itself be sufficient to establish independence of the quantities we later consider,

the underlying argument is the same. We pause here to summarize the argument.

First, note that V is strictly a function of ỹ(t) for y(t) ∈ D0, and S is a function

of ỹ(t) for y(t) ∈ D̃1. Assuming ε(t) does not exhibit long range dependence and the

3

The mosaic approximation is only valid for values of z that are sufficiently large so as to ensure
that the excursion sets of the smoothed noise process is well modelled by a mosaic, defined in §1.3.
Since λ is a decreasing function of z, the restriction on z being sufficiently large translates into the
restriction that λ be sufficiently small.
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set D̃1 is sparse, {ỹ(t)}t∈D0 and {ỹ(t)}t∈D̃1
will be largely independent. Consequently,

V and S would be approximately independent as well.

We will refer back to this ‘no long range dependence’ argument throughout Chap-

ter 3.

1.5.2 Detection of non-zero signal locations

Having introduced the key assumptions underlying the clusterwise FDR procedure,

we can now revisit our earlier statement that the case where µ(t) is allowed to be

both positive and negative can often be reduced to the positive case by taking ab-

solute values, squaring or similar operations. The key observation is that the FDR

procedures do not presuppose that the underlying model is additive, nor that the

noise process is mean-0. The main requirement is that the excursion set of the noise

process f(ε̃(t)) is well approximated by a mosaic, where f : R→ R+ is the positivity

inducing function being used.

For concreteness, consider the case where ỹ(t) = µ̃(t) + ε̃(t) and ε̃(t) is stationary

Gaussian noise. If we allow for the possibility that some non-zero components of µ(t)

may be negative, we can consider basing our inference on locations where ỹ2(t) is large.

Under the null, ỹ2(t) = ε̃2(t) is a χ2 process, the high level excursions of which are

well understood. The necessary Poisson approximation for high levels excursions is

well established for χ2 processes [7], and so the clusterwise FDR procedures continue

to apply.
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1.6 Poisson approximation and obtaining λ

There is an extensive literature describing conditions under which high level excur-

sions of discrete and continuous processes are well modeled as occurring at points of a

Poisson process [28, 2, 9, 31]. We begin this section by presenting a few of the settings

in which the mosaic process approximation holds and for which good analytic approx-

imations for the parameter λz are known. We then briefly discuss simulation-based

approaches to estimating λz.

1.6.1 Moving averages of iid sequences

The first two results presented here appear in Aldous [2, §C4-C9]. We assume that

{ε(i)} is an iid sequence and {ci} are constants such that the moving average ε̃(t) =∑∞
i=0 ciε(t− i) is a stationary process.

Exponential tails. Suppose that for large z, P(ε(t) > z) ∼ A2e
−az, and the ci are

such that P(ε̃(t) > z) ∼ A1e
−az. Then,

λz ≈ TA1e
−az.

Polynomial tails. Suppose that for large z, P(ε(t) > z) = P(ε(t) < −z) ∼ Az−α.

Then excursions of ε̃(t) above a high threshold z are generally due to a single large

value of ε(t), and letting c = max ci we have that,

λz ≈ TA(c/b)α.

Gaussian. This next result is due to [40]. Here we suppose that the noise sequence

{ε(t)} is iid Gaussian with variance 1, and

ε̃(t) =
w∑
i=1

1√
w
ε(t+ i− 1).
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Then,

λz ≈ Tzw−1φ(z)ν(z
√

2/w),

where ν(x) = (2/x)(Φ(x/2)− 0.5)/[(x/2)Φ(x/2) + φ(x/2)].

1.6.2 Smooth Gaussian processes

The results here are borrowed from Aldous [2, §C23] and Lindgren [31, §8.1]. We as-

sume that ε̃(t) is a mean-0 stationary differentiable Gaussian process with covariance

function r(t) ≡ cov(ε̃(0), ε̃(t)). Supposing that ε̃(t) has variance r(0) = σ2 setting

ω2 = r′′(t) ≡ var(ε̃′(t)), Rice’s formula gives that the expected number of upcrossings

of level z by ε̃(t) is,

ρz = T

√
ω2

2π
φ(z/σ).

For high threshold levels z, upcrossings are rare isolated events, each of which can

be associated with a cluster of the excursion set Ez. Thus for large z we have that

λz ≈ ρz.

1.6.3 Simulation-based approaches

When analytic formulas are not available but the distribution of ε(t) is either known

or can be well estimated, one can estimate λz via simulation. It would suffice to

generate repeated realizations of the noise process ε(t), apply the smoother, and

count the number of clusters in the excursion set Ez for a range of z values. When

taking this approach it is good practice to also check that the number of clusters at

high thresholds is indeed Poisson distributed.

There remain settings in which the noise distribution is both unknown and difficult

to estimate. In such cases, permutation-based approaches might work, but they must

be applied with care. For instance, if we know that ε(t) is iid, then under the global

null the distribution of the process ỹ(t) is invariant under permutations of locations

t. In the iid case is it also valid to conduct permutation inference even if there is
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signal present. Doing so will lead to an over-estimate of λz, and thus can only make

the FDR procedures more conservative. However, if the noise ε(t) exhibits spatial

dependence, then the null distribution of {ỹ(t)}t∈D is no longer exchangeable in t,

and permuting locations would lead to invalid inference.

Taking a step back, it is worth recalling that in many of the applications in which

the spatial inference problem arises, the observed y(t) corresponds to a difference

between two groups calculated at location t. Unlike the locations t, the group labels

may be exchangeable under the null. This allows one to estimate λz by repeatedly

permuting the group labels and recalculating the process y(t).

More precisely, suppose that we begin with data x1(t), . . . , xm(t), xm+1(t), . . . , xm+n(t)

observed for t ∈ D, where,

xi(t) =

µ1(t) + εi(t) i = 1, . . . ,m

µ2(t) + εi(t) i = m+ 1, . . . ,m+ n
,

and the εi are iid realizations of a mean-0 noise process (iid in i, but not necessarily

in t). We’ll suppose that µ2(t) ≥ µ1(t) ∀t, and that we are interested in identifying

locations where µ2(t) > µ1(t). Indexes {1, . . . ,m} can be thought of as coming from

baseline or control measurements, while indexes {m + 1, . . . ,m + n} correspond to

measurements in a stimulated or treated condition.

Let Y : Rm+n → R be a test statistic for testing for a mean difference between

the two groups at location t (e.g., a 2-sample t-test). Setting,

y(t) = Y (x1(t), . . . , xm+n(t)),

we can view the problem as one of identifying regions where E(y) = µ2 − µ1 is

positive. Since the εi are assumed to be iid, the group labels (equivalently, indexes)

are exchangeable under the global null. We can therefore obtain a permutation null

distribution for the process y(t) by repeatedly permuting the indexes and recalculating

the test statistics. From there we can estimate λz by counting the number of clusters

observed in the smoothed process ỹ(t) for each permutation of the indexes.
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1.7 Literature review

We conclude our introduction with an overview of some of the other existing literature

related to the spatial inference problem. To better facilitate comparisons between

existing work and the contributions of this thesis, we partition our review according to

how the existing work differs from ours in terms of key goals or operating assumptions.

Regions of interest. In our work we do not assume that the clusters or regions of

interest are known in advance, nor are the regions assumed to be constructed on an

independent set of experimental data. Our goal is to present a method for identifying

a collection of differentially behaved regions and for associating to this collection a

measure of statistical uncertainty.

Several approaches have been proposed in the setting where the possible regions

of interest are defined in advance, either independently of any data or based on an

independent experiment. In, Yekutieli [53] the authors present a hierarchical FDR

method motivated by a QTL application. The observation space is, in advance,

partitioned along a tree with lower levels of the tree corresponding to finer partitions

of the space. The proposed method provides FDR control both overall and within

a given level of the tree. Heller et al. [24] propose an approach in the context of a

brain imaging study in which a preliminary scan is used to select clusters by grouping

highly correlated nearby voxels that are highly correlated. The recent work of Sun

et al. [44] is also particularly relevant.

Note also that if we are simply interested in testing m pre-defined, disjoint regions,

A1, A2, . . . , Am, then we are essentially back in the standard multiple testing setting.

This problem reduces to forming test statistics for testing the hypotheses {Hi : µ(t) =

0 ∀t ∈ Ai}mi=1, and then applying an appropriate FDR controlling procedure to the

corresponding set of p-values.

Error criterion. The focus of this thesis is false discovery rate control. While

family wise error rate controlling procedures have existed in the spatial inference

setting for several decades, the interest in the false discovery rate control problem

is fairly recent. Historically, many spatial FWER control methods were primarily



CHAPTER 1. INTRODUCTION 23

motivated by increased interest in analyzing high resolution brain imaging data (see

Nichols and Hayasaka [32] for a comparative review).

The familywise error rate of a multiple testing procedure is defined as the prob-

ability of making any false rejections (i.e., P(V > 0)). Note that since VP = 0 ⇒
VC = 0, a procedure that gives pointwise FWER control will a fortiori also control

the FWER clusterwise.4 Thus standard FWER controlling procedures (Bonferonni,

step-up/step-down test, etc.) can be—and are—applied in the spatial inference set-

ting. However, because such procedures do not incorporate spatial information, they

can be conservative and under-powered.

More powerful procedures for controlling the familywise error rate focus on the

distribution of the maximal statistic, M = supt∈D ε̃(t). The random field theory

(RFT) approach pioneered in Worsley et al. [51] approximates the tail distribution

of M under assumptions on the smoothness and distribution of the smoothed noise

process, ε̃(t). There exists a rich body of literature surrounding the RFT approach,

and it remains an important and active area of research [52, 45, 35, 33]. Permutation

and resampling approaches such as those proposed in Nichols and Holmes [34] are also

widely used. In addition to methods that assess significance based on peak height,

there are several proposals in the fMRI and related literature that look instead at

cluster size, or a combination of peak height and cluster size [15, 38, 23, 22, 54].

FWER controlling procedures all share one important drawback: They are do not

adapt to the signal. Strong evidence of true discoveries has no effect on the FWER

significance threshold. In contrast, the false discovery rate is adaptive in this sense.

As we show in Section 2.2, adaptivity can result in large gains in power while still

controlling a scientifically relevant error criterion.

Notion of true discovery. We define a cluster to be a true discovery if it has any

overlap with the support of the signal: C ∩D1 6= ∅. Another common convention in

the literature is to say that a cluster C is a true discovery if proportion at least τ of

4Recall that VP and VC refer to the pointwise and clusterwise quantities respectively; see §1.1.
Note that the implication does not go the other way. In particular, the second example in Figure
1.4 shows a case where VC = 0 but VP � 0.
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the cluster overlaps the signal:
|C ∩D1|
|C|

≥ τ.

In the standard testing literature this criterion is typically referred to as a partial

conjunction hypothesis [10]; and it has been appeared in the spatial inference setting

in the work of Perone Pacifico et al. [36] and Heller et al. [24]. This definition of true

discovery is not addressed by the methods presented in this thesis. We argue that

the less stringent definition we employ is appropriate in many areas of application.

It is particularly appropriate in settings where the experiment is being conducted in

order to identify regions for further study.

Other literature. Schwartzman, Gavrilov, and Adler [39] propose an approach for

1-d smooth gaussian processes that’s based on applying BH to p-values obtained at

each local maximum. We discuss connections to their proposal in Section 2.3. Also of

interest are the proposal of Jaffe et al. [25], who present permutation based method for

detecting differentially methylated regions. The perspective on ‘topological inference’

presented in Chumbley and Friston [15] and Chumbley et al. [14] will be of interest

to anyone working with neuroimaging data.



Chapter 2

Comparisons of Clusterwise FDR

to other Methods

Chapter outline

This chapter delves into the connections between the clusterwise FDR control proce-

dure introduced in Section 1.5 and several other spatial inference methods from the

literature. We begin in Section 2.1 with a more in-depth study of the clusterwise FDR

control properties of the pointwise procedure. Our analysis shows that the pointwise

procedure behaves like a clusterwise procedure in which the number of rejections is

given by, R = V + γS, with γ > 1. Recall from Section 1.1 that V is the number

of falsely rejected clusters, and S is the number of correctly rejected clusters. Our

analysis shows that pointwise procedure effectively upweights each true detection by

a factor of γ. This characterization helps to explain why the pointwise procedure is

anti-conservative, and also allows us to obtain a bound on its clusterwise FDR control

level.

In Section 2.2 we discuss a pair of random field-based approaches to familywise

error rate control. Using simple Poisson clumping heuristic machinery we drive con-

nections to the clusterwise FDR procedure and the standard Bonferroni procedure.

25
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Our analysis suggests parallels between the standard multiple testing setting and the

spatial one.

In Section 2.3 we discuss connections to the STEM procedure introduced by

Schwartzman, Gavrilov, and Adler [39]. The STEM procedure can be used to obtain

a form of clusterwise FDR control in the case where the smooth noise process, ε̃, is

a thrice differentiable stationary ergodic Gaussian process. We show that at high

threshold levels (low-to-moderate values of α), the clusterwise procedure of Section

1.5 and the STEM procedure are essentially equivalent.

We conclude the chapter by presenting the results of a simulation study. Our ex-

perimental findings are in close agreement with the mathematical analyses presented

in this chapter.

2.1 Comparison to pointwise FDR controlling pro-

cedure

We saw in the introduction that the pointwise procedure can be highly anti-conservative

in terms of clusterwise FDR control. In this section we pursue a more formal analy-

sis of pointwise procedure to develop a better understanding of its clusterwise FDR

controlling properties. Using basic PCH machinery, we derive a key relation between

the pointwise and clusterwise FDR controlling procedures in the large observation

time regime. While our argument is presented in the 1-dimensional case in which

D = [0, T ], it generalizes to higher dimensions.

Generative model. We will assume that our observed data takes the form,

y(t) =
K∑
k=1

hk(t) + ε(t), (2.1.1)

where the hk are compactly supported non-negative functions whose support is small

relative to the size of the observation region, D = [0, T ]. In this case, D1 =
⋃K
k=1{t ∈
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[0, T ] : hk(t) > 0}.

For simplicity and to ensure that we have a reasonable limiting problem, we will

further assume that the hk themselves are generated iid from some distribution. More

precisely, let H be a distribution on non-negative functions supported on the compact

interval [−M,M ] for some small fixed M , and let {si} denote points of a Poisson

process of rate ν on [0,∞), with 1/ν � 2M . We will assume each hk is an iid

realization from H, translated to location sk. The condition 1/ν � 2M implies that

expected distance between the signal components is considerably greater than their

support, and hence that the supports of two hk are unlikely to overlap.

We will assume that the smoother is chosen in such a way that the resulting noise

term ε̃(t) is stationary and ergodic, and is such that the mosaic process approximation

applies. That is, we assume that the excursions sets of ε̃(t) are well approximated by

a mosaic process with clump rate λz/T .

As part of our analysis it will be helpful to consider the behaviour of the inferential

procedure as the observation time, T , tends to infinity. We will therefore think of the

model in (2.1.1) as being indexed by T .

Lastly, we introduce the quantities E(C0,z) and E(CA,z) to denote the expected

cluster size under the null and alternative, respectively. Since both ε̃(t) and the signal

process are assumed to be stationary and ergodic, these quantities are equal to the

long-run averages,

E(C0,z) = lim
T→∞

∑
C∈Vz |C|
V (z)

E(CA,z) = lim
T→∞

∑
C∈Sz |C|
S(z)

,

where Sz and Vz denote sets of true clusters and false clusters, respectively, at level

z. The ratio γz ≡ E(CA,z)/E(C0,z) will turn out to play a central role in our analysis.

Derivation. A useful approximation that comes out of the PCH literature is that,

pz ≈
λzE(C0,z)

T
. (2.1.2)
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where pz = P(ε̃(t) > z). This approximation is particularly useful here because it

relates two quantities of interest: the p-value function, pz, upon which the pointwise

FDR controlling procedure is based, and the mean parameter function, λz, upon

which the clusterwise procedure is based.

The intuition for this result is simple: If the expected number of clusters at

threshold z is λz, and the expected cluster size is E(C0,z), then the expected number

of locations at which ε̃(t) > z is given by E|{t : ε̃(t) > z}| ≈ λzE(C0,z). Under

ergodicity, dividing by the observation timespan T is thus a good approximation to

the marginal probability P(ε̃(t) > z).

Moving forward, let RP (z) denote the number of rejections at level z measured

pointwise, and RC(z) denote the number of rejections measured clusterwise. Define

the quantities VP (z), VC(z), SP (z) and SC(z) analogously.

Recall that the clusterwise FDR controlling procedure selects the cutoff z accord-

ing to,

zclust = min

{
z :

λz
RC(z)

≤ α

}
. (2.1.3)

The Benjamini-Hochberg FDR controlling procedure amounts to selecting z ac-

cording to,

zpoint = min

{
z :

pzT

RP (z)
≤ α

}
. (2.1.4)

Using (2.1.2), the main argument appearing in (2.1.4) can be rewritten as,

pzT

RP

=
λzE(C0,z)

RP (z)
.

We can view the pointwise rejections in Ez as being grouped into RC(z) clusters,

of which VC(z) are false detections, and SC(z) are true detections. Denote the

lengths of the false clusters by Cz
01, C

z
02, . . . , C

z
0VC(z), and the lengths of true clusters



CHAPTER 2. COMPARISONS OF CLUSTERWISE FDR TOOTHERMETHODS29

by Cz
A1, C

z
A2, . . . , C

z
ASC(z). Using this notation we can express RP (z) as,

RP (z) =

VC(z)∑
i=1

Cz
0i +

SC(z)∑
i=1

Cz
Ai (2.1.5)

≈ VC(z)E(C0,z) + SC(z)E(CA,z).

From the assumed ergodicity and stationary of ε̃, we know that the approximation

above is quite good when T is large. Using these expressions, we can rewrite the

quantity of interest as,

pzT

RP

=
λzE0Cz∑VC(z)

i=1 Cz
0i +

∑SC(z)
i=1 Cz

Ai

(2.1.6)

≈ λzE(C0,z)

VC(z)E(C0,z) + SC(z)E(CA,z)

=
λz

VC(z) + SC(z)
E(CA,z)

E(C0,z)

. (2.1.7)

Note that by keeping the smoother fixed while increasing the support and amplitude

of the signal components, we can make γz = E(CA,z)/E(C0,z) arbitrarily large, and

thereby greatly inflate the denominator. Since we generally expect to have γz > 1,

(2.1.7) implies,

pzT

RP

.
λz

VC(z) + SC(z)

=
λz

RC(z)
.

We see from this derivation that, at the same value of α, we generally have zpoint <

zclust. This suggests that applying the pointwise BH(α) procedure will fail to control

the clusterwise FDR at the target level α. Taking the approximation in (2.1.7) as

a proxy for the pointwise control procedure, we find that the standard martingale

argument establishes a much weaker control result.
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Proposition 2.1. For fixed γ > 1 and α ∈ [0, 1), define the stopping rule

Λ̃ = max{λ ≤ λ̄ : λ/(VC(λ) + SC(λ)γ) ≤ α}.

Under the conditions of Section 1.5, the stopping rule Λ̃ controls the clusterwise FDR

at level γα, in the sense that,

E

(
VC(Λ̃)

RC(Λ̃)

)
≤ min(1, αγ).

Since the stopping rule Λ̃ depends on knowledge of the processes VC(z) and SC(z),

the rule is not implementable in practice. Our interest in this proposition is due

entirely to approximation (2.1.7), which suggests that, when the observation region

is large, Λ̃ is a good proxy for the pointwise control procedure.

Proof (Proposition 2.1). All quantities here are clusterwise quantities, so we drop the

subscript C for the duration of the proof. To begin, we rewrite the stopping rule as,

Λ̃ = max

{
λ ≤ λ̄ :

λ

R(λ) + (γ − 1)S(λ)
≤ α

}
.

Under the assumptions of Section 1.5, the process V (λ)/λ is a mean-one continuous

time backwards martingale with respect to the filtration Fλ = σ(V (t), S(t) : λ ≤ t ≤
λ̄). It is clear from the definition that Λ̃ is measurable with respect to the filtration

Fλ. By the optional stopping theorem, it follows that

E

(
V (Λ̃ ∨ λ)

Λ̃ ∨ λ

)
= E

(
V (λ̄)

λ̄

)
= 1.

Note that for all λ, 1(Λ̃ < λ) = 1 implies that

λ

V (λ)
≥ λ

R(λ) + (γ − 1)S(λ)
> α.

Thus 1(Λ̃ < λ)V (λ)/λ is bounded above by 1/α. Since this quantity is bounded and
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converges to 0 as λ→ 0, by the dominated convergence theorem we get that,

E

(
V (Λ̃)

Λ̃
; Λ̃ > 0

)
= E

(
V (λ̄)

λ̄

)
= 1.

Since V (Λ̃)/R(Λ̃) is defined to be 0 when Λ̃ = 0, we also have that E(V (Λ̃)/R(Λ̃)) =

E(V (Λ̃)/R(Λ̃); Λ̃ > 0). Thus we obtain,

E(V (Λ̃)/R(Λ̃)) = E

(
V (Λ̃)

Λ̃
· Λ̃

R(Λ̃)
; Λ̃ > 0

)
≤ γα · E

(
V (Λ̃)

Λ̃
; Λ̃ > 0

)
= αγ.

where the inequality follows from the fact that Λ̃ > 0 implies

Λ̃

R(Λ̃) + (γ − 1)S(Λ̃)
≤ α =⇒ Λ̃

R(Λ̃)
≤ α

(
1 +

S(Λ̃)

R(Λ̃)
(γ − 1)

)
≤ αγ.

Beyond the result established above, (2.1.6) and (2.1.7) give insight into key differ-

ences between the pointwise and clusterwise FDR controlling procedures. Looking at

(2.1.6), we see that the presence of one or more large true clusters (values of Cz
Ai that

are large relative to E0Cz) can dramatically inflate the denominator. This makes

pointwise inference particular ill-suited to cases where some differentially behaved

regions are expected to be large in size (e.g., in genetics studies).

Even if the differentially behaved regions are expected to be well concentrated

and moderate in size (i.e., CAi well concentrated around E(CA,z)) we see from (2.1.7)

that the pointwise procedure effectively up-weights each correctly rejected cluster by

a factor of
E(CA,z)

E(C0,z)
> 1. This in turn inflates the denominator, and thereby allows

rejections at lower values of z.

It is also worth noting that while the decomposition of RP in (2.1.5) is valid, the

two summands involved are generally not valid decompositions of VP and SP . This

is because our definition of true cluster does not require that the entire cluster be

contained in the support of the signal, D1. At moderate values of the threshold z,



CHAPTER 2. COMPARISONS OF CLUSTERWISE FDR TOOTHERMETHODS32

many of the true clusters will intersect D0, and locations in this intersection will

contribute to VP . We therefore have that,

VP (z) ≥
VC(z)∑
i=1

Cz
0i and SP (z) ≤

SC(z)∑
i=1

Cz
Ai,

with equality only when all true clusters are contained in D1.

2.2 Connection to random field-based FWER con-

trolling procedures

We briefly explore a connection to a couple of random-field based bounds used in the

scientific literature to control the FWER. To control the FWER, one must select a

threshold that satisfies,

zsup = min

{
z : P

(
sup
[0,T ]

ε̃(t) > z

)
≤ α

}
.

We present here two approximations to the supremum probability, both of which are

applied in the literature.

General upper bound. Rice’s formula gives a general bound on the supremum

probability that holds for all stationary differentiable random processes [1]. In our

notation, this bound can be written as,

P

(
sup
[0,T ]

ε̃(t) > z

)
≤ pz + ENz,

where pz = P(ε̃(0) ≥ z), and Nz is the number of up-crossings of level z by the process

ε̃. For large thresholds z, up-crossings are isolated events, each of which marks the

start of an individual cluster of the excursion set Ez. Thus we can typically equate
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ENz = λz, and obtain the bound,

P

(
sup
[0,T ]

ε̃(t) > z

)
≤ pz + λz.

Requiring that pz+λz < α is clearly a far more stringent condition than λz/R(z) < α.

Poisson clumping heuristic approximation. There is a more direct approxima-

tion to the supremum probability that comes from applying the PCH. This approxi-

mation is simply,

P
(

sup
D
ε̃(t) > z

)
= P(Vz > 0) ≈ 1− exp(−λz) ≤ λz. (2.2.1)

This is slightly lower than the upper bound presented above, but in practice it gives

effectively the same result.

Discussion. In the previous section we introduced approximation 2.1.2, which states

that pz ≈ λzEC0,z/|D|. Plugging this into (2.2.1) gives,

P
(

sup
D
ε̃(t) > z

)
≈ λz ≈

pz|D|
EC0,z

. (2.2.2)

Note that the quantity on the right hand side takes the form of a Bonferroni cor-

rection to the p-value, pz, with the effective number of tests given by |D|/EC0,z.

This derivation illustrates the problem with controlling FWER by simply applying a

pointwise Bonferroni correction to the |D| test statistics. Doing so results in a p-value

cutoff that is more stringent by a factor of EC0,z compared to the random field-based

approach. Depending on the problem setting, this may or may not translate into an

appreciable difference in the corresponding z-thresholds or in the overall power.

We can also use this observation to build some intuition for the expected power

gains to be had by using the clusterwise FDR procedure described in Section 1.5 over

the random field-based FWER control procedure. Under appropriate calibration of

signal strength, the gains should be similar to those attained in a standard multiple

testing problem with m ≈ |D|/EC0,z hypotheses of which K are false.
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A general comment on FDR vs. FWER. The typical argument for control-

ling FDR instead of FWER is that FDR controlling procedures can be considerably

more powerful. When there are a large number of potential discoveries (i.e., when

the number of signal regions, K, is large), and the signal strength is sufficient for

detection, the power gains can be tremendous. This is certainly the case in many

genetics studies, and also in pointwise analyses of imaging data. On the other hand,

when K is expected to be small, there isn’t much to be gained by controlling the

FDR instead of the FWER. For instance, in fMRI studies it is generally expected

that only a handful of distinct regions will be activated (or differentially activated)

for any given task. Thus while much of the interest in spatial FDR control is coming

from the neuroimaging community, it isn’t clear that imaging is necessarily the best

use case for the methodology.

2.3 Comparison to the STEM procedure in the

case of smooth Gaussian data

As mentioned in the introduction, the recently introduced STEM procedure of Schwartz-

man, Gavrilov, and Adler [39] has close connections to our proposal.1 As we will now

argue, at high threshold levels the two procedures are essentially equivalent.

Description of the STEM procedure. The model considered by the STEM

procedure is one in which we observe,

y(t) = µ(t) + ε(t), t ∈ D = [0, T ],

where µ(t) is a sparse train of unimodal positive peaks, and ε(t) is stationary Gaussian

noise. It is assumed that ỹ(t) is formed by convolution with a compactly supported

unimodal kernel, and that the smoothed noise, ε̃(t), is a thrice differentiable stationary

ergodic Gaussian process.

1STEM stands for Smoothing and TEsting of Maxima.
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The main idea behind the STEM procedure is to conduct inference by testing the

significance of the observed local maxima of ỹ(t). More precisely, the procedure is as

follows.

STEM procedure.

1. Smooth the data to obtain ỹ(t).

2. Identify the locations of all of the local maxima of ỹ(t). Call this set T .

3. For each t ∈ T , compute a p-value p̃(t) for testing the conditional hypothesis

H0(t) : µ(t) = 0 vs. HA(t) : µ(t) > 0,

conditional on t ∈ T (i.e., conditional on t being the location of a local

maximum).

4. Apply the BH(α) procedure to the p-values {p̃(t)}t∈T , and report as discov-

eries all peaks (local maxima) corresponding to significant p-values.

The authors adopt the definition that local maximum is a true detection if it falls

anywhere in the support of the underlying signal. Under some assumptions on min-

imal signal strength, the authors establish that the STEM procedure asymptotically

controls the FDR in the limit where the observation period T →∞.

Let p̃z denote the conditional p-value function evaluated at z, let m̃ = |T | denote

the observed number of local maxima, and letR(z) denote the number of local maxima

whose height exceeds z. In this notation, Step 4. of the STEM procedure amounts to

rejecting all local maxima whose height exceeds zSTEM, where,

zSTEM ≡ min

{
z :

p̃zm̃

R(z)
≤ α

}
. (2.3.1)

Let D̃0 = [0, T ]\D̃1 denote the complement of the support of the smoothed signal, µ̃.
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The conditional p-value function, p̃z is formally a Palm distribution, defined by

p̃z ≡ P(ε̃(t) > z|t ∈ T ∩ D̃0) ≡ EV (z)

Em̃0

,

where V (z) is the number of local maxima of ε̃(t) in D̃0 whose height is at least z,

and m̃0 is the total number of local maxima of ε̃(t) in D̃0.

Since we are dealing with smooth Gaussian processes, we can identify high level

local maxima with individual clusters (intervals) of the excursion set Ez. At high

thresholds z, local maxima of ε̃(t) are isolated events, each of which has a 1-to-1

correspondence to an isolated upcrossing of z by ε̃(t), which in turn marks the start

of an individual cluster of the excursion set Ez [2, §C23]. In this case, we have that

EV (z) = λz, and so we can rewrite the argument of (2.3.1) as,

p̃zm̃

R(z)
=
λz
Rz

m̃

Em̃0

.

We can further re-express the number of local maxima m̃ as m̃ = m̃0 + m̃A, where

m̃A is the number of local maxima of ỹ(t) in D̃1. For large T , m̃ concentrates around

its mean, so have approximately that, m̃ ≈ Em̃0 + Em̃A. This gives,

p̃zm̃

R(z)
≈ λz
Rz

Em̃0 + Em̃a

Em̃0

.

Now, the quantity Em̃0

Em̃0+Em̃a is the proportion of local maxima that are expected to

be null. To emphasize the connection to the standard multiple testing problem, we

denote this quantity by π̃0.

Rewriting the argument in the final notation gives,

p̃zm̃

R(z)
≈ λz/π̃0

Rz

.

This is essentially equivalent to the argument in our clusterwise FDR control proce-

dure, in the case where we calculate the null cluster parameter λ under the global

null; i.e., λz/π̃0 ≈ E0V (z), where E0 denotes expectation in the case where D̃0 = D.
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Discussion. The preceding argument holds only for the range of threshold values at

which the occurrence of local maxima are well approximated by a Poisson process on

the line. Thus we can expect the STEM procedure and the clusterwise FDR control

procedure of §1.5 to give the same result for low or moderate choices of target FDR

level, α.

One advantage of the STEM procedure is that the Palm distribution p-value

formula is exact for all threshold levels. This means that the STEM procedure can be

freely applied at α levels close to 1. It is therefore an excellent procedure for spatial

FDR control when the smooth noise process has the assumed structure; that is, when

ε̃(t) is a 1-dimensional thrice differentiable stationary ergodic Gaussian process.

The mosaic process approximation applies for a much broader class of noise dis-

tributions, and is not limited to the 1-dimensional setting. Furthermore, as we will

see in the next chapter, the methods of §1.5 have many useful extensions that can

be obtained by taking advantage of the mosaic process approximation. The STEM

procedure does not offer the same flexibility.

2.4 Experiments

In this section we present the results of a simulation study conducted in order to

compare the pointwise procedure, FWER procedure and clusterwise procedure in

terms of both FDR control and power. Our comparison is conducted under the

recurring example of K = 10 box functions of equal amplitude and support size

which are observed under iid Gaussian noise (see setup in Figure 1.3). We calculate

λz using the analytic approximation presented in Section 1.6.

Figure 2.1 shows the observed FDR and FWER of the methods for various levels

of signal strength in the non-smooth Gaussian noise example considered in the intro-

duction. The target error level is set to α = 0.1 for all of the procedures. Results

for other values of α were also obtained, but are qualitatively the same and thus are

not presented here. As previously observed, the pointwise procedure in general fails
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(a) Observed FDR.
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Figure 2.1: Observed error rates for the pointwise, clusterwise and FWER procedures
for different choices of signal amplitude. K = 10, T = 2000, and target α = 0.1 was
used throughout. The pointwise procedure fails to provide clusterwise FDR control
except at the lowest signal value, where the signal strength is too weak to be detected
by any of the procedures. A curve corresponding to α · γz is also shown; this is the
upper bound on FDR control from Proposition 2.1.

to control the clusterwise FDR. The only exception is at the lowest value of signal

strength, a regime in which the signal is too weak to be detected by any of the pro-

cedures. We observe that the clusterwise FDR of the pointwise procedure increases

with signal strength. This is consistent with the observation that γz increases in

signal strength.

Figure 2.2 shows the observed average power of the methods. Average power is

defined as the fraction of the K underlying signal locations that were detected. More

precisely, if we let S1, S2, . . . , SK denote the support regions of the signal components

hk, the average power of a selection procedure ẑ(ỹ) is defined as,

E

(∑K
k=1 1{Sk ∩ Eẑ 6= ∅}

K

)
.
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Results are shown for two choices of problem size. The pointwise procedure has higher

power than the clusterwise procedure, but as we have seen the pointwise procedure

fails to provide clusterwise FDR control. Comparing the clusterwise procedure to the

PCH FWER procedure, we see that controlling FDR results in considerably higher

power. Moreover, as the problem size increases, the power gap between the FDR

procedure and the FWER procedure widens considerably. FWER procedures do not

scale well to large problems.
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(a) T = 2000, K = 10.
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(b) T = 6000, K = 30.

Figure 2.2: Power plots for the pointwise, clusterwise and FWER procedures. Power
corresponds to the average fraction of the K signal locations that were detected.
Target α = 0.1 was used throughout. The pointwise procedure has higher power than
the clusterwise procedure, but it does not control the clusterwise FDR. The FWER
procedure has lower power than the clusterwise procedure, and the gap increases in
the size of the problem. FDR control has significant power gains over FWER control
when there are a large number of potential detections.



Chapter 3

Variations on a Theme

Chapter outline

This Chapter presents some new results that serve to formalize and extend the clus-

terwise FDR procedure of Siegmund et al. [41] as introduced in Section 1.5.

To begin, in Section 3.1 we consider the problem of identifying clusters when

the clusters themselves are expected to be disconnected. The merge procedure is

shown to result in valid clusterwise inference, and simulation results suggest that its

performance is fairly insensitive to the choice of tuning parameter.

In Section 3.2 we discuss an alternative false discovery proportion-based error

control criterion referred to as the False discovery exceedance (FDX). We present

a general thresholding-based FDX control method that is based on the augmenta-

tion method introduced in van der Laan et al. [48]. While the control procedure

itself does not rely on the mosaic process approximation, we show how the Poisson

approximation can be applied in controlling the FDX.

In Section 3.3 we demonstrate how the basic clusterwise FDR procedure can be

generalized via thinning to incorporate other measures of cluster significance. Our

experiments indicate that aggressive thinning at high thresholds results in a more

powerful clusterwise FDR control procedure. In the same simulation setup as in

40



CHAPTER 3. VARIATIONS ON A THEME 41

Section 2.4, we find that incorporating cluster size leads to a clusterwise FDR control

procedure with better power than the pointwise procedure.

Section 3.4 considers the case where the smoothed noise process ε̃(t) is non-

stationary. We show how the clusterwise FDR procedures extend to the non-homogeneous

setting in cases where the occurrence of false clusters is well approximated by a non-

homogeneous form of the mosaic process. We discuss how non-homogeneity can arise

due to non-stationarity of ε(t), or non-uniform sampling density of the observation

points.

We conclude in Section 3.5 with a discussion of stratification. We present exten-

sions of the FDR estimation and control procedures for settings where we may wish

to allow different selection thresholds across different pre-defined strata.

3.1 Automated cluster determination

When working with smooth continuous time processes or similarly behaved discrete

time processes on the line, the geometry of high level excursion sets is fairly well

understood. In such cases the components of high level excursion sets are simply

isolated random intervals. For non-smooth processes, or at lower thresholds, an up-

crossing can be followed in close succession by a sequence of rapid upcrossings and

downcrossings, which results in clusters that are themselves fragmented. Figure 3.1

gives an example of this behaviour.

Consider for now the 1-dimensional case. What we observe is that each cluster

consists of a random number, Nz ≥ 1, of nearby components. Letting ρz denote the

expected number of upcrossings in time [0, T ], we get the following relation,

λz =
ρz
ENz

.

At high threshold levels, we have ENz ≈ 1, and thus λz ≈ ρz. If we wish only to

consider very small values of α and hence very high thresholds z, we may not need

to worry about merging. However, if we’re careful in dealing with the case where
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ENz > 1, we can apply the methods for a much greater range of threshold values.

In order to conduct valid inference when ENz > 1, we need to devise rules for

identifying components of the excursion set that need to be merged into single clusters.

This section presents one possible merging approach. We begin by discussing what

is desired of a valid merging procedure.

Smoother bandwidth

Figure 3.1: Example of a cluster that consist of several disconnected components.

First, we note that the estimation and control procedures do not rely on the

distribution of S beyond assuming that S ≥ 0 is independent of V . We can therefore

think of S as being determined by the underlying signal, smoother, and the choice of

merge rule. Under-merging true detections may result in multiply counting several

detections that overlap with the same underlying component of the signal. While this

is undesirable, it does not invalidate the inference.

Another important thing to observe is that the procedures are fairly robust to

over-merging. To see this, consider merging two excursion set components E1 and

E2. Let V and S denote the testing quantities when E1 and E2 are not merged, and

let V∪ and S∪ denote the testing quantities when E1 and E2 are merged. There are

three possibilities in this case.
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1. (E1∪E2)∩D1 = ∅. If neither E1 nor E2 intersects the support of the signal, then

S∪ = S, while V∪ = V−1. We therefore have that (a) 1/(V∪+S∪+1) > 1/(R+1),

and (b) V∪/R∪ < V/R. (a) implies that the the FDR estimate λ/(R + 1) can

only be biased upward by merging. (b) implies that the FDR of the procedure

with merging is smaller than the FDR without merging.

2. E1 ∩D1 6= ∅ and E2 ∩D1 = ∅. When one of the components is a true detection

while the other is not, the merged component E1 ∪E2 will still be a true detec-

tion. Thus we will once again have that S∪ = S and V∪ = V − 1, which is the

same as the previous case.

3. If E1 ∩ D1 6= ∅ and E2 ∩ D1 6= ∅, then V is unaffected by the merge. Thus if

the estimation and control procedures were valid prior to merging, they remain

valid after merging, though with a different distribution for S.

The main issue, therefore, is potentially under-merging false detections, which

would in fact invalidate our inference. This is because the parameter λz in the mosaic

process approximation is a good description of the false discovery process only after

appropriate merging. In particular, counting each excursion of in a rapid sequence of

crossings to be its own cluster clearly invalidates the Poisson process assumption. By

under-merging false detections we inflate V , which makes the estimation and control

methods anti-conservative. Our goal is to make sure that the merging procedure

results in a V to which the methods continue to apply.

Consider the false discovery process Vλ(z) under the global null as the process

varies with the threshold parameter z. A minimal consistency requirement for the

discovery procedure is that Vλ(z) be non-increasing in z. To ensure monotonicity, we

will require that the merge procedure have the following persistence property.

Definition 3.1. For z < z′, let Ez =
⋃
Ei and Ez′ =

⋃
E ′j. We say that a merging

procedure is persistent if for any index set I such that {Ei}i∈I is merged into a single

cluster at level z, the set {E ′j}j:E′j⊂Ei for some i∈I is merged at level z′.

This is a rather complicated way of saying that a discovery at threshold z should not
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be split into multiple discoveries at some higher threshold z′ > z.

With these considerations in mind, we now present the details of our proposed

merging procedure. We begin by discussing the 1-dimensional case, for which we can

provide rigorous justification.

Horizontal information. We begin by summarizing some distributional facts re-

garding the components of high level excursion sets. Given a threshold z, we once

again let EC0,z denote the expected size of a false cluster at threshold z. We can

rearrange (2.1.2) to give the approximation,

EC0,z ≈
pzT

λz
.

Next, note that the Poisson process assumption on the occurrence of the null clus-

ters implies that inter-clump distances are distributed approximately as Exp(λz/T ).

The average inter-cluster distance is therefore T/λz, which is generally very large

compared to EC0,z.

A reasonable approach is thus to select a value of τ satisfying

EC0,z ≈
pzT

λz
< τ � T

λz
, (3.1.1)

and to associate clusters with τ -upcrossing of level z, which are locations t such that

ỹ(s) < z for all s ∈ [t− τ, t) and ỹ(t) ≥ z.

Vertical information. Just looking at horizontal distances isn’t sufficient for the

monotonicity condition to be satisfied for a given realization. We therefore propose

to further merge candidate clusters that are contained within the same the connected

component of Ez0 for a lower level 0 ≤ z0 < z. In practice, the procedure does not

appear to be particularly sensitive to the choice of z0, as long as it’s sufficiently small.

With these two considerations in mind, we now present our merging procedure
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Merging procedure (1-d case).

• Fix τ > 0, and a merging threshold 0 ≤ z0 ≤ zmin, where zmin is the lowest

value to be considered for the FDR procedures.

• Let tz1 < . . . < tzJ denote the ordered τ -upcrossings of z by ỹ(t)

• Let S0 = {Si}Ii=1 denote the connected components of Ez0 .

(1) Define the initial clusters C1, C2, . . . , CJ according to

Cj = [tzj , t
z
j+1) ∩ Ez

(2) Merge Cj and Cj′ for any j 6= j′ such that Cj ∪ Cj′ ⊂ Si for some Si ∈ S0.

In order to state the main result of this section, we need to introduce some nota-

tion. Given a threshold z > 0 and an integer τ > 0, define

(a) Xt(z) = 1{ε̃(t) ≥ z and ε̃(s) < z ∀ t− τ ≤ s < t}

(b) p1(z) = P(Xt(z) = 1) = E(Xt(z))

(c) a2(z) = E
∣∣E (Xt(z)− p1(z) | Xs, |s− t| > τ)

∣∣
With these definition in hand, we can now state the main result of this section.

Theorem 3.1. Set D = [1, 2, . . . , T ], and fix a high threshold z > 0. Assume that

the smoother is chosen so that ε̃(t) is a stationary sequence. Suppose that the merge

procedure is applied with some choice of integer τ > 0 and merge threshold 0 < z0 < z.

Let Vz be the resulting number of false clusters at level z. Then Vz ≤ Ṽz where Ṽz

satisfies,

‖L(Ṽz)− L(W )‖TV ≤ 2

(
2τλ2

T
+ Ta2(z)

)
(3.1.2)
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for W a Poisson random variable with mean λ = λ(z) ≈ − log(1 − p∗(z)), where

p∗(z) = P(sup1≤t≤T ε̃(t) ≥ z).

We leave the proof of this result for Appendix A.

We can get a stronger result in the special case where the original noise sequence

{ε(t)} is iid and the smoothed process is a moving average of the form,

ỹ(t) =
M∑
i=0

ciy(t− i),

with coefficients ci ≥ 0 and M ≤ τ . In this case, we have that a2(z) = 0, and so the

second term in (3.1.2) disappears (see Corollary A.1).

As for the first term in the bound (3.1.2), recall from (3.1.1) that we’re looking to

choose τ = βpzT/λz where β > 1 is some (small) multiplicative factor. Plugging this

into (3.1.2) gives,
2τλ2

z

T
= 2βλzpz.

For the range of z values that we consider in our simulations, this quantity is typically

no larger than 0.02, and is often much smaller. Thus we can view (3.1.2) as providing

a useful bound for the range of z values that we’re interested in.

Discussion. While τ -upcrossings do not generalize well to higher dimensions, the

second step of the merge procedure continues to be applicable. Indeed, our experi-

ments in the 1-dimensional case suggest that performing step (2) alone is sufficient

to maintain the validity of the control and estimation procedures. This simplified

procedure is outlined below.
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Simpler merging procedure (general case).

• Fix a merging threshold 0 ≤ z0 ≤ zmin, where zmin is the lowest value to be

considered for the FDR procedures.

• Let S0 = {Si}Ii=1 denote the connected components of Ez0 .

• Let {Cj}Jj=1 denote the connected components of Ez

(∗) Merge Cj and Cj′ for any j 6= j′ such that Cj ∪ Cj′ ⊂ Si for some Si ∈ S0.

Though we do not pursue a rigorous justification for this procedure, we note that it

is closely connected to the conditioning on semi-local maxima method for calculating

the parameter λz [2, §C5, §J7].

3.1.1 Experiments

In this section we assess the performance of our merging procedure in the same

problem setting as described in Figure 1.3. We saw in the introduction that in this

example the pointwise procedure failed to control the clusterwise FDR at the target

level. Both merging procedures yielded the same results in our experiment. Figure

3.2 summarizes our findings.

Figures 3.2(a-c) demonstrate the insensitivity of the merge procedures to the

choice of merge threshold, z0. For z0 close to the selection threshold z, the FDR esti-

mation procedure greatly underestimates the true FDR. However, for 0 ≤ z0 ≤ 0.6z,

the estimation procedure is seen to perform uniformly well. Figure 3.2(d) shows that

the FDR control procedure has good performance after merging. The merge thresh-

old is chosen at z0 = 0.3zmin, where zmin is the lowest selection threshold considered

by the control procedure. Once we adjust for π̃0, we get control at almost exactly the

target level.
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(a) Estimation results, low z.
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(b) Estimation results, moderate z.
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(c) Estimation results, high z.
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(d) Control results.

Figure 3.2: Performance of clusterwise estimation and control procedure with merg-
ing. Figures (a), (b) and (c) summarize the estimation procedure for three choices
of z. The horizontal axis corresponds to the ratio z0/z, as the merge threshold z0

varies in [0, z]. z0 = z corresponds to no merging. When no merging is done, the
estimator greatly underestimates the true FDR. Performance is uniformly good for
z0 ∈ [0, 0.6z]. Figure (d) summarizes the performance of the FDR control procedure
with z0 = 0.3zmin, where zmin is the lowest value of z considered by the control pro-
cedure. The FDR is controlled below the target level. A π̃0-adjusted FDR curve is
also shown. We see that the adjusted FDR is extremely close to the target.
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Simulation results not shown here suggest that our findings are fairly robust to

changes in signal strength, extent, and bandwidth of smoother.

3.2 False discovery exceedance

The false discovery exceedance (FDX) is an FDP-related error criterion introduced

in [48] and [19]. For c, α ∈ (0, 1], a (c, α)-exceedance control procedure is one that

selects the rejection set to satisfy

P(V/R ≥ c) ≤ α.

In other words, instead of controlling the expected FDP, we seek to control the prob-

ability that the FDP exceeds a certain level. The quantity P(V/R ≥ c) is the FDX.

Several procedures have been proposed for controlling the FDX in the standard

multiple testing setting. [36] also give an exceedance control procedure for the spatial

multiple testing problem they consider. Their approach uses a confidence envelope

method they refer to as inversion. The control procedure we present in this section

can be viewed as an extension of the augmentation method introduced in van der Laan

et al. [48]. In [20] the authors show that, in the standard multiple testing setting,

under general conditions there is a one-to-one correspondence between augmentation

method and inversion method.

We require one further definition before stating the first result of this section. We

recall that the k-FWER of a multiple testing procedure is defined as P(V > k). Note

that the 0-FWER is simply the standard FWER. With this definition, our first result

is stated below. The proof is given in Appendix A.

Theorem 3.2. Suppose that the procedure zk(α, ỹ) controls the k-FWER at level α.

Take zmin ≤ z∗ ≤ zk(α, ỹ), and let A be the set of clusters rejected at level z∗ that do

not intersect clusters rejected at level zk(α, ỹ). Then,

P
(
Vz∗

Rz∗
> c

)
≤ α
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where c = |A|+k
Rz∗

.

Note that this particular result does not directly rely on the Poisson clumping

machinery that underlies the FDR estimation and control procedures. While FWER

control in the spatial testing setting is generally not as simple as in the standard

multiple testing setting, this result can be applied in conjunction with the 0-FWER

control procedures discussed in Section 2.2. Furthermore, when the approximation

Vz ∼ Poisson(λz) assumed throughout the paper does hold, we can easily and directly

control the k-FWER by taking,

zk(α) = min

{
z : 1−

k∑
j=0

λ(z)je−λ(z)

j!
≤ α

}
.

Theorem 3.2 has one rather unsatisfying feature, which is that the quantity c

at which the FDX is controlled is random. The more interesting case in practice is

where c is given, and the threshold z∗ is selected to control the FDX accordingly. At

least in the case where k = 0, we can provide an improved result which permits a

user-specified c. The proof is once again given in Appendix A.

Theorem 3.3. Let c ∈ (0, 1) and α ∈ (0, 1) be given. Suppose that the procedure

z0(α, ỹ) controls the clusterwise FWER at level α. Define z∗ according to,

z∗ = min

{
z ∈ [zmin, z0] :

|Az|
Rz0 + |Az|

≤ c

}
where Az is the set of clusters rejected at level z that do not intersect clusters rejected

at level z0. Then,

P
(
Vz∗

Rz∗
> c

)
≤ α.

3.3 Incorporating cluster size

Thus far we have focussed on just one of the parameters in the mosaic process model

of high level excursion sets, the Poisson mean parameter λ. In this section we propose
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a way of incorporating properties of the cluster size distribution itself. The methods

presented here assume that the cluster size distribution is known, or can be reliably

estimated through simulation. The distribution is known in the smooth Gaussian

case, and a handful of others. When we do know the cluster size distribution, we can

construct estimation and control procedures that screen out small excursion sets.

Spatial inference based on excursion set size have appeared elsewhere in the litera-

ture. Two references of note are the neuroimaging development described in [15], and

the method for identifying differentially methylated regions of the genome proposed

in [25]. In [15] the authors assess significance based on excursion set volume, and in

[25] the authors look at the area under ỹ along the excursion set. We highlight these

papers as their focus was on FDR control; several references for FWER control via

cluster size inference are given in Section 1.7.

The intuition for our proposal is quite simple, and is based on the idea of Poisson

thinning. First, recall that the mosaic process model for high-level excursion sets

decomposes into two parts: (a) the Poisson distribution governing the cluster rate,

and (b) the distribution F governing the cluster shape. The fact that the Poisson

process centres xi are independent of the clusters Ci allows us to establish the following

useful result, which holds for general ambient dimension.

Proposition 3.1 (Mosaic thinning). Suppose that A =
⋃
i xi⊕Ai is a mosaic process

with centres occurring at rate λ and sets Ai
iid∼ F . Let ` ≥ 0 be a threshold such that

0 < ρ ≡ P(|Ai| ≥ `) ≤ 1. Under these assumptions, random set defined by

⋃
i:|Ai|≥`

xi ⊕ Ai

is a mosaic process with rate λρ and set distribution L(Ai | |Ai| ≥ `).

Proof. Since the sets Ai are independent of the Poisson process selecting the centres

xi, the thresholding procedure removes each xi independently with probability 1−ρ =

P(|Ai| < `). This amounts to Poisson thinning, and standard theory tells us that the

resulting process, {xi : |Ai| ≥ `} is a Poisson process with rate λρ. By construction,
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the sets that survive thresholding are distributed according to L(Ai|Ai ≥ `).

In the context of the spatial inference problem, this result effectively states that

the essential features of the null cluster process hold also for the thinned process.

That is to say, the null clusters that survive thinning remain well approximated by a

mosaic process, albeit with a lower rate.

While independence of S and V in the non-thinned case is not in itself sufficient

to establish independence of these quantities after thinning, the argument discussed

in Section 1.5.1 applies equally well to establish approximate independence of the

thinned quantities. The same reasoning applies for independence of the processes

S(z) and V (z). This motivates the following extensions of the procedures of Section

1.5. We begin with the estimation procedure.

Corollary 3.1 (Estimation with thinning). Fix a threshold ` ≥ 0, and let V`, S` and

R` denote the number of (null, non-null, total, resp.) clusters whose size is at least

`. In the setting of Section 1.5, the estimator F̂DR = λρ/(R` + 1) is unbiased for the

FDR. More precisely,

E
(

λρ

R` + 1

)
= E

(
V`

R` ∨ 1

)
.

For the estimation procedure it was sufficient to consider a fixed thinning proba-

bility. In order to extend the control result, we need to view the thinning probability

as a function of z. To this end, we let ρ(z, `) ≡ P0(|C0,z| ≥ `) denote the probability

that a cluster at level z is of size at least `. The control result is as follows.

Theorem 3.4 (Control with thinning). Suppose that ε̃ is stationary and ergodic.1

Suppose also that the thinned processes S`(z) and V`(z) are independent. Define

λ`(z) ≡ λ(z)ρ(z, `). Then the control procedure of Section 1.5 applied with λ`(z)

controls the FDR at the target level α.

We present the proof of this result in A. Our argument is a modification of the

original control proof presented in Siegmund et al. [41].

1When ε̃(t) is a random field on Rd, ergodicity is the requirement that all empirical averages limit
to the corresponding population average as the observation space D grows to Rd.
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Note that the arguments advanced in this section go through effectively unchanged

for a larger class of thinning procedures. This is summarized in the omnibus result

below.

Theorem 3.5 (General thinning). Suppose that ε̃ is a stationary ergodic process.

Further suppose that the excursion set of the noise process, ε̃ is a mosaic process with

rate λ and set distribution F . Let δ = δ(C, y) ∈ {0, 1} be a thinning procedure, taking

the value 1 if cluster C is retained. If the thinning indicators {δ(Ci, ε̃)} are mutually

independent, then,

(a) The thinned process
⋃
δ(Ci,ε̃)=1Ci is a mosaic process with rate λρδ, with

ρδ = P(δ(C, ε̃) = 1) and set distribution L(C | δ(C, ε̃) = 1).

If also the conditions of Corollary 3.1 and Theorem 3.4 are satisfied by ε̃, and {δ(Ci, ỹ)}Ci ∈S
are mutually independent of {δ(Ci, ỹ)}Ci∈V , then,

(b) Corollary 3.1 holds for thinning procedure δ and ρ = ρδ.

(c) Corollary 3.4 holds for thinning procedure δ with ρ = ρ(z, δ) = P(δ(C0,z, ε̃) = 1).

Since we are assuming that ε̃ does not exhibit long range dependence, indepen-

dence of the thinning indicators can be expected to hold if the thinning procedure

depends on the data ỹ in only a small neighbourhood of cluster C. The main difficulty

in applying Theorem 3.5 with a more complex thinning procedure is that ρ(z, δ) may

be analytically intractable. Of course, all of the necessary quantities can be estimated

through simulation, so this does not pose a significant obstacle.

The main application for Theorem 3.5 is that it can be used to define more powerful

control procedures that are better tailored to the expected signal structure. For

instance, when some components have low amplitudes but large supports, considering

peak height alone can lead to low power. By thinning out short regions or low-area

regions at high thresholds, the procedure can get down to threshold levels at which

the low amplitude signals start to become present.
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3.3.1 A note on marked crossings and Slepian model pro-

cesses
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(a) Smooth Gaussian noise process with 8 upcrossings of the level z = 0.2 during the period
of observation. Upcrossing points are indicated by orange squares, and the trajectory for
the next 4 time units following each upcrossing is shaded in orange.
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(b) Figure shows the 8 observed upcrossing trajectories, translated to the origin. These
can be thought of as 8 realizations of a new process, which is defined by the conditional
distribution of ε̃(t) following an upcrossing of level z.

Figure 3.3
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Our discussion of thinning is closely connected to the notions of marked crossings

and Slepian model processes that commonly arise in the study of random processes

and associated point processes [31]. In stochastic process terminology, a mark is

anything that can be observed in combination with an event of interest. The events

of primary interest to us are (isolated) upcrossings of high thresholds, and the cor-

responding marks can be any feature of the post-upcrossing trajectory that we may

wish to thin on.

More formally, given a stationary differentiable noise process ε̃(t), and a jointly

stationary vector process ξ(t) = (ξ1(t), . . . , ξp(t)), the associated mark process is sim-

ply defined as m(t) ≡ (ε̃′(t), ξ(t)). We allow ξ(t) to be infinite dimensional, in which

case it takes the form ξ(t) = (ξβ(t))β∈I for an possibly uncountably infinite index set

I. Mark processes allow us to formally view thinning functions as indicators that the

mark process at an upcrossing belongs to some Borel set. A couple of examples of

marks and restrictions are given below.

• Derivative at crossing. m(t) = ε̃′(t), with the restriction that ε̃′(t) ≥ u > 0.

• Cluster length. Here the relevant mark process is m(t) = (ε̃′(t), ε̃(t+ s), 0 ≤ t ≤
`), with the restriction that ε̃′(t) > 0 and min0<s<` ε̃(t+ s) > z.

In this framework, if B is a Borel set of continuous functions, and t0 is an upcrossing

time, then thinning essentially amounts to determining whether the translated process

ε̃(t0 + ·) belongs to A.

One way of computing thinning probabilities is therefore to carry out calculations

with respect to the conditional distribution of ε̃(t0 + ·), conditional on there being an

upcrossing of z at time t0.2 Assuming that ε̃(t) is stationary and ergodic, and letting

t1, t2, . . . denote the upcrossing locations, the thinning probability is formally defined

as the long run limit,

ρ(z, A) ≡ lim
T→∞

#{tk ∈ [0, T ] : ε̃(tk + ·) ∈ A}
#{tk ∈ [0, T ]}

. (3.3.1)

2Since we’re conditioning on a probability-0 event, the conditional distribution is formally treated
via the theory of Palm distributions. We already encountered Palm distributions in Section 2.3.
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Figure 3.3 shows a realization of ε̃(t) along with the translated processes ε̃(tk + ·)
that feature in the preceding definition. It is often straightforward to simulate the

smoothed noise process ε̃(t) and to estimate (3.3.1) by calculating the ratio for a large

value of T (or across multiple independent realizations of the process).

Furthermore, for certain kinds of processes, the conditional process ε̃(t0 + ·) can be

described explicitly via a Slepian model [31, §8.4]. In basic terms, a Slepian model is a

simple and explicitly defined process that has the same distribution as the conditional

process of interest. Slepian model processes are well understood for smooth stationary

Gaussian (and related) processes [29, 30], non-stationary Gaussian processes [18], and

recent work has also characterized the process in certain non-Gaussian settings [37].

A simple consequence of the Gaussian Slepian model is the high threshold cluster size

distribution summarized in the Example below.

While calculating thinning probabilities via simulation is often the more expedient

approach, Slepian model processes offer a principled analytic alternative. The analytic

solution may be preferable in cases where the resulting procedure is to be implemented

as part of a pipeline or package for analyzing a given type of data.

Example: Simple Gaussian case [2, §C23], [31, Example 8.1]. Suppose that ε̃(t)

is a mean-zero smooth Gaussian process with variance 1 and correlation function

r that satisfies

r(t) = Eε̃0ε̃t ∼ 1− 1

2
θt2

for small t. In this setting, the cluster lengths Cz of {t : ε̃t ≥ z} are approximately

distributed as,

Cz ∼
2

z
√
θ
C,

where C has the Raleigh distribution: fC(x) = xe−x
2/2, defined for x > 0.
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3.3.2 Experiments

In this section we present the results of a simulation study conducted to investigate

the performance of the FDR control procedure when thinning based on cluster size.

All results shown correspond to a procedure that considers only those clusters whose

length is ≥ `. Note that the basic procedure of Section 1.5 is recovered by taking

` = 1. We revisit the recurring example where µ(t) consists of K = 10 box functions

of equal support and amplitude, and the noise is iid Gaussian. It is observed that

thinning can lead to considerable increases in power over the base procedure.

Figure 3.4 shows histograms of the null cluster size distribution for two choices

of selection threshold z. In our analysis we consider cluster size cutoffs from ` = 1

(no thinning) to ` = 12. Taking ` = 12 results in thinning out 97% of clusters at the

highest value of z that we consider, and 65% of the clusters at the lowest of value of

z that we consider. The case ` = 12 should therefore be thought of as an aggressive

thinning strategy.
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(b) Low z threshold.

Figure 3.4: Histograms showing the distribution of the null cluster size for two choices
of threshold z.

Figure 3.5 shows the observed FDR and average power of the thinned procedure

in the equal amplitude setting. All simulations shown are conducted taking α = 0.1.

Results for other choices of α were found to be qualitatively the same. We find that
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(a) Observed clusterwise FDR.
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(b) Observed average power.

Figure 3.5: Observed clusterwise FDR and average power of the thinned procedure
for the simple example where the components of the signal are box functions having
equal amplitude and equal support. The four different curves represent four choices
of length cutoff parameter, `. We see that the FDR is controlled at the target level
across all values of the signal amplitude and across all choices of length cutoff. We
also find that thinning results in a more powerful procedure; the higher the cutoff `,
the greater the power.

the FDR is controlled at the target level for all choices of signal amplitude and all

choices of length cutoff `. Moreover, we observe that larger values of ` resulted in

greater power gains.

Figure 3.6 shows how the clusterwise procedure with thinning at ` = 12 compares

in terms of FDR control and power to the pointwise procedure. The results of this

simulation are extremely encouraging. Not only does the thinned procedure success-

fully control clusterwise FDR, but in this example it is also at least as powerful as

the pointwise procedure. Indeed, for low-to-moderate values of signal strength, the

thinned clusterwise procedure has higher power than the pointwise procedure.

In Section 2.4 we found that the pointwise procedure had higher power than the

base clusterwise procedure. Now we see that by thinning we are able to both retain

control of the clusterwise FDR, and to match (or exceed) the power of the pointwise
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procedure.
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(a) Observed clusterwise FDR.
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(b) Observed average power.

Figure 3.6: Comparison of clusterwise FDR and average power for the pointwise
procedure and the thinned clusterwise procedure (` = 12). The power of the thinned
clusterwise procedure is at least as high as that of the pointwise procedure. However,
while the pointwise procedure is highly anti-conservative, the thinned clusterwise
procedure does control the clusterwise FDR.
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3.4 Extension to non-homogeneous cluster rates

In our discussion thus far we have been assuming that the smoothed noise process ε̃(t)

is stationary. While there are many problem settings for which this is a reasonable

assumption, it is useful to note that the methods we can discuss are applicable even

when ε̃(t) in non-stationary. Such extensions are of interest in cases where the orig-

inal noise process ε(t) is non-stationary, and also when the sampling density of the

observation locations is non-uniform. The clusterwise FDR methods can be extended

to both of these problems settings, provided that a non-homogeneous version of the

Poisson clumping heuristic can be assumed to apply [see, e.g., 2, §C27, §D18].

In the non-homogeneous setting, the false cluster rate is viewed as being a function

of both the threshold level z and the location t ∈ D. For the duration of this section

we will adopt the notation λz(t) to refer to the false cluster rate at threshold height

z. Our model for the occurrence of false clusters in the non-homogeneous setting is

stated below. Note that both the Poisson rate parameter and the cluster distribution

are now allowed to depend on the location t.

Definition (Non-homogeneous mosaic process). Let {Ft} be a family of distri-

butions on sets in Rd. Think of each Ft as generating small sets located near

the origin 0. A non-homogeneous mosaic processes is described by the following

procedure

1. Generate points x1, x2, . . . according to a non-homogeneous Poisson process

with rate function λ(t) on Rd.

2. Generate random sets A1, A2, . . . independently such that Ai ∼ Fxi

3. Output the random set

A =
⋃
i

xi ⊕ Ai,

which is the union of the sets Ai shifted to be centred at the points xi.
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Consider a regionD for which the non-homogeneous mosaic process approximation

holds, with false cluster rate given by λz(t). At a given value of z, let V (D), S(D)

and R(D) denote the multiple testing summary statistics for the region D. Define

the function Λz according to,

Λz(D) =

∫
D

λz(t)dt.

Under the global null, the non-homogeneous mosaic process approximation tells us

that V (D) ∼ Poisson(Λz(D)). In other words, the function Λz(D) is the non-

homogeneous generalization of the mean parameter function λz. The generalizations

of the clusterwise FDR estimation and control procedures are given below.

3.4.1 Non-homogeneous FDR estimation and control proce-

dures

Corollary 3.2 (Non-homogeneous estimation). Given a thresholding z > zmin, sup-

pose that V (D) and S(D) are independent, and V (D) ∼ Poisson (Λz(D)). Then,

F̂DR(D) =
Λz(D)

R(D) + 1

is an unbiased estimate of the FDR, E(V (D)/R(D)).

Corollary 3.3 (Non-homogeneous control). Suppose that the processes SΛ(D) and

VΛ(D), viewed as functions of Λ, are independent. Also suppose that VΛ(D) is a rate-

1 Poisson process on Λ ∈ [0, Λ̄] for some Λ̄ > 0. Define Λ∗ = max{0 ≤ Λz(D) ≤
Λ̄ : Λz(D)/R(D) ≤ α}. The procedure that thresholds at level z∗ corresponding to Λ∗

controls the clusterwise FDR.

3.4.2 Non-uniform sampling

As mentioned at the outset of this section, one way in which non-homogeneity can

arise is if the observation locations ti are not uniformly sampled across the observation
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region D. In this section we discuss some considerations that arise in such settings.

To help guide the forthcoming discussion, we begin by introducing two data ex-

amples where the measurement locations are generally very far from resembling a

uniform sample or an evenly spaced grid in Rd. While both examples are best moti-

vated when d > 1, it will be helpful to keep in mind stylized 1-dimensional versions

of the examples. Our primary goal here is to develop some heuristics for a reasonable

smoothing strategy, and to gain some understanding of how the smoothing strategy

affects the noise ε̃(t).
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Figure 3.7: 1-dimensional version of Example 1 of §3.4. Blue curve p(t) is the (scaled)
underlying density of the sampled points. Regions with higher density are more
densely sampled than regions of low density. The support of the signal is a union of
9 intervals, each of which is 21 time points wide. The intervals are therefore longer
in sparsely sampled areas and shorter in densely sampled areas.

Example 1: Health survey data. Consider a study in which we obtain information

on non-infectious disease incidence at the granularity level of, say, 5-digit zipcodes.

The goal may be to identify regions where the disease incidence is significantly ele-

vated. We can expect that densely populated regions will be more densely sampled

than rural regions. Furthermore, it may be reasonable to assume that clusters will be

smaller in the densely populated regions than in in the rural ones. This reflects the

fact that, from an epidemiological standpoint, two people who live one mile apart in
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a city are likely to have dramatically different exposure, while two people living the

same distance apart in a rural area are likely to have very similar exposure.

A good smoothing strategy in this setting would therefore be to use a smaller

bandwidth in densely populated areas and a larger bandwidth in sparsely populated

areas. Following this strategy, we would expect that the Poisson rate λz(t) will be

higher in more densely populated regions, and also that the set distribution Ft will

be concentrated on small sets for t in densely populated regions, and large sets for t

in sparsely populated regions.

Example 2: Sensor network. Consider a setting where a sensor network is moni-

toring the level of some factor for signs of anomalies. One such example might be a

water sensor network monitoring levels of a particular contaminant in a large body

of water. We might expect that the sensors are randomly but non-uniformly located

throughout the region, and that the density of sensors in an area is not related to the

size of anomaly we expect to see in that area.

A reasonable smoothing strategy in this case may be to assign to each location t a

value equal to the local average across all sensors within a given radius, or to consider

a distance-weighted average of all sensors. In this case we likely expect λz(t) to vary

with location, but the set distribution Ft may remain fairly stable.

3.4.3 Simple 1-d model of Example 1

It is instructive to consider a simple model 1-dimensional model having the structure

of Example 1. For this model we are able to give an explicit calculation of the rate

parameter λz(t) in terms of a homogeneous parameter in a related problem.

We suppose that we observe a signal corrupted by white noise at observation points

t(i) ∼ p(t), i = 1, . . . , T . In order to guide our choice of scan statistic, we further

assume that the size (length) of the bumps we are seeking to detect is inversely

proportional to the sampling density p(t). This roughly equates to assuming that the

support of each bump spans a fixed number of observation points.
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Figure 3.8: 1-dimensional version of Example 2 of §3.4. Blue curve p(t) is the (scaled)
underlying density of the sampled points. Regions with higher density are more
densely sampled than regions of low density. The support of the signal is a union of
9 intervals, each of which is 0.84 time units wide. The size of the cluster in this case
is independent of the underlying density p(t).

More precisely, we consider the model

y(t) = µ(t) + ε(t),

where ε(t) is stationary independent noise, and the signal µ is a sparse train of uni-

modal positive peaks described by,

µ(t) =
K∑
k=1

akhk(t).

The number of peaks K and the amplitudes ak > 0 are assumed unknown. Our

assumption that the length of the bumps is inversely proportional to the sampling

density p(t) can be summarized by writing,

hk(t) = h

(
t− tk
b/p(tk)

)
,

where h is a compactly supported function. For instance, if h is the indicator function



CHAPTER 3. VARIATIONS ON A THEME 65

of the interval [−1, 1], this is saying that each hk is the indicator of an interval having

equal probability measure under p. Equivalently, each hk is supported on roughly the

same number of observation points ti.

A common choice of scan statistic in this setting is some form of local averaging.

To keep things simple, we’ll take as our scan statistic the simple 2w-nearest neighbour

average,

ỹ(ti) =
1

2w + 1

i+w∑
i−w

Y (ti), i = 1, . . . , T.

For the time being we’ll assume that we have a good guess at what w should be.

Question: What is the false cluster rate for the smoothed noise process ε̃(t) con-

structed using this choice of smoother?

We will show that λ(t) ∝ p(t). To see this, let P (t) =
∫ t
−∞ p(s)ds and, fixing a

threshold, denote by Λ(t) the expected number of false clusters in the interval [0, t]. If

we rescale time according to t̃i = TP (ti), then the observation points t̃i are uniformly

distributed on the interval [0, T ]. In this time scaling, the false cluster rate of the

scan statistic turns out to be constant. Denoting the false cluster rate in the rescaled

domain by λ̃, we get that

Λ(t) =

∫ t

0

λ(s)ds =

∫ TP (t)

0

λ̃ds = λ̃TP (t).

Thus the local false cluster rate in the original domain is given by,

λ(t) =
d

dt
Λ(t) = λ̃Tp(t).

Integrating over the whole region of observation, we get back to the familiar result

that the number of false clusters is Poisson distributed with mean λ̃T (more precisely,

π0λ̃T ).
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3.5 Stratification

Suppose that the observation region is partitioned into J strata, such as in Figure

3.9. We can think of these strata as corresponding to predefined regions of interest

(e.g., individual chromosomes, US states, functional regions of the brain, etc.). Each

stratum should be large relative to the expected cluster size, but can be small relative

to the full observation space. When working with strata, it may be of interest to allow

a different selection threshold within each stratum. In this section we show how the

FDR estimation and control procedures can be extended to the stratified setting.

A strong case for performing false discovery analyses separately within each stra-

tum is made in Efron [16, Chapter 10]. One setting in which a separated analysis is to

be preferred is when some strata contain a considerably higher rate of signal compo-

nents. To be concrete, consider a setting in which there are two equally sized strata,

one of which contains regions where µ(t) > 0, while the other does not. All of the

true discoveries would therefore come from just one of the strata, while both would

contribute equally to the false detection count. By treating the strata separately we

would effectively cut the null parameter λ in half, thereby enabling ourselves to make

more discoveries in the signal-enriched stratum.

z1

z2
z3

Figure 3.9: Schematic of three different strata across which the values of zi, i ∈
{1, 2, 3} can differ.

3.5.1 FDR estimation

Suppose that in stratum j we threshold at level zj to obtain Rj discoveries. Let Vj

denote the number of false discoveries in stratum j. We will assume that the {Sj} and
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{Vj} are independent. The mosaic process assumption tells us that Vj ∼ Pois(λj),

with λj = λ(zj, |stratumj|). In this setup we can obtain unbiased stratrum-specific

estimates in addition to an overall estimate of FDR. A version of this result appears

in Efron [16, §10.4] in the context of combining analyses across strata within an

empirical Bayes framework.

Theorem 3.6. Under the assumptions above,

F̂DRj =
λj

Rj + 1

is an unbiased estimate of the FDR within stratum j. Furthermore, if the Vj are

independent, then

F̂DR =

∑J
j=1 λj

1 +
∑J

j=1Rj

is an unbiased estimate of the overall FDR for the entire observation region.

Proof. The first claim follows by applying the estimation result of Section 1.5 directly

to Vj and Sj. To establish the second result, note that under independence V =∑J
j=1 Vj ∼ Poisson(

∑
λj). By assumption, S =

∑J
j=1 Sj and V are independent, so

the same estimation result applies.

We note here that the finer assumption of independence between the {Sj} and

{Vj} should hold whenever the strata are large relative to the expected cluster size and

the the aggregate quantities S and V can reasonably be assumed to be independent.

As discussed in Section 1.5.1, the typical argument for independence of S and V relies

on sparsity of the signal region D1 and short-range dependence between ỹ(t) and ỹ(t′)

for t ∈ D0 and t′ ∈ D1. The same type argument applies equally well to establish

approximate independence of the stratum-specific quantities.
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3.5.2 FDR control

FDR control is a bit more nuanced because in general controlling the FDR at level

α in each stratum does not imply overall control at level α. However, the fact that

z 7→ λ(z) is a 1-to-1 invertible function allows us to derive a simple procedure for

controlling overall FDR while varying the thresholds across the strata. The proposed

approach is effectively to tether together thresholds (z1, . . . , zJ) and thus reduce the

multivariate problem to a univariate one. Note: For the purpose of this discussion

we will think of λ(z) being the Poisson process rate parameter, instead of the mean

parameter.

Given weights wj > 0 with
∑J

j=1 wj = 1 and overall rate λ, we can select zj in

each stratum so that Vj ∼ Poisson(wj|D|λ). This is done by setting,

zj(λ) = λ−1

(
λwj

|D|
|stratumj|

)
. (3.5.1)

Given a rate λ, the aggregated false discovery process is given by,

V =
J∑
j=1

Vj ∼ Poisson

(
J∑
j=1

EVj

)
,

where, by construction, we have that,

J∑
j=1

EVj =
J∑
j=1

|stratumj|λj

=
J∑
j=1

|stratumj|λwj
|D|

|stratumj|

= λ|D|
J∑
j=1

wj

= λ|D|.
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We can therefore apply the standard control procedure to the overall rate λ to deter-

mine cutoffs (z1, . . . , zJ). This is summarized in the following result.

Theorem 3.7. Let Λ = max{λ ≤ λ̄ : λ|D|/Rλ ≤ α}. Under the assumptions

of Section 3.5, thresholding within stratum j at level z∗j = zj(Λ) defined in (3.5.1)

controls the overall FDR at level α.

This procedure will result in improved power if we assign large wj to regions that

are expected to be enriched. We may also wish to control FDR at different levels

when the real cost of false negatives and false positives varies across different strata.



Chapter 4

Conclusion

4.1 Summary

In this thesis we studied the spatial inference problem of identifying the support re-

gions of a noisily observed sparse signal while controlling the clusterwise false discov-

ery rate. Borrowing ideas from the Poisson clumping heuristic literature, we showed

that the widely used pointwise procedure generally fails to control the clusterwise

FDR.

We presented several extensions of the clusterwise FDR control procedure intro-

duced by Siegmund, Zhang, and Yakir [41]. Our methods may be applied whenever

the excursion set of the smoothed noise process is well approximated by a (potentially

inhomogeneous) mosaic process. As one of our extensions we described a general

framework for incorporating various measures of cluster significance into the FDR

procedure. We showed that by incorporating cluster size we can obtain a significant

increase in power. In particular, we showed that the augmented procedure can have

better power than even the pointwise procedure, while still controlling the clusterwise

FDR.

70
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4.2 Future directions

4.2.1 Detection and power

One of the assumptions implicit in the spatial inference problem is that the signal-

to-noise ratio (SNR) is too low to be able to directly estimate the support of µ(t)

via a support recovery algorithm. An interesting problem is therefore to understand

when detection is feasible via the clusterwise FDR procedure and its extensions, and

how the FDR detection threshold compares to that which is necessary for support

recovery. There is a growing body of literature investigating detection thresholds for

problems related to the one we consider here [3, 5, 4, 6]. The recent work of Cai and

Yuan [13] is particularly relevant.

A related problem is that of power. The key question is as follows: Given that

a signal with multiple support components is detectable, what is the procedure that

maximizes (average) power? Our interest here is in understanding how we should

choose the smoother and thinning procedure to maximize the number of signal com-

ponents detected subject to a bound on the FDR of the procedure. Schwartzman

et al. [39] address a simpler version of this problem within the context of the STEM

procedure. The work of Walther et al. [49, 50] provides a different perspective.

4.2.2 Higher dimensions

While much of the methodology developed in this thesis theoretically applies when

the observation region D is a subset of Rd for d > 1, the analysis becomes considerably

more difficult in practice. Analytical approximations for the parameter λz become

more difficult to obtain. It also becomes less clear what a cluster should/will look

like.

Signal shape starts to play a bigger role in the analysis. As an example, isotropic

smoothers that blur edges will have great difficulty detecting filamentary signal com-

ponents. When discussing detection and power for higher dimensional spatial signals,
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the theory can be very different depending on the assumed shape of the signal com-

ponents.

4.2.3 Spatial scan statistic

One of the most popular methods for anomaly and cluster detection is the spatial scan

statistic pioneered by Kulldorff [26]. In highly simplified terms, the typical analysis

proceeds as follows.

1. Begin with data y(t) for t ∈ D. (This could be e.g., count data, presence/absence

indicators, or real-valued measurements.)

2. Select a set of scanning windows {Wi}i∈I . (Typically these are rectangles or

circles of possibly varying size, centered at observation locations t.)

3. For each Wi, compute a test statistic Ti.

4. Obtain a p-value, pi for each test statistic Ti.

5. If any pi < α, report the window Wi∗ as a discovery, where i∗ is the index of

the smallest (most significant) pi. This is often called the MLC (most likely

cluster).

6. If any pj < α for Wj that do not overlap Wi∗ , report Wj∗ as a discovery, where

j∗ is the index of the smallest pj among windows j that do not overlap Wi∗ .

The final step is repeated until all significant p-values remaining correspond to win-

dows that overlap with one of the previously reported windows. This procedure

controls the FWER under the global null. We give two examples of commonly used

window types and test statistics below.

Example 1. Gaussian scan statistic for continuous data. In Kulldorff et al.

[27], the authors introduce a scan statistic based on a Gaussian probability model for

the measurements y(ti) observed at each spatial location ti ∈ D with D a finite index



CHAPTER 4. CONCLUSION 73

set of observation locations. They consider windows Wi which are taken to be circles

of a fixed radius centered at at the points observation locations ti. In the notation

introduced above, this corresponds to taking I = D, and Wi = {tj ∈ D : ‖tj − ti‖2}.

The test statistic Ti is taken to the the log-likelihood ratio for comparing the

mean in circle Wi to the mean outside of Wi. Letting N = |D| denote the number of

locations at which measurements were observed, the authors show that the likelihood

ratio statistic for a circle Wi reduces to,

Ti = −N log(
√

2π)−N log(
√
σ̂2(Wi))−N/2,

where σ̂2(Wi) is the MLE for the common variance in the model where the y(tj) are

generated independently with distribution,

y(tj) ∼

N(µ1, σ
2(Wi)) for tj ∈ Wi

N(µ2, σ
2(Wi)) for tj /∈ Wi

.

Example 2. Bernoulli model for identifying spatial clusters of events. In

Kulldorff [26], the author presents a spatial scan statistic for identifying spatial clus-

ters of events. He we observe locations ti at which a certain type of event occurred,

and it is of interest to determine if there are any regions where events appear to

‘cluster’ or group together in a manner that is not consistent with the baseline event

rate. This type of problem arises, for instance, if one is interested in identifying for-

est regions that have a high occurrence of a particular species of plant or wildlife.

Alternatively, one may be interested in geographical clusters of disease that are not

consistent with chance fluctuations.

The author proposes several possibilities for the choice of windows. These include,

(a) circles of radius ≤ r centered at all points of a fixed grid; and (b) all rectangles of a

fixed size. The test statistic in this case is given by the likelihood ratio for comparing

the event rate in window Wi to that outside of Wi. Details on the particular form of

the likelihood ratio are given in [26, §3.1].
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Discussion. A different way of thinking about the spatial scan statistic is in terms

of a variable bandwidth smoother applied to the data y(t). Instead of looking at a

bag of test statistics {Ti}, we could look at a smoothed version of the data given by,

ỹ(t) = max
i:t∈Wi

Ti.

Assuming that the maximum window size is small relative to the size of the observa-

tion region D, the mosaic process approximation will apply, and so would the FDR

methodology developed in this thesis. It would be interesting to study how the clus-

terwise FDR methodology carries over to the variable bandwidth problem, and to

investigate the potential power gains over the FWER control approach.



Appendix A

Proofs

Proposition A.1 (Global null.). Take D = {1, 2, . . . , T}, and suppose µ(t) ≡ 0. Let

τ > 0 be an integer. Suppose that the smoother is chosen so that ε̃(t) is a stationary

sequence. Given a threshold z > 0, define

(a) Xt(z) = 1{ε̃(t) ≥ z and ε̃(s) < z ∀ t− τ ≤ s < t}

(b) p1(z) = P(Xt(z) = 1) = E(Xt(z))

(c) a2(z) = E |E (Xt(z)− p1(z) | Xs, |s− t| > τ)|

Let W be a Poisson random variable with mean λ(z) = Tp1(z), and set Ṽz =∑T
i=1Xt(z). Ṽz satisfies,

‖L(Ṽz)− L(W )‖TV ≤ 2T (2τp2
1(z) + a2(z))

= 2

(
2τλ(z)2

T
+ Ta2(z)

)
(A.0.1)

Proof. We use here the notation of Arratia et al. [8], taking as our neighbourhood

Bt = {s : |s− t| ≤ τ}. By stationarity, we have that b1 = 2Tτp1(z), and b3 = Ta2(z).

Lastly, since for s ∈ Bt Xt(z) = 1 ⇒ Xs(z) = 0 and Xs(z) = 1 ⇒ Xt(z) = 0, we get

b2 = 0. Theorem 1 of [8] gives that the TV distance is bounded by b1 + b2 + b3, which

we have now shown to be equal to (A.0.1).
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Corollary A.1 (Moving average of an iid sequence.). In addition to the assumptions

of Prop. A.1, suppose that the underlying noise ε(t) is iid, and ε̃(t) is a moving

average taking the form,

ε̃(t) =
M∑
i=0

ciε(t− i)

and constants ci ≥ 0 and M ≤ τ . Then,

‖L(Vz)− L(W )‖TV ≤
4τλ(z)2

T

Proof. By the iid assumption, ε̃(t) is independent of ε̃(s) for |s − t| > M . Since

M ≤ τ , we thus have that Xt(z) is independent of Xs(z) for |s − t| > τ , and hence

a2(z) = 0.

Proof of Theorem 3.1. Note that the number of false clusters observed in the presence

of signal is bounded by the number observed under the global null. Since Step (2)

of the merging procedure can only further decrease the number of false clusters, we

have that Vz ≤ # of τ -upcrossings of z by ε̃(t) = Ṽz, with Ṽz as defined in Prop A.1.

This established (3.1.2).

It remains to show that EW ≡ Tp1(z) ≈ − log(1 − p∗(z)), where p∗(z) =

P(sup1≤t≤T ε̃(t) ≥ z). The following argument establishes a bound on |p∗(z)− e−λ(z)|.

First, note that{
sup

1≤t≤T
ε̃(t) < z

}
⇐⇒ {Xt(z) = 0 ∀t} ⇐⇒ {Ṽz = 0}.

Thus p∗(z) = P(Ṽz = 0). By the second part of [8, Theorem 1],

∣∣p∗(z)− e−λ(z)
∣∣ < (1 ∨ [1/λ(z)])

(
2τλ(z)2

T
+ Ta2(z)

)
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Proof of Theorem 3.2. Let Rk denote the set of clusters rejected at level zk(ỹ), and

let R∗ denote the set of clusters rejected at level z∗. By assumption, we can partition

R∗ as R∗ = R̃ ∪ A, where we define R̃ = {C ∈ R∗ : C ∩ C ′ 6= ∅ for some C ′ ∈ Rk}.

Since z∗ ≤ zk, each C ′ ∈ Rk is a subset of some C ∈ R̃. Recall that a cluster

is a true discovery if it has any intersection with the support of the signal. Thus if

C ′ ∈ Rk is a true discovery, then any C ∈ R̃ such that C ′ ⊂ C is also a true discovery.

This implies that,

Vz∗ ≤ Vzk + |A|.

We therefore deduce that,

P
(
Vz∗

Rz∗
> c

)
= P

(
Vz∗

Rz∗
>
|A|+ k

Rz∗

)
= P(Vz∗ > |A|+ k)

≤ P(Vzk > k)

≤ α

where the final inequality follows from the fact that at threshold zk the k-FWER is

assumed to be controlled at level α.

Proof of Theorem 3.3. Let R0 denote the set of clusters rejected at level z0, and let

R∗ denote the set of clusters rejected at level z∗. Also, let A∗ denote the set of clusters

rejected at level z that do not intersect clusters rejected at level z0. By assumption,

we can partition R∗ as R∗ = R̃ ∪ A∗, where we define R̃ = {C ∈ R∗ : C ∩ C ′ 6=
∅ for some C ′ ∈ R0}.

Since z∗ ≤ z0, each C ′ ∈ R0 is a subset of some C ∈ R̃. Recall that a cluster

is a true discovery if it has any intersection with the support of the signal. Thus if

C ′ ∈ R0 is a true discovery, then any C ∈ R̃ such that C ′ ⊂ C is also a true discovery.

This implies that,

Vz∗ ≤ Vz0 + |A∗|.
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By construction, Rz∗ = Rz0 + |A∗|, so also have that,

Vz∗

Rz∗
≤ Vz0 + |A∗|
Rz0 + |A∗|

.

Observe that on the event {Vz0 = 0},

Vz0 + |A∗|
Rz0 + |A∗|

=
|A∗|

Rz0 + |A∗|
≤ c,

where the inequality follows from the definition of z∗.

This allows us to conclude,

P
(
Vz∗

Rz∗
> c

)
≤ P

(
Vz0 + |A∗|
Rz0 + |A∗|

> c

)
= P

(
Vz0 + |A∗|
Rz0 + |A∗|

> c

∣∣∣∣1{Vz0=0} = 1

)
P(Vz0 = 0)

+ P
(
Vz0 + |A∗|
Rz0 + |A∗|

> c

∣∣∣∣1{Vz0=0} = 0

)
P(Vz0 > 0)

≤ 0 · P(Vz0 = 0) + P(Vz0 > 0)

≤ α,

where the final inequality follows from the assumption that at z0 the FWER is con-

trolled at level α.
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Proof of Theorem 3.4. Let π`(z1, z2) denote the conditional probability that a cluster

of size ≥ ` at level z1 contains a cluster of size ≥ ` at level z2 ≥ z1. Since we’re

assuming that our merge procedure is persistent (see Definition 3.1), a cluster at level

z1 can contain at most one cluster at level z2 ≥ z1. By stationarity and ergodicity

of the noise process we can therefore identify the conditional probability of interest

with the Palm distribution,

π`(z1, z2) =
E(#{Cz2 : |Cz2| ≥ `})
E(#{Cz1 : |Cz1| ≥ `})

=
λ(z2)ρ(z2, `)

λ(z1)ρ(z2, `)

=
λ`(z2)

λ`(z1)
.

Next, consider the process Vλ`(z)/λ`(z) on [z(λ̄),∞), where z(λ̄) is the lowest z

threshold at which the Poisson approximation holds for the unthinned process. We

show that this process is a martingale on [z(λ̄),∞) with respect to the filtration

Fz = σ(V`(z
′), S`(z

′) : z(λ̄) ≤ z′ ≤ z).

Observe that, by independence of S`(z) and V`(z) we have that,

E
(
V`(z2)

λ`(z2)

∣∣∣∣Fz1) = E
(
V`(z2)

λ`(z2)

∣∣∣∣V`(z1)

)
,

and hence that,

E
(
V`(z2)

λ`(z2)

∣∣∣∣Fz1) =
V`(z1)

λ`(z2)
π`(z1, z2)

=
V`(z1)

λ`(z2)

λ`(z2)

λ`(z1)

=
V`(z1)

λ`(z1)

This establishes that Vλ`(z)/λ`(z) is a martingale. By construction, the stopping time

Λ is measurable respect to the filtration Fz, and hence the argument in Siegmund

et al. [41, Proof of Theorem 2] goes through to establish control.
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