Yue Zhao
Home
News
Publications
Awards
Services
Experience
Open Source
Talks
Contact
CV
微信
Publications
Type
Uncategorized
Conference paper
Journal article
Date
2023
2022
2021
2020
2019
2018
2017
Do Not Train It: A Linear Neural Architecture Search of Graph Neural Networks
Peng Xu
,
Lin Zhang
,
Xuanzhou Liu
,
Jiaqi Sun
,
Yue Zhao
,
Haiqin Yang
,
Bei Yu
PDF
Cite
TOD: GPU-accelerated Outlier Detection via Tensor Operations
Yue Zhao
,
George H. Chen
,
Zhihao Jia
PDF
Cite
Code
DOI
The Need for Unsupervised Outlier Model Selection: A Review and Evaluation of Internal Evaluation Strategies
Martin Q. Ma
,
Yue Zhao
,
Xiaorong Zhang
,
Leman Akoglu
PDF
Cite
Code
ADMoE: Anomaly Detection with Mixture-of-Experts from Noisy Labels
Yue Zhao
,
Guoqing Zheng
,
Subhabrata Mukherjee
,
Robert McCann
,
Ahmed Awadallah
PDF
Cite
Code
ADBench: Anomaly Detection Benchmark
Songqiao Han
,
Xiyang Hu
,
Hailiang Huang
,
Minqi Jiang
,
Yue Zhao
PDF
Cite
Code
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs
Kay Liu
,
Yingtong Dou
,
Yue Zhao
,
Xueying Ding
,
Xiyang Hu
,
Ruitong Zhang
,
Kaize Ding
,
Canyu Chen
,
Hao Peng
,
Kai Shu
,
Lichao Sun
,
Jundong Li
,
George H. Chen
,
Zhihao Jia
,
Philip S. Yu
PDF
Cite
Code
ELECT: Toward Unsupervised Outlier Model Selection
Yue Zhao
,
Sean Zhang
,
Leman Akoglu
PDF
Cite
Code
Artificial Intelligence Foundation for Therapeutic Science
Kexin Huang
,
Tianfan Fu
,
Wenhao Gao
,
Yue Zhao
,
Yusuf Roohani
,
Jure Leskovec
,
Connor W. Coley
,
Cao Xiao
,
Jimeng Sun
,
Marinka Zitnik
Cite
Code
Project
DOI
ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions
Yue Zhao
,
Zheng Li
,
Xiyang Hu
,
Nicola Botta
,
Cezar Ionescu
,
George H. Chen
PDF
Cite
Code
DOI
IEEE Xplore
Contrastive Attributed Network Anomaly Detection with Data Augmentation
Zhiming Xu
,
Xiao Huang
,
Yue Zhao
,
Yushun Dong
,
Jundong Li
PDF
Cite
Code
DOI
PAKDD
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development
Kexin Huang
,
Tianfan Fu
,
Wenhao Gao
,
Yue Zhao
,
Yusuf Roohani
,
Jure Leskovec
,
Connor W. Coley
,
Cao Xiao
,
Jimeng Sun
,
Marinka Zitnik
PDF
Code
Project
Revisiting Time Series Outlier Detection: Definitions and Benchmarks
Kwei-Herng Lai
,
Daochen Zha
,
Junjie Xu
,
Yue Zhao
,
Guanchu Wang
,
Xia Hu
PDF
Cite
Code
Automatic Unsupervised Outlier Model Selection
Yue Zhao
,
Ryan Rossi
,
Leman Akoglu
PDF
Cite
Code
Project
SUOD: Accelerating Large-scale Unsupervised Heterogeneous Outlier Detection
Outlier detection (OD) is a key data mining task for identifying abnormal objects from general samples with numerous high-stake …
Yue Zhao
,
Xiyang Hu
,
Cheng Cheng
,
Cong Wang
,
Changlin Wan
,
Wen Wang
,
Jianing Yang
,
Haoping Bai
,
Zheng Li
,
Cao Xiao
,
Yunlong Wang
,
Zhi Qiao
,
Jimeng Sun
,
Leman Akoglu
PDF
Cite
Code
Project
Arxiv
TODS: An Automated Time Series Outlier Detection System
Kwei-Herng Lai
,
Daochen Zha
,
Guanchu Wang
,
Junjie Xu
,
Yue Zhao
,
Devesh Kumar
,
Yile Chen
,
Purav Zumkhawaka
,
Minyang Wan
,
Diego Martinez
,
Xia Ben Hu
PDF
Cite
Code
Video
AutoAudit: Mining Accounting and Time-Evolving Graphs
Meng-Chieh Lee
,
Yue Zhao
,
Aluna Wang
,
Pierre Jinghong Liang
,
Leman Akoglu
,
Vincent S. Tseng
,
Christos Faloutsos
PDF
Cite
Code
IEEE Xplore
A Data Denoising Approach to Optimize Functional Clustering of Single Cell RNA-sequencing Data
Changlin Wan
,
Dongya Jia
,
Yue Zhao
,
Wennan Chang
,
Sha Cao
,
Xiao Wang
,
Chi Zhang
Cite
DOI
IEEE Xplore
COPOD: Copula-Based Outlier Detection
Outlier detection refers to the identification of rare items that are deviant from the general data distribution. Existing unsupervised …
Zheng Li
,
Yue Zhao
,
Nicola Botta
,
Cezar Ionescu
,
Xiyang Hu
PDF
Cite
Code
DOI
IEEE Xplore
SynC: A Copula based Framework for Generating Synthetic Data from Aggregated Sources
A synthetic dataset is a data object that is generated programmatically, and it may be valuable to creating a single dataset from …
Zheng Li
,
Yue Zhao
,
Jialin Fu
PDF
Cite
Code
DOI
IEEE Xplore
DSR: An Accurate Single Image Super Resolution Approach for Various Degradations
Recently, convolution neural networks based approaches have achieved unprecedented success for image super resolution. However, such …
Yiqun Mei
,
Yue Zhao
,
Wei Liang
PDF
Cite
DOI
IEEE Xplore
SynC: A Unified Framework for Generating Synthetic Population with Gaussian Copula
Synthetic population generation is the process of combining multiple socioeonomic and demographic datasets from various sources and at …
Colin Wan
,
Zheng Li
,
Alicia Guo
,
Yue Zhao
PDF
Cite
Code
PPAI
Arxiv
Combining Machine Learning Models Using combo Library
Model combination, often regarded as a key sub-field of ensemble learning, has been widely used in both academic research and industry …
Yue Zhao
,
Xuejian Wang
,
Cheng Cheng
,
Xueying Ding
PDF
Cite
Code
Video
DOI
PyOD: A Python Toolbox for Scalable Outlier Detection
PyOD is an open-source Python toolbox for performing scalable outlier detection on multivariate data. Uniquely, it provides access to a …
Yue Zhao
,
Zain Nasrullah
,
Zheng Li
PDF
Cite
Code
Project
JMLR abs
Arxiv
Music Artist Classification with Convolutional Recurrent Neural Networks
Previous attempts at music artist classification use frame level audio features which summarize frequency content within short …
Zain Nasrullah
,
Yue Zhao
PDF
Cite
Code
DOI
IEEE Xplore
LSCP: Locally Selective Combination in Parallel Outlier Ensembles
In unsupervised outlier ensembles, the absence of ground truth makes the combination of base outlier detectors a challenging task. …
Yue Zhao
,
Zain Nasrullah
,
Maciej K. Hryniewicki
,
Zheng Li
PDF
Cite
Code
Slides
DOI
SIAM epubs
XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning
A new semi-supervised ensemble algorithm called XGBOD (Extreme Gradient Boosting Outlier Detection) is proposed, described and …
Yue Zhao
,
Maciej K. Hryniewicki
PDF
Cite
Code
DOI
IEEE Xplore
DCSO: Dynamic Combination of Detector Scores for Outlier Ensembles
Yue Zhao
,
Maciej K. Hryniewicki
PDF
Cite
Slides
Employee Turnover Prediction with Machine Learning: A Reliable Approach
Supervised machine learning methods are described, demonstrated and assessed for the prediction of employee turnover within an …
Yue Zhao
,
Maciej K. Hryniewicki
,
Francesca Cheng
,
Boyang Fu
,
Xiaoyu Zhu
PDF
Cite
DOI
SpringerLink
An empirical study of touch-based authentication methods on smartwatches
The emergence of smartwatches poses new challenges to information security. Although there are mature touch-based authentication …
Yue Zhao
,
Zhongtian Qiu
,
Yiqing Yang
,
Weiwei Li
,
Mingming Fan
PDF
Cite
DOI
ACM DL
Cite
×