Contracts

A Mystery Function

The Story

Your first task at your new job is to debug this code written by
your predecessor, who was fired for being a poor programmer.

int f(int x, inty) {
ntr=1;
while (y > 1) {
Tly%2==1){
r=X*r;

}
X
y

X *X;
y/ 2’ . .
} his is all you
return r * x; are given

}

How do you go about this “friendly” challenge?

The Language

® This code is written in CO int f(int X, int y) {
. intr=1,
O The _Ianguage we will use for most while (y > 1) {
of this course if(y % 2==1){
r=x*r,
. . }
® This is also valid C code X=X *X;
o For the most part, CO programs y=y/l2
are valid C programs } % v
return r * Xx;
O We will use CO as a gentler)
language to

» learn to write complex code that is correct
» learn to write code in C itself

® But what does this function do?

The Programmer

® |s this good code?
O there are no comments

O the names are non-descript
» the function is called f
» the variables are called

No! X

® No wonder your predecessor
was fired as a programmer!

® But what does this function do?

Int f(int x, Inty) {
Intr=1;
while (y > 1) {
Tly%2==1){
r=x*r,

}
X
y

X *X;
y/2;
}

returnr * x;

The Function

® But what does this function do?

® \We can run experiments
o call f with various inputs and observe the outputs

® \We do so by loading it in the CO interpreter — coin

The command for The file where we
the CO interpreter saved the function
e

Linux Terminal

coin mystery.cO
CO interpreter (coin) 0.3.3 'Nickel' (r590, Mon Aug 29 12:04:13 UTC 2016)

Type #help' for help or #quit' to exit.
-->

The coin
prompt

5

Running Experiments

® Call f with various inputs and observe the outputs

Linux Terminal

coin mystery.cO We aretcc';llingdflv;ith
CO interpreter (coin) ... Inputs 7 an

The result is 956385313

> (7, 12):

956385313 (int)

> (3, 17); |

129140163 (int)

--> The result has type int

® These are not very good experiments
O they don’t help us understand what f does

Running Experiments

® Call f with various inputs and observe the outputs
O we are better off calling f with small inputs
O and vary them by just a little bit so we can spot a pattern

/ Much better!

O It looks like f(x, y) computes xY

O Let’s confirm with more
experiments

Linux Terminal

Confirming the Hypothesis

® [t looks like f(x, y) computes x¥
® [et’s confirm with more experiments

Linux Terminal

Yep! That's x¥

O We find a secret memo in a
hidden drawer

—~ 6
O

Power not working.
Fix by tonight or you’re out

o/

Not the friendliest of work places!

® |Let's run a few more experiments to identify the problem

Discovering the Bug

® f(X, y) Is meant to computes xY
O but it doesn’t

® Let's find where it fails with more experiments

Linux Terminal

It seems to work for
negative values of x

That’s not 20

That’s definitely not 21

® Now we have something to chew on

10

Preconditions

The Power Function

® \What does it mean to be the power function xY ?

* *

O X X

y times
» Yes, but that's not very precise

® |et’'s write a mathematical definition

x0=1

XY = xy-1 * y

DN

This Is a recursive definition and this is its base case

12

The Power Function

® \What does it mean to be the power function xY ?

x0=1

XY = xy-1 * y

o What happens if y is negative?
» we never reach the base case ...

® The power function x¥ on integers is undefined ify <0

x0=1

This defines x¥ fory =2 0 only

13

The Power Function

® \What does it mean to be the power function xY ?

x0=1

XYy=x¥1t*x ify>0

int f(int x, int y) {
ntr=1;
while (y > 1) {
Tly%2==1){
r=x*r;

}
X=X%*X;
y=yl2
}

return r * x;

}

® To implement the power function, f must disallow negative

exponentS ’ We need to test .

IThis would slow f down a bit.

O It can raise an error
O It can tell the caller that the exponent should be = 0

Better!
no need to test

14

Preconditions

® Disallow negative exponents

O by telling the caller that the exponent should be =20

® A restriction on the admissible inputs to a function is called

a precondition

O We need to impose
a precondition on f

O In most languages,
we are limited to

writing a comment

Q and hope the caller
reads it

This is how we

would write a

precondition in C

<

f’

X

/

iInt f(int x, Nt y){
intr=1,;

while (y > 1) {

Ty%2==1){
r=XxX*r;

}
X=X*X;
y=yl?2;

}

return r * x;

15

Preconditions in CO

® \We need to impose a precondition on f
O to tell the caller that y should be = 0

® |[n CO we can write an executable contract directive
[/@requires y >= 0;

X int f(int x, int y)

L i >: -
CO keyword to specify a precondition //@ requires'y O’
« written between the function header and the body {

* before the first “{* ntr=1;
while (y > 1) {
O We check contracts by invoking coin if(y % 2 ==1) {
with the -d flag r=xxr,
> “dynamic checking” }
O but everybody understands it as debug mode X f X X_;
o without the -d flag, contracts are }y =yie
treated as comments return r * x:

}

Using Contract

Running with contracts disabled Running with contracts enabled

Linux Terminal Linux Terminal

coin mystery.cO
CO interpreter (coin) ...

coin| -d | mystery.cO
CO interpreter (coin) ...

-->1(2, 3); -->1(2, 3);

8 (int) 8 (int)

--> (2, -1); --> (2, -1);

2 (int) € mystery.c0:2.4-2.20: @requires annotation failed p

>

Last positisQ: mystenng0:2.4-2.20
J\ f frormNgstdio>: 19
>

Contracts are treated
as comments

Line number
where contract failed

Contracts are executed File where

@’ the CO compller, «if true, execution proceeds normally contract failed
works the same way « if false, execution aborts

17

Safety

® |f we call f(x,y) with a negative y
O with -d, execution aborts

O without -d, f can return an arbitrary result
» there is no right value it could return

® Calling a function with inputs that cause a precondition to
fail Is unsafe

O execution will never do the right thing

» either abort
» Or compute a wrong result

® The caller must make sure that the call is safe
»>thaty =20

18

Postconditions

19

Contracts about Function OQutcomes

® Preconditions are checked before the
function starts executing

|

function
body

® A contract that is checked after it is done
executing could tell us if the function did
the right thing

» check that the output is what we expect
O This Iis a postcondition

20

Postconditions in CO

® |In CO, the contract directive
[/@ensures <some_condition> ;

~—

CO keyword to specify a postcondition
* written between the function header and the body
« after the preconditions (by convention)

* before the first “{"

allows us to write a postcondition

O <some_condition> can mention the
contract-only variable \result

» what the function returns
» can only be used with //@ensures

int f(int x, Int y)
[/@requires y >= 0;

//[@ensures ...;

{
ntr=1;
while (y > 1) {
Ty%2==1){
r=x*r;

X * X
y/2;

}
X
y
}

return r * X;

}

21

Writing a Postcondition

® The postcondition we want to write IS

[/@ensures \result == x**y;

O but x**y Is not defined In CO\

» CO has no primitive power function!

® \What do we do?

That's how we write xY in Python

O transcribe the mathematical definition into a CO function

x=xyt*x ify>0

iInt POW(int x, int y)
[/@requires y >= 0;
{
T (y ==0) return 1,
return POW(X, y-1) * x;
}

22

Writing a Postcondition

® Then our postcondition Is
[/@ensures \result == POW(X, Y);

right? ... almost

Linux Terminal

coin -d mystery.cO
mystery.c0:18.5-18.6:error.cannot assign to
variable 'X' used in @ensures annotation

X=X*X;

~

Unable to load files, exiting...

O The function modifies » (and)

» Which values of x and y should CO evaluate the
postcondition with?

iInt POW(int x, int y)
l/@requiresy >=0;
{

}
Int f(int X, Int y)

it (y ==0) return 1,
return POW(X, y-1) * x;

#@m&ux 0
@ensures \result =
N —

= POW(X@

{
Intr=1;
while (y > 1) {
Ty%2==1){
r=x%*r;

}

X=X*X;

y=y/2;

}

returnr>xy;

}

D

O We want the initial values, but it is checked when returning ...

O To avoid confusion, CO disallows modified variables in postconditions

23

Writing a Postcondition

® CO disallows modified variables In
postconditions

O Make copies < and v and modify those

Linux Terminal

coin -d mystery.cO
CO interpreter (coin) ...

--> (2, 3);

8 (int) <

--> (2, 0);
«mystery.c0:11.4-11.33: @ensures annotation failed

-N\.11 A A A_Nr>

Last pOSi[iOﬂ ‘IlybLCIy' CU.LL.4-11.990

f fromMa<stdio>:1.1-1.8

O We're good

Line number
where contract failed

iInt POW(int x, int y)
[/@requires y >= 0;
{
it (y ==0) return 1,
return POW(X, y-1) * X;
}

int f(int x, int y)
[/@requires y >= 0;
[/@ensures \result == POW(X,y);

Intb =x;
Inte =
Intr= 1,
while (e > 1) {
fe%2==1){
r=b*r;

}
b=Db
e=e

}

returnr * b;

}

24

Recall Safety

® |n the postcondition of f, we are making
a call to POW

O Is it safe? |
O We need to show thaty >=0

» The precondition tells u

This should always
be on our mind

® The body of P makes a call to POW

O Is It safe?
Q We need to show thaty-1>=0

» The precondition tells us that y >= 0
» Since we don’t return on the if, y > 0
> So y-1 >= 0 by math \/

iInt POW(int x, int y)
l/@regMires y >= 0;

{
Ty == Q)b 1;
retur" X,
}
int f(int x, inty)

[/@requires y >= 0;

//@ensures \result :

{

Int b = Xx;

inte =y,

Intr=1;

while (e > 1) {
flew2==1){

r=b*r;

}
b=Db*b;:
e=el/2;
}

return r * b;

}

® These are examples of point-to reasoning
O We justify something by pointing to lines of code that supports it

Specification Functions

Int POW(int x, int y)

® POW is used only in contracts |
[/@requires y >= 0;

O It I1s not executed when {
_ : : : it (y ==0) return 1,
contract-checking is disabled returm POWG y-10 * x
» without -d }

\
int f(int x, inty)

® Functions used only Iin contracts are /I@requires y >= 0;
called specification functions ensures esdlt :

O They help us state what the code should do :2: 2 - ;

O They are critical to writing good code intr=1;
while (e > 1) {
if (e % 2==1){
r=b*r,

}
b=Db*b;:
e=el/2;

}

return r * b;

}

26

The Power Function

® But walt!
O f was meant to implement the power function
O ... but POW is the power function!

® Let's use it!

O There may be benefits to fixing f instead
» it may be more efficient than POW

O Keep reading ...

iInt POW(int x, int y)
[/@requires y >= 0;
{
it (y ==0) return 1,
return POW(X, y-1) * X;
}

int f(int x, int y)
[/@requires y >= 0;
[/@ensures \result == POW(X,y);
{
Int b = X;
nte =y,
Intr=1;
while (e > 1) {
flew2==1){
r=b*r;
}
b=Db*Db;
e=el?2

}

returnr* b;

}

27

Correctness

® If a call violates a function’s postconditions |
(assuming its preconditions were met so it actually ran)

the function is doing something wrong
O the function has a bug function
body
® The function Is incorrect
O Our mystery function f Is incorrect

® The writer of the function must make sure that it is correct
O I.e., that its postconditions will be satisfied for any safe input

28

Blame

® |f a function preconditions falil, it's the caller’s fault
» the caller passed invalid inputs

O the call Is unsafe

® If Iits postconditions fall, it's the implementation’s fault
» the function code does the wrong thing

O the function Is Incorrect

We will develop methods to make sure that the code we
write Is safe and correct

29

How to Use Contracts

® Contract-checking helps us write code that works as
expected

O Use -d while writing our code

O At this stage, this is development code
» bugs are likely

® Once we are confident our code works, compile it
without -d

O The code can be used In its intended application

O At this stage, this is production code
» there should be no bugs

® \Why not use -d always?
O It slows down execution

30

Function Contracts

Where are we?

® \We have learned a lot about f int f(int x, int y)
o _ _ l/@requiresy >=0;
O the preconditions describe what valid /i@ensures \result == POW(X,y);

Inputs are

O the postconditions describe what it is
supposed to do
» on valid inputs

® \We have a fully documented function

® \We have not looked at all at its body

» but we know there is a bug in there
» It IS Incorrect

31

32

The Caller’'s Perspective

Preconditions describe valid inputs int f(int x, int y)
l/@requiresy >=0;

Postconditions describe what it does J/@ensures \result == POW(x.y)
{

® T[hat's what the caller needs to know y

to use the function Header
 function name
* number and type of its arguments

int f(int x, int y) |

[/@requiresy >=0; |
—— Contracts:
/l@ensures \result == POW(X,y); T 7 i) [posiea e

® The caller should be able to use It

without knowing anything about how }

it Is Implemented
O The implementation detalls are abstracted away

33

Abstraction

® Split a complex system into small chunks that can be
understood independently X

Bother with as few details
as possible at any time

® Computer science is all about abstraction

34

The Function’'s Perspective

Preconditions describe valid inputs
Postconditions describe what it does

® That's what the implementation is to do
O guidelines to write the body of the function

® How to write good code
O First write the contracts

O and then the body

» In this way, you always know what you are
aiming for

Int f(int X, Int y)
l/@requiresy >=0;

Int Y;
Intr=1;
while (e > 1) {
T(e%2==1){
r=b*r,

}
b=Db
e=e

()

l/@ensures \result == POW(X,y);

Now, we need to look at the body of f to find the bug

35

Loop Invariants

36

Diving In

® \We need to look at the body of f

O The complicated part is the loop
» the values of the variables change at each
iteration
» it's unclear how many iterations there are
O If we understand the loop, we understand
the function

® How to go about that?

Int f(int X, Int y)
l/@requiresy >=0;

l/@ensures \result == POW(X,y);

{

Int b =x;

inte =y,

intr=1,

while (e > 1) {
f(e%2==1){
r=b*r,

}
b=Db*b;
e=e/2:
}

returnr * b:

}

Abstraction

Int f(int X, Int y)

® |f we understand the loop, H@requires y >= 0:

we understand the function //@ensures \result == POW(X,Y);
{
Int b =x;
® How to go about that? inte =
Intr=1;

O Contracts summarize what a function does while (e >
so we don't need to bother with the details
of its Implementation
» An abstraction over functions

O Come up with a summary of the loop so 7
we don’t need to bother with the details return r * b;
of its Implementation }

» An abstraction over loops!

38

Loop Invariants

The values of the variables change at each iteration

® One valuable abstraction is what does
not change

O This is called a loop invariant

» a quantity that remains constant at each iteration

of the loop
Q a quantity may be an expression, not just a variable

We will see what makes
some loop invariants
really valuable shortly

Int f(int X, Int y)
l/@requiresy >=0;

l/@ensures \result == POW(X,y);

{

It b = x;

inte =y,

Intr=1;

while (e > 1) {
f(e%2==1){
r=b*r;

}

b=Db*Db;

e=e/?2;

}

returnr * b;

}

39

Tracing Code

® How to find a loop invariant?

» a quantity that remains constant at each iteration
of the loop

® Run the function on sample inputs

® Track the value of the variables
>b, e r

O no need to bother with x and y since they don’t change

O Just before the loop guard Is tested

> That's e > 1 \

This is called
tracing
an execution

® ook for patterns

int f(int x, int y)

[/@requires y >= 0;

l/@ensures \result == POW(X,y);
{

Intb =x;

Inte =

ntr=1;

while (e > 1) {
fe%2=x1){

r=b*r;

}
b=Db*Db;
e=el/2; Loop guard

}

returnr * b;

}

<
Here

int f(int x, int y)
[/@requires y >= 0;

TraC| ng COde [I@ensures \result == POW(X,y);
{
intb =x;
_ _ nte =y,
® Run the function on sample inputs in;_rl :(1; e
: while (e >
and track the value of the variables it (e % 2 == 1) {
o Let's try with f(2,8) SR
b=b*b: This checks
b e r e=e/2: if e is odd
2 8 1 }
4 4 1 returnr * b;
16 2 1 ’ At this point }
256 1 1 ‘Wwe exit the loop

<
Here

O Can we spot a quantity that doesn’t change?

41

Tracing Code

® Trying with f(2,8)
O Can we spot a quantity that doesn’t change?
O b€ Is always 256

e r be
8 1 256
4 1 256
16 2 1 256
256 1 1 256

O This is a candidate loop invariant
» D€ Is constant on one set of inputs
» a loop invariant must stay constant on all inputs

int f(int x, int y)
[/@requires y >= 0;

l/@ensures \result == POW(X,y);

{

Intb =x;

nte =y,

ntr=1;

while (e > 1) {
f(e%2==1){
r=b*r;

}

b=Db*Db;

e=e/?2;

}

returnr * b;

}

<
Here

42

Tracing Code

® b€ s a candidate loop invariant

® [et's try with f(2,7) Not constant
b be % Orn;huize
2

128
64
8

R W N
o0 N k| =

16

O b& Is not invariant on these inputs!
» |t was a candidate that didn’t pan out

® Can we spot another quantity that
doesn’t change?

int f(int x, int y)
[/@requires y >= 0;

l/@ensures \result == POW(X,y);

{.
Int b = x;
nte =y,
ntr=1;
while (e > 1) {
fe%w2==1){
r=b*r;
}
b=Db*Db;
e=e/?2;
}
returnr* b;
}

<
Here

43

Tracing Code

® Trying with (2,7)
O Can we spot a quantity that doesn’t change?
O be *r is always 128

e r be *r
7 1 128
3 2 128
16 1 8 128

® This is another candidate loop invariant
O Let’s test it on 1(3,5)

b e r be*r
3 5 1 243
9 2 3 243
81 1 3 243

O This seems to work

int f(int x, int y)
[/@requires y >= 0;

l/@ensures \result == POW(X,y);

{

Intb =x;

nte =y,

ntr=1;

while (e > 1) {
f(e%2==1){
r=b*r;

}
b
e

b * b;
el 2
}

returnr* b;

}

<
Here

44

A Candidate Loop Invariant

® b€ *r Is a promising candidate loop invariant

O It works on three inputs!
® How do we know it works in general?

O We can’t test it on all inputs
O We need to provide a proof

® But first, let’s add it to our code

Int f(int X, Int y)
[/@requires y >= 0;
[/@ensures \result == POW(X,y);
{.
intb = x;
nte =y,
Intr=1;
while (e > 1) {
f(e%2==1){
r=b*r;
}
b=Db*Db;
e=e/2

}

returnr * b:

}

45

Loop Invariants in CO

® |[n CO, we use the directive
[/@loop_Invariant

to specify a loop invariant

CO keyword to specify a loop invariant
* written between the loop guard and the loop body >

® Then, simply write
[/@loop_Invariant POW(b, e) *r;

O ... this won’t work

» CO would need to keep track of the values of this
expression across all iterations of the loop

» also, what if the loop runs O times?

Int f(int X, Int y)
l/@requiresy >=0;
l/@ensures \result == POW(X,y);
{
Intb =x;
nte =y,
intr=1;
while (e > 1)
~ //@loop_invariant ... ;
{
f(e%2==1){
r=b*r,

(DUW—’

b * b;
el 2
}

returnr * b:

}

® In CO, loop Invariants must be boolean expressions
O true means it was satisfied in the current iteration

O false means it wasn’t

Loop Invariants in CO

® They are boolean expressions
O true means satisfied

® \What can we use”?

e r be*r

I 1 128

3 2 128
16 1 8 128

O As we enter the loop,
bisxandeisy
» S0 XY Is 128 too
» thus, b *r = xvy

® Then, we can write

Int f(int x, inty)

l/@requiresy >=0;

l/@ensures \result == POW(X,y);

{
Int b = X;
inte =y;
Intr=1;

while (e > 1)

/l@loop_invariant POW(b,e) * r == POW(x,y);>

1
f(e%2==1){
r=b*r,

(DUW—’

b * b;
el 2
}

returnr * b;

} Execution will abort

when ran with -d
If LI is ever false

[/@loop _Invariant POW(b, e) * r == POW(X, V);

46

a7

Safety

We have two new calls to POW

O Are they safe?

® POW(X, y)
» To show:y>=0

oy >=0 by line 2 (precondition of f)

® POW(Db, e)

» To show: e>=0

v

{

© © N o 00 b~ w0 N PR

e O o e
N o o &M W N PO

'_\
©
—

Int f(int X, Inty)
- ll@requires y >=0;
~ ll@ensures \result == POW(X;y-.

Int b = x;

nte =y;

Intr=1;

while (e > 1)

//@loop_invarian

{
f(e%2==1){

r=b*r,

(DUW—‘

b * b;
el 2
}

returnr * b;

O “e is Initially equal to y which is >= 0 and it is halved at each
iteration of the loop so e is always >= 0~

O This Is an example of operational reasoning
» The justification relies on what is happening in all the iterations of the loop

Q This is error-prone

> We will disallow safety proofs based on operational reasoning on loops $¢

48

int f(int x, int y)
- ll@requires y >=0;
~ ll@ensures \result == POW (x3);

Safety

{
INnt b = X;
POW(b, e) nte =y,
_ 3 Intr=1,
» To show: e >=0 while (e > 1)

© ©® N o O A~ w NP

O We can sort of do 1t with - JI@loop_invariant e >= 0D
10. //@loop_] Nt POW(b,e) *r == POW(X,y);

operational reasoning

1. {
» error prone! 2. if(e%2==1){
: 13, r=b*r;
O but we really want to prove it)
using point-to reasoning 5. b=b*b;
6. e=el2;
17}

® \We do believe that e >= 0 at 15, return r* b;

every iteration of the loop)

O Turn it into a candidate loop invariant! P p—mp
//@loop Invariant e >= 0O Is often a good candidate

loop invariant
» We will need to prove later that it is valid
O Then we prove that POW(b, e) is safe by pointing to line 9 v

49

How Loop Invariants Work

® L oop invariants are checked just
before the loop guard Is tested

® |f the loop body runs n times,

O the loop invariant is checked n+1 times

» must be true all n+1 times
O the loop guard is tested n+1 times too

> true the first n times and false the last time

EAN

-

Here > 0

loop guard

v

Note that n could be O

® \When we exit the loop

O the loop invariant is true
R

'Important!
O the loop guard false

50

Validating Loop Invariants

51

Where are we?

® \\Ve have learned even more about f

O The contracts tell us what it is
meant to do

O The loop invariants give us useful
iInformation about how the loop works

» but these are candidate loop invariants
» we need to prove that they are valid

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(X,y);
{
int b = x;
inte =vy;
intr=1;
while (e > 1)
//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);

|

© ©®© N o g k~ w0 NP

e e
= o

f(e%2==1){
r=b*r,

e e
w N

14. }
15. b
16. e

7.}

18, returnr * b;

19. }

b
e

*b’
/2;

® \We have started learning about proving things about code

> just safety so far
O point-to reasoning: good
O operational reasoning: error prone

52

Proving a Loop Invariant Valid

® \We cannot show a loop invariant is INIT >

valid by running it on all possible
INputs
O We need to supply a proof

» using point-to reasoning

® Two steps

INIT: show that the loop invariant is true initially
» Just before we test the loop guard the very first time

true
loop guy

(

<€

false

PRES

PRES: show that the loop invariant is preserved by the loop

> If it Is true at the beginning of an arbitrary iteration
» then it is also true at the end of this iteration

of the loop,

But it may become
false temporarily
In the middle of
the loop body

)

loop
body

53

We use math notation for brevity

Validity of e > 0

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(X,y);
{
int b = x;
inte =vy;
intr=1;
while (e > 1)
//@Ioop_invaria
l/@loop_invariant POW(b,e) * r == POW(X,y);
A

© ©®© N o g k~ w0 NP

e e
= o

f(e%2==1){
r=b*r,

[=
w N

14. }
15. b
16. e

17, }

18, returnr*b;

19. }

b
e

*b;
/2;

INIT:
o This is a typical
» To show: e = 0 Initially proof format in
A.y=0 by line 2 this course
B.e=y byline 6
C.e=0 bymathonAandB v
LI at start of LI at end of
] current iteration| |current iteration
PRES: 7

» To show: ife=0,thene=0

O The value of e changes in the body of the

\But isn’t this trivially true?

oop

O We need a way to distinguish the value at the start and end of

the current iteration

> e <= value of e at the start of the current iteration
>e <= value of e at the end of the current iteration

54

Validity of e 2 0

INIT: e = 0 initially

LI at start of

current iteration

v

LI at end of

PRES:

V

current iteration

=

» To show: ife =20, therie’ =0

A.e=0
B.e =¢e/2
C.el220
D.e=20

VAN

Both INIT and PRES were
proved by point-to reasoning

Oy assumption
oy line 16

oy math on A
oy B and C

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(Xx,y);

{

© ©®© N o g k~ w0 NP

e =
Ll

int b = x;
inte =y;
intr=1;
while (e > 1)

//@Ioop_invaria

l/@loop_invariant POW(b,e) * r == POW(X,y);

|

T
w N

14.
15.
16.
17.
18.

19. }

f(e%2==1){
r=b*r,

}

b=Db*

e=e/

b;
2;
}

return r * b;

55

Validity of b® r = x¥

» To show: ber = xY initially

INIT:
A.b=x
B.e=y
C.r=1
D.ber=xY

PRES:

> To show: if b8 r=xY, thenb’® r = x¥

Dy
Dy
Dy

Ine 5
Ine 6
ine 7

LI at start of
current iteration

oy math on A, B, C v

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(Xx,y);

{

© ©®© N o g k~ w0 NP

I e e =
w N B O

14.
15.
16.
17.
18.

19. }

A

Int b =x;

inte =y;

intr=1;

while (e > 1)

//@loop_invariant e >=.0,

l/@loop_invarial{ POW(b,e) * r == POW()W

f(e%2==1){
r=b*r,

}
b=Db
e=e

*b;
/2;
}

return r * b;

D

LI at end of
current iteration

1

\

|x and y don’t change
In the loop

—

O We need to distinguish 2 cases based on the teste % 2 ==

>e % 2==1 Istrue
>e % 2==1 Isfalse

— e IS odd
— e IS even

56

Validity of bé r = x¥

PRES:

> To show: ifber=xY, thenb® r = x¥
»Caseeisodd (e % 2==1)
O Then e =2n+1 for some n

A. b =Db*b

B.e =¢e/2

C. =

D.r'=b*r

E. b® r = (b*b)" b*r
F. = b(b?" r
G. = p2"*ly

H. =Dber

. = XY

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(X,y);
{
int b = x;
inte =vy;
intr=1;
while (e > 1)
//@loop_invariant e >=.0;
//@Ioop_invaria@,e) *p == POW(@

© ©®© N o g k~ w0 NP

'_\
o

D

1. {
o if(e%2==1){
13, r=b*r;
4.}
5. b=Db*b;
. 6. e=el2;
oy line 15 N
vy line 16 o
Dy case assumption and math
oy line 13
oy A, B,C, D
0y math
0y math

Oy case assumption

This Is one of the

Dy assumption
most complex proofs

In this course

O This proves the first case

57

Validity of bé r = x¥

PRES:

> To show: ifber=xY, thenb® r = x¥
» Case e is even (e % 2 == 0)
O Then e =2n forsomen

A. b =Db*b

B.e' =e/2

C. =n
D.r=r

E.ber =(b*b)"r
F. = (bA" r
G. = b2 r
H. =ber

. = XY

oy line 15
oy line 16

since r is unchanged
oy A, B,C, D

0y math

0y math

Dy case assumption
Dy assumption

O This proves the second case too

{

© ©®© N o g k~ w0 NP

e L < =
N o 00~ W DD B O

18.

19. }

A

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(Xx,y);

Int b =x;

inte =y;

intr=1;

while (e > 1)

//@loop_invariant e >=.0,

l/@loop_invarial{ POW(b,e) * r == POW()W

f(e%2==1){
r=b*r,

}
b=Db
e=e

*b’
/2;
}

return r * b;

D

Dy case assumption and math

PRES holds
forber =xvy

v

58

Loop Invariants

® ¢ >0is valid v
o it holds INITially

O It Is PREServed by an arbitrary iteration
of the loop

»1Ife=20,thene’ =20

® ber=xYisvalid v
o it holds INITially

1 int f(int x, int y)

2. [I@requires y >= 0;

3. [l@ensures \result == POW(X,y);
2 A{

5. Intb =X;

6. Inte=y;

7. Intr=1;

g. Wi sy
~~ //@loop_invariant e >= 0; N
//@loop_invariant POW(b,e) * r == POW;«

11. {
1. 1f(e%2==1){
13. r=b*r;

14. }
15. b
16. e

7.}

18, returnr * b;

b
e

*b’
/2;

19. }

O It Is PREServed by an arbitrary iteration of the loop

>ifber=xY, thenb®r =xv

® This shows that both are genuine loop invariants

O nhot just candidates

O we can forget about the body of the loop when reasoning about

this function

59

Proof-directed Debugging

60

Where are we?

® The contracts tell us what the

function is meant to do
» but we know there is a bug in there

® The loop invariants abstract away the
details of the loop

But what to do
with them is still
a bit mysterious

® [et’s find the bug!

int f(int x, int y)

- ll@requires y >= 0;

- ll@ensures \result == POW(Xx,y);
{

int b = X;
inte =y,
intr=1;
while (e > 1)

© ©®© N o g k~ w0 NP

//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);

e e
= o

18, returnr * b;

19. }

61

After the Loop

® \What do we know when execution
exits the loop?

O the loop guard is false
»e <1

O the loop invariants are true

>»e=0
> ber=xy

® Frome<1ande =0,
we have that

O either e =0

o or e=1 ﬁRecall that
as we exit the loop ~ [P2sbPel

Here

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(X,y);
{
int b = x;
inte =vy;
intr=1;
while (e > 1)
//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);

© ©®© N o g k~ w0 NP

[EEN
©

e
N

17: }

>18. return r * b;

19. }

62

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(X,y);
{
int b = x;
inte =vy;
intr=1;
while (e > 1)
//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);

After the Loop

© ©®© N o g k~ w0 NP

® Eithere=00re=1

[EEN
©

e
N

O Let’'s plug these values in the other
loop Invariant, b® r = x¥

17}
Here >18. return r * b;

| 19. }

=D>Ife=1thenxy=b¢r=blr=rb

O Thus, XY =r b In this case
This is exactly
_ xwhat f returns. \/
=2>ife=0,thenxy=ber=hb%r=r
O Thus, xX¥ =r In this case T Thisis not

>XY#rb what f returns. x
|This IS the bug!

int f(int x, int y)
- ll@requires y >= 0;
- ll@ensures \result == POW(Xx,y);

{

Tracking the Bug

int b = X;

inte =vy;

intr=1;

while (e > 1)

//@loop_invariant e >= 0;

l/@loop_invariant POW(b,e) * r == POW(X,y);

© ©®© N o g k~ w0 NP

® The bug is when e = 0 as we exit
the loop

[EEN
-

if(e%2==1){

r=b*r,
® This can happen only if f is called Efgjg}
Wlth O as ﬁ>>i; ieturnr*l’a;
o if e = 1, the loop doesn’t run and V]
e stays 1

O If e > 1 at the start of an iteration,
thene =1 as we end it

63

64

Fixing the Bug

ldea #1: return 1 ify =0

® This works but It introduces a
special case In the code

® Special cases leads to contrived,

unmaintainable code

O sometimes unavoidable
O but let’s see if we can do better

int f(int x, inty)

l/@requires y >= 0;

l/@ensures \result == POW(X,y);
{

_if (y == 0) return 1,
nto =X

inte =y;
intr=1;
while (e > 1)
//@loop_invariant e >= 0;
//@loop_invariant POW(b,e) * r == POW(X,y);
{

fe%2==1){

r=b*r;

}
b=Db
e=e

*b;
/2;
}

return r * b;

65

ldea #2: change the precondition ¢

toy>0

® This forces the caller to have special
cases in their code!

O calls to f need to be guarded

int ¢ = f(a, b)

Fixing the Bug

ntc=1;

=

if (b > 0) ¢ = f(a, b);

int fint o int y)

T@fequires y > 0;
//@ensu result == POW(x,y);

{

intb =x;
nte =y;
intr=1;
while (e > 1)
//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);
{

f(e%2==1){

r=b*r;

}
b
e

b*Db:
el2;
}

return r * b;

}

® This also means that f is not the power function any more
O undefined when exponent is 0

® Not a great solution

X

66

Fixing the Bug

ldea #3: forget about f and use POW

Instead

® Recall the trace of f(2,8)

O the loop ran 4 times

® Trace POW(2, 8)
O 9 recursive calls

® fis much more
efficient

X

b e r

2 8 1

4 4 1

16 2 1
256 1 1

X y

2 8

2 7

2 6

2 5

2 4

2 3

2 2

2 1

2 0

int POW(int x, int y)
//@requires y >= 0;
{

if (y == 0) return 1;
return POW(X, y-1) * x;

T~

int f(int x, int y)

l/@requires y >= 0;

l/@ensures \result == POW(X,y);
{

int b = x;
nte =vy;
intr=1;
while (e > 1)
//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);
{

f(e%2==1){

r=b*r,

}
b=Db
e=e

*b;
/2;
}

returnr * b;

67

Fixing the Bug

ldea #4: make f return only whene =0
O change the loop guardtoe >0
» the loop always end with e =0

oreturnrinstead ofr*b
» that’s what we had to return when e =0

No special cases!

v

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);
{

intb =x;

nte =y;

intr =14

whifg

//@loop_Invariant e >= 0;

l/@loop_invariant POW(b,e) * r == POW(X,y);

{

fle%2==1){
r=b*r,

b *
e/

}
b b:
e 2;

}

Rather than getting rid of the bad case (e = 0),
we make it the good case and do away with
the other case (e = 1)

N

How’s this for a movie plot?

68

Correctness

69

Did we Really Fix the Bug?

® The loop invariants are still valid
O we didn’t change the body of the loop

O we changed the loop guard
» but it doesn’t impact the validity proof

X~

Check for yourself

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);
{
Int b =x;
inte =y;
intr=1,
while (e > 0)
//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);

{

}

return r;

}

® Right after the loop, we know that

O the loop guard is false: e<0
O the 15t loop invariant is true: e 20

O the 2" |oop invariant is true: ber = xY
»soxy=ber=00r=r —

- soe=0

This is what f returns now

v

70

Assertions

Right after the loop, we know that e = 0

® \We can note this with the directive
[[@assert e == 0;
O checked only when running with -d
O aborts execution if the test is false

® //@assert Is a great way to note
O Intermediate steps of reasoning
O expectations about execution

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);
{
int b = x;
inte =y;
intr=1,
while (e > 0)
//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);
{
f(e%2==1){
r=b*r,

}
b=Db*b;
e=e/2
1
//@assert e == 0; D

[\

//@assert can appear
anywhere a statement
IS expected

® These are all the run-time directives of CO
[/@requires, //[@ensures, //@loop_Invariant, //@assert

There are no others

71

s the Function Correct?

Correctness: for any safe input,
the postconditions are true

® \We just proved that, as we exit the
loop, r = x¥
> just before return r;

® This tells us that f will never return
the wrong result

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);
{
intb =x;
inte =y;
intr=1;
while (e > 0)
//@loop_invariant e >= 0;
//@loop_invariant POW(b,e) * r == POW(X,y);
{
fe%2==1){
r=>b*r;

}
b
e

b * b;
el ?2;
}

/I@assert e == 0;

return r;

}

® but will it always return the right result?

72

s the Function Correct?

Correctness: for any safe input, the postconditions are true

® Can a function never return the wrong result and yet not
necessarily always return the right result ?

O Let’'s empty out the loop body in our example

This is legal
CO code

~

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);

{

Intb =x;

inte =vy;

intr=1;

while (e > 0)
//@loop_invariant e >= 0;

The loop invariants are valid
* INIT is unchanged
* PRES holds trivially

If execution were to reach returnr,
¢ == 0 would have to be true
* r would have to contain x¥

//@loop_invariant POW(b,e) * r == POW(X,Y);

{}

return r; |
}
® ... only if it never returns

O If the loop runs for ever

But it never reaches return r!
So the postcondition will never be true

This code is not correct.

73

Termination

® \Ve need to have a reason to believe

the loop terminates
» it doesn’t run for ever

® Here’s a proof of termination

O as the loop runs,
» e gets strictly smaller at each iteration

> It can never become smaller than O
» the loop guard is false when e =0 X

O so the loop must terminate

v

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);
{
Intb = x;
inte =y;
intr=1;
while (e > 0)
//@loop_invariant e >= 0;

{
f(e%2==1){
r=b*r,
}
b=Db*Db;
e=el2;

}
/I@assert e == 0;

return r;

}

//@loop_invariant POW(b,e) * r == POW(X,y);

This is an operational proof:
we are not pointing to anything

Termination

® Operational proof

» as the loop runs, e gets strictly smaller,
It can never become smaller than O, and
the loop guard is false when e =0

» S0 the loop must terminate

® Can we prove It using point-to

reasoning?

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);
{

Intb = x;

inte =y;

intr=1,

while (e > 0)

//@loop_invariant e >= 0;

l/@loop_invariant POW(b,e) * r == POW(X,y);

{

f(e%2==1){
r=b*r,

}
b=Db*D;
e=el2;

}
/I@assert e == 0;

return r;

}

O Yes! Here's what we need to show
O In an arbitrary iteration of the loop,

/

»ife =0,

O is a lower bound for e

1

>»thene' <e

e Is strictly decreasing

|

>»ande =0

O stays a lower bound for e

If e starts >= 0,
It gets strictly smaller and

can never becomes smaller than O

74

O the loop guard is false whene =0
» 0 >0is false

1. Intf(int x, int y)
2. ll@requires 'y >= 0;
i . 3. l/@ensures \result == POW(X,y);
Termination e
6. inte =v;
7. intr=1;
8. while (e > 0)
. 9. //@loop_invariant e >= 0;
. POlnt'tO prOOf 10. //@loop_invariant POW(b,e) * r == POW(x,y);
- y ’ 11. {
»To show:ife=0,thene’'<eande =0 b if(e%2==1)
A.e>0 vy line 8 (loop guard) SR
y . 15. b=Db* b;
B. e =e/2 Oy ||ne 16 16. e=el2;
: 7.}
C.e' <e DY math 1. /l@assert e == 0;
19. returnr;
D.e’20 0y math v o)
However,

for termination proofs,
we will generally be Ok with an operational argument

76

Reasoning about Code

Reasoning about CO

® CO programs have a precise behavior
O we can reason about them mathematically

® \We used two types of reasoning

O Operational reasoning: drawing conclusions about how things
change when certain lines of code are executed

O Point-to reasoning: drawing conclusions about what we know

to be true by pointing to specific lines of code that justify them
» boolean expressions

» basic mathematical properties
» variable assignments

This is operational reasoning,
but really simple

77

/8

Operational Reasoning

® Examples
O Value of variables right after an assignment
O Things happening in the body of a loop from outside this loop
O Things happening in the body of a function being called
O Previously true statements after variables in it have changed

KKK

® Operational reasoning is hard to do right consistently
» very error prone!

O We want to stay away from anything beyond simple assignments
» except in termination proofs

J\ But operational intuitions

If a proof about loops uses words are a good way to form
like “always”, “never”, “each”, you conjectures that we can then

are doing operational reasoning prove using point-to reasoning

79

Point-to Reasoning

® Examples

O Boolean conditions
» condition of an if statement in the “then” branch
» negation of the condition of an if statement in the “else” branch
» loop guard inside the body of a loop
» negation of the loop guard after the loop

O Contract annotations
» preconditions of the current function
» postconditions of a function just called
» loop invariant inside the loop body
» loop invariant after the loop
» earlier fully justified assertions

O Math
» laws of logic
» some laws of arithmetic

O Value of variables right after an assignment

A NN N NN N NN Y N N N N

Point-to Reasoning: Tips and Tricks

® \When reasoning about an earlier loop,
pretend the body of the loop is not there

O Only rely on the loop guard and loop invariants

int f(int x, inty)

l/@requires 'y >= 0;

ll@ensures \result == POW(X,y);
{

Intb =x;
inte =y,
intr=1,;
while (e > 0)

//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,y);

{

When reasoning about
% an earlier loop,
pretend its body is not there

ll@assert r = POW(X,Y);
return r;

}

80

Point-to Reasoning: Tips and Tricks

® \When reasoning about a function being called,

pretend the body of the function is not there
» unless it's a specification function

O Only rely on its contracts

int f(int x, int y)
l/@requires 'y >= 0;
/I@ensures \result == P

When reasoning about the
outcome of a function call,
pretend its body is not there

}
int main() {
int k =1(2,5);

/I@assert k >= 0;
return O;

}

82

Safety

® The inputs of a function call satisfy the function’s
preconditions

O we will generalize this definition in the future

We will exclusively use point-to reasoning to justify safety

Correctness

® The postconditions of a function will be true on any call that
satisfies the preconditions

O We will not need to generalize this definition

Straight Line Functions

Straight
line code

A non-recursive function without loops

® Proving correctness amounts to
combining assignments

int f(int X, int y)
~ll@requires y >= 0;
. ll@ensures \result == x;

» To show: \result = x

A.b =X oy line 5 j_{
B.r=1 oy line 7 . :Qigzi
C.\result=r*b by line 8 ey
D.r*b=x by math on A, B, C =

84

Functions with One Loop |

® Proving correctness involves
3 steps

O Show that the loop invariants are valid

> INIT: the LI are true initially

» PRES: the LI are preserved by an
arbitrary iteration of the loop

O EXIT: the LI and the negation of the
loop guard imply the postcondition

O TERM: the loop terminates
VN

That's exactly what
we did for our

mystery function

These steps can be
proved in any order

85

Functions with One Loop

INIT: the loop invariant is true initially

® proved by point-to reasoning
typically using
O the preconditions

O simple assignments before
the loop

|
O
v

86

Functions with One Loop |

PRES: the LI are preserved by an arbitrary

iteration of the loop

® proved by point-to reasoning
typically using
O the assumption that the LI is true
at the beginning of the iteration
O the loop guard

O simple assignments and conditionals
In the loop body

O the preconditions (sometimes)

-
O

loop guard

87

Functions with One Loop

EXIT: the loop invariants and the negation
of the loop guard imply the postcondition

® proved by point-to reasoning
typically using
O the loop invariant
O the negation of the loop guard

O simple assignments and conditionals
after the loop

88

Functions with One Loop

TERM: the loop terminates

® proved by operational reasoning
typically using
O the assumption that the LI is true
at the beginning of the iteration

O the loop guard

O simple assignments and conditionals
In the loop body

But it can also be proved
by point-to reasoning

loop guard

89

Functions with One Loop

TERM: the loop terminates

® Format of a termination proof ®
using operational reasoning

loop guard

“on an arbitrary iteration of the loop,

the quantity gets strictly smaller
but it can’t ever get smaller than
on which the loop guard is false

or

7

“‘on an arbitrary iteration of the loop,
the quantity gets strictly bigger
but it can’t ever get bigger than

on which the loop guard is false k

7

A quantity may be an expression,
not necessarily a variable

90

More Complex Functions

® These technigues can be extended
O but we will rarely deal with functions with more than one loop

® \Ve can also factor out nested loops and the like into
helper functions

O and then use the technique we just saw

91

Seriously??

® All these proofs and complicated reasoning seem overkill!
O the mystery function wasn't all that hard after all
O we could just spot what was going on

® Yes, but it won’t be that easy for more complex functions
O the technique we saw Is systematic and scalable
O reasoning about code will pay off

® Point-to reasoning Is what we do in our head all the time
when programming

O writing 1t down as loop invariants and contracts makes it easier
not to get confused

O and the -d flag will catch lingering issues at run time

92

Epilogue

93

Where are we?

® We fully documented f
O function contracts
O loop invariants
O key assertions

® \We fixed the bug

® \We gave mathematical proofs that

O all the calls it makes are safe
O It IS correct

int f(int x, inty)
l/@requires y >= 0;
l/@ensures \result == POW(X,y);
{

int b = x;

inte =y;

intr=1,

while (e > 0)

//@loop_invariant e >= 0;

l/@loop_invariant POW(b,e) * r == POW(X,y);

{

f(e%2==1){
r=b*r,

}
b=Db*D;
e=el2;

}
/I@assert e == 0;

returnr,

}

® | et's enjoy the fruit of our labor with some more testing!

94

Sanity Checks

® | et's do a last round of testing

Linux Terminal

coin -d mystery.cO
CO interpreter (coin) ...

--> (2, 0);
1 (int)
-->f(2, 1);
2 (int)

>12, 7§

128 (int)

--> (2, 8);
256 (int)

--> (2, 19);
SyLivasteN(ialy
--> (2, 31);

-2147483648 (int)
> f(2, 32);

0 (int)

>

Bug fixed!

int f(int x, inty)
//@requires y >= 0;
l/@ensures \result == POW(X,y);

{.
int b = x;
inte =y;
intr=1;
while (e > 0)

//@loop_invariant e >= 0;
l/@loop_invariant POW(b,e) * r == POW(X,Y);

Looking good

Plausible

What?

What?

{if(e%Z:: 1){
r=b*r,
}
b=Db*b;
e=el?2
}
//[@assert e == 0;
return r;
}
The story
continues ...

