Contracts

A Mystery Function

The Story

Your first task at your new job is to debug this code written by your predecessor, who was fired for being a poor programmer.

```
int f(int x, int y) {
  int r = 1;
  while (y > 1) {
    if (y % 2 == 1) {
      r = x * r;
    }
    x = x * x;
    y = y / 2;
  }
  return r * x;
}
```

This is all you are given

How do you go about this "friendly" challenge?

The Language

- This code is written in C0
 - The language we will use for most of this course
- This is also valid C code
 - For the most part, C0 programs are valid C programs
 - We will use C0 as a gentler language to
 - > learn to write complex code that is correct
 - > learn to write code in C itself
- But what does this function do?

```
int f(int x, int y) {
  int r = 1;
  while (y > 1) {
    if (y % 2 == 1) {
      r = x * r;
    }
    x = x * x;
    y = y / 2;
  }
  return r * x;
}
```

The Programmer

- Is this good code?
 - there are no comments
 - the names are non-descript
 - > the function is called f
 - > the variables are called x, y, r

No! X

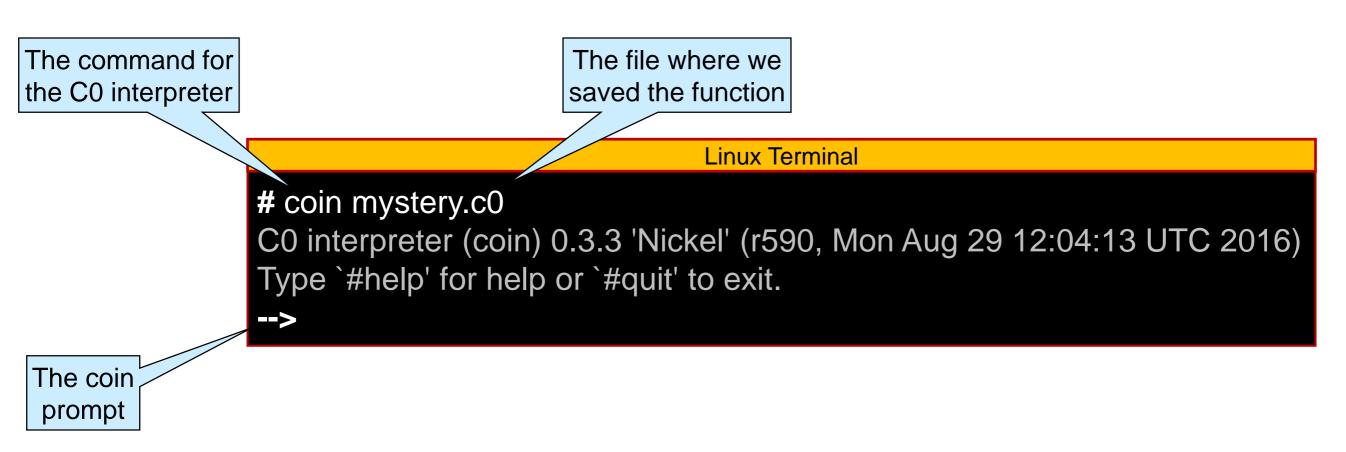
 No wonder your predecessor was fired as a programmer!

```
int f(int x, int y) {
 int r = 1;
 while (y > 1) {
   if (y \% 2 == 1) {
    r = x * r;
  X = X * X;
   y = y / 2;
 return r * x;
```

But what does this function do?

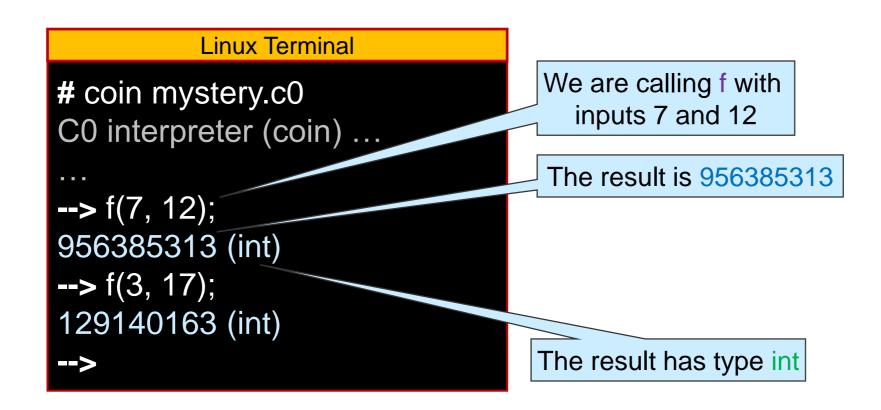
The Function

- But what does this function do?
- We can run experimentscall f with various inputs and observe the outputs
- We do so by loading it in the C0 interpreter coin



Running Experiments

Call f with various inputs and observe the outputs

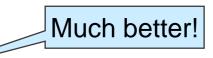


These are not very good experiments
 they don't help us understand what f does

Running Experiments

- Call f with various inputs and observe the outputs
 - we are better off calling f with small inputs
 - o and vary them by just a little bit so we can spot a pattern

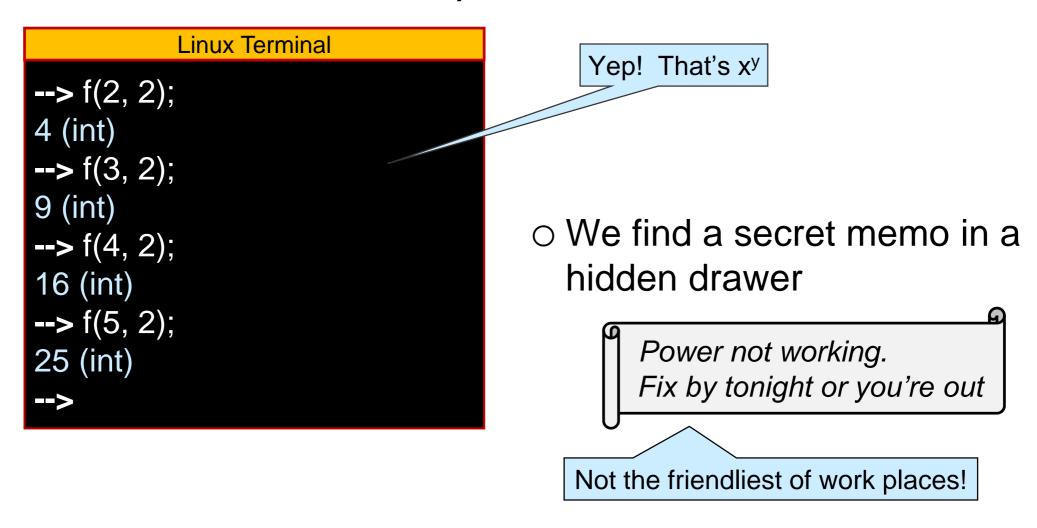
```
--> f(2, 3);
8 (int)
--> f(2, 4);
16 (int)
--> f(2, 5);
32 (int)
--> f(2, 6);
64 (int)
```



- \circ It looks like f(x, y) computes x^y
- Let's confirm with more experiments

Confirming the Hypothesis

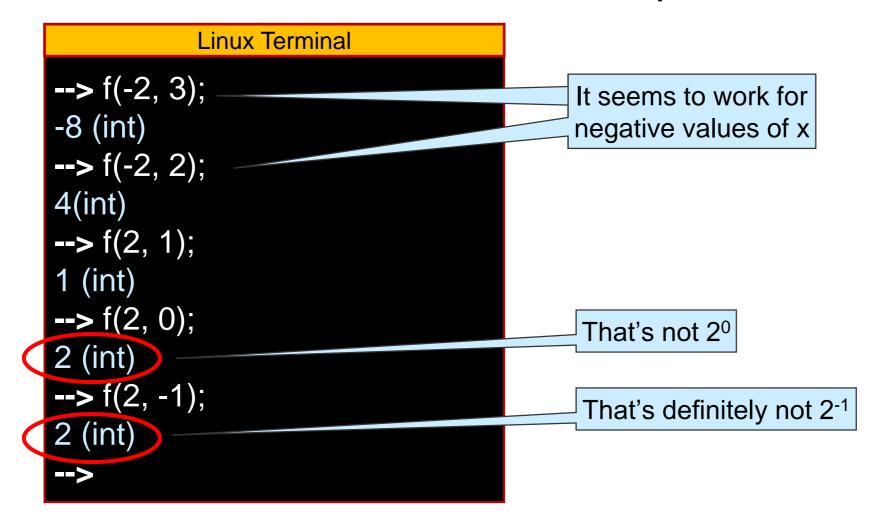
- It looks like f(x, y) computes x^y
- Let's confirm with more experiments



Let's run a few more experiments to identify the problem

Discovering the Bug

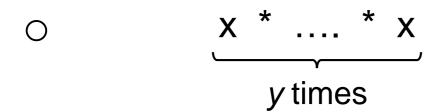
- f(x, y) is meant to computes x^y
 - but it doesn't
- Let's find where it fails with more experiments



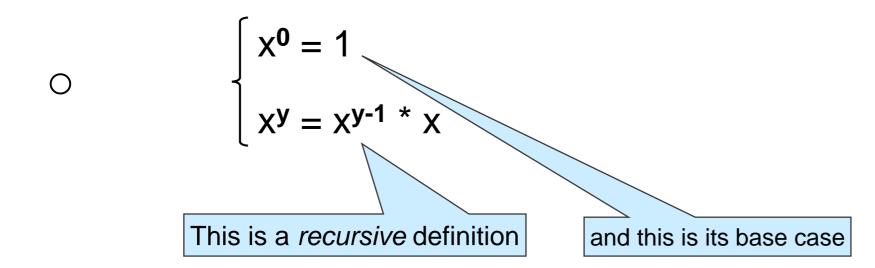
Now we have something to chew on

Preconditions

• What does it mean to be the power function x^y?



- > Yes, but that's not very precise
- Let's write a mathematical definition



What does it mean to be the power function x^y?

$$\begin{cases} x^0 = 1 \\ x^y = x^{y-1} * x \end{cases}$$

- O What happens if y is negative?
 - > we never reach the base case ...
- The power function x^y on integers is **undefined** if y < 0

$$\begin{cases} x^0 = 1 \\ x^y = x^{y-1} * x & \text{if } y > 0 \end{cases}$$
 This defines x^y for $y \ge 0$ only

• What does it mean to be the power function x^y ?

$$\begin{cases} x^0 = 1 \\ x^y = x^{y-1} * x & \text{if } y > 0 \end{cases}$$

int f(int x, int y) {
 int r = 1;
 while (y > 1) {
 if (y % 2 == 1) {
 r = x * r;
 }
 x = x * x;
 y = y / 2;
 }
 return r * x;
}

- To implement the power function, f must disallow negative exponents
 - It can raise an error
 - It can tell the caller that the exponent should be ≥ 0

Better! no need to test y

This would slow f down a bit.

Preconditions

- Disallow negative exponents
 - by telling the caller that the exponent should be ≥ 0

A restriction on the admissible inputs to a function is called

a precondition

- We need to impose a precondition on f
- In most languages, we are limited to writing a comment
 - and hope the caller reads it

This is how we would write a precondition in C

```
// y must be greater than or equal to 0
int f(int x, int y) {
  int r = 1;
  while (y > 1) {
    if (y % 2 == 1) {
       r = x * r;
    }
    x = x * x;
    y = y / 2;
  }
  return r * x;
}
```

Preconditions in C0

- We need to impose a precondition on f
 - \circ to tell the caller that y should be ≥ 0
- In C0 we can write an executable contract directive

```
//@ requires y >= 0;
Co keyword to specify a precondition
• written between the function header and the body
• before the first "{"
```

- We check contracts by invoking coin with the -d flag
 - ➤ "dynamic checking"
 - □ but everybody understands it as debug mode
- without the -d flag, contracts are treated as comments

```
int f(int x, int y)
//@ requires y >= 0;
int r = 1;
 while (y > 1) {
   if (y \% 2 == 1) {
    r = x * r;
  X = X * X;
   y = y / 2;
return r * x;
```

Using Contract

Running with contracts disabled

coin mystery.c0 C0 interpreter (coin) ... --> f(2, 3); 8 (int) --> f(2, -1); 2 (int) -->

Contracts are treated as comments

cc0, the C0 compiler, works the same way

Running with contracts enabled

```
Linux Terminal
 # coin ( -d ) mystery.c0
  C0 interpreter (coin) ...
  --> f(2, 3);
 8 (int)
  --> f(2, -1):
mystery.c0:2.4-2.20: @requires annotation failed
 Last position: myster, c0:2.4-2.20
            f from <stdio>:1.1.1.9
                                                   Line number
                                               where contract failed
            Contracts are executed
                                             File where
      • if true, execution proceeds normally
                                           contract failed
      • if false, execution aborts
```

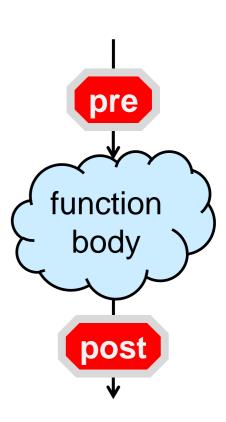
Safety

- If we call f(x,y) with a negative y
 - with -d, execution aborts
 - without -d, f can return an arbitrary result
 - > there is **no** right value it could return
- Calling a function with inputs that cause a precondition to fail is unsafe
 - execution will never do the right thing
 - > either abort
 - > or compute a wrong result
- The caller must make sure that the call is safe
 - \triangleright that y ≥ 0

Postconditions

Contracts about Function Outcomes

- Preconditions are checked before the function starts executing
- A contract that is checked after it is done executing could tell us if the function did the right thing
 - > check that the output is what we expect
 - This is a postcondition



Postconditions in C0

In C0, the contract directive

```
//@ensures <some_condition>;
```

C0 keyword to specify a postcondition

- written between the function header and the body
 after the preconditions (by convention)
- before the first "{"

allows us to write a postcondition

- <some_condition> can mention the contract-only variable \result
 - > what the function returns
 - > can only be used with //@ensures

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures ...;
 int r = 1;
 while (y > 1) {
   if (y \% 2 == 1) {
    r = x * r;
  X = X * X;
  y = y / 2;
 return r * x;
```

Writing a Postcondition

The postcondition we want to write is

//@ensures \result == $x^{**}y$;

○ but x**y is not defined in C0
 ➤ C0 has no primitive power function!

That's how we write x^y in Python

- What do we do?
 - transcribe the mathematical definition into a C0 function

$$\begin{cases} x^{0} = 1 \\ x^{y} = x^{y-1} * x & \text{if } y > 0 \end{cases}$$
 int POW(int x, int y)
//@requires y >= 0;
{
 if (y == 0) return 1;
 return POW(x, y-1) * x;
}

Writing a Postcondition

Then our postcondition is

```
//@ensures \ | == POW(x, y);
```

right? ... almost

```
# coin -d mystery.c0
mystery.c0:18.5-18.6:error:cannot assign to
variable 'x' used in @ensures annotation
x = x * x;
~
Unable to load files, exiting...
```

- The function modifies x (and y)
 - ➤ Which values of x and y should C0 evaluate the postcondition with?
 - ☐ We want the initial values, but it is checked when returning ...
- To avoid confusion, C0 disallows modified variables in postconditions

```
int POW(int x, int y)
 //@ requires y >= 0;
  if (y == 0) return 1;
  return POW(x, y-1) * x;
 int f(int x, int y)
 //@ requires v >= 0:
\pi/2 ensures \result == POW(x,y);
 int r = 1;
  while (y > 1) {
   if (y \% 2 == 1) {
     r = x * r;
   X = X * X;
   y = y / 2;
 return r * y;
```

Writing a Postcondition

- C0 disallows modified variables in postconditions
 - Make copies x and y and modify those

```
Linux Terminal
  # coin -d mystery.c0
  C0 interpreter (coin) ...
  --> f(2, 3);
  8 (int)
  --> f(2, 0):
 mystery.c0:11.4-11.33: @ensures annotation failed>
  Last position: mystery.c0:11.4-11.33
            f fron < stdio > :1.1-1.8
We're good
                     Line number
                  where contract failed
```

```
int POW(int x, int y)
//@ requires y >= 0;
 if (y == 0) return 1;
 return POW(x, y-1) * x;
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
int b = x;
int e = y;
int r = 1;
 while (e > 1) {
  if (e % 2 == 1) {
    r = b * r:
  b = b * b;
  e = e / 2;
return r * b;
```

Recall Safety

In the postcondition of f, we are making a call to POW

- Is it safe?
 - \Box We need to show that $y \ge 0$
 - ➤ The precondition tells us that y >= 0
- The body of POW makes a call to POW
 - Is it safe?
 - \Box We need to show that y-1 >= 0
 - \geq The precondition tells us that y ≥ 0
 - \triangleright Since we don't return on the if, y > 0
 - > So y-1 >= 0 by math

be on our mind

```
int POW(int x, int y)
//@ requires y >= 0;
 if (y == 0) return 1:
 returr POW(x, y-1)
int f(int x, int y)
//@ requires y >= 0;
//@ ensures \result == POW(x,
 int b = x:
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```

- These are examples of point-to reasoning
 - We justify something by pointing to lines of code that supports it

Specification Functions

- POW is used only in contracts
 - It is not executed when contract-checking is disabled
 - > without -d
- Functions used only in contracts are called specification functions
 - They help us state what the code should do
 - They are critical to writing good code

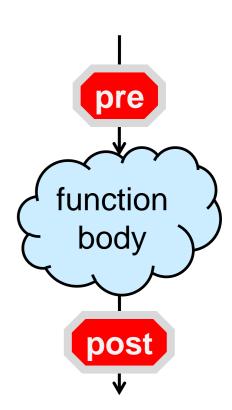
```
int POW(int x, int y)
//@ requires y >= 0;
 if (y == 0) return 1;
 return POW(x, y-1) * x;
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y)
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```

- But wait!
 - of was meant to implement the power function
 - o ... but POW is the power function!
- Let's use it!
 - There may be benefits to fixing f instead
 ➤ it may be more efficient than POW
 - Keep reading ...

```
int POW(int x, int y)
//@ requires y >= 0;
 if (y == 0) return 1;
 return POW(x, y-1) * x;
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```

Correctness

- If a call violates a function's postconditions
 (assuming its preconditions were met so it actually ran)
 the function is doing something wrong
 the function has a bug
- The function is incorrectOur mystery function f is incorrect



The writer of the function must make sure that it is correct
 i.e., that its postconditions will be satisfied for any safe input

Blame

- If a function preconditions fail, it's the caller's fault
 - > the caller passed invalid inputs
 - o the call is unsafe
- If its postconditions fail, it's the implementation's fault
 - > the function code does the wrong thing
 - o the function is incorrect

We will develop methods to make sure that the code we write is **safe** and **correct**

How to Use Contracts

- Contract-checking helps us write code that works as expected
 - Use -d while writing our code
 - At this stage, this is development code
 - bugs are likely
- Once we are confident our code works, compile it without -d
 - The code can be used in its intended application
 - At this stage, this is production code
 - > there should be no bugs
- Why not use -d always?
 - o it slows down execution

Function Contracts

Where are we?

- We have learned a lot about f
 - the preconditions describe what valid inputs are
 - the postconditions describe what it is supposed to do
 - > on valid inputs
- We have a fully documented function
- We have not looked at all at its body
 - > but we know there is a bug in there
 - > it is incorrect

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \ | == POW(x,y);
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
```

The Caller's Perspective

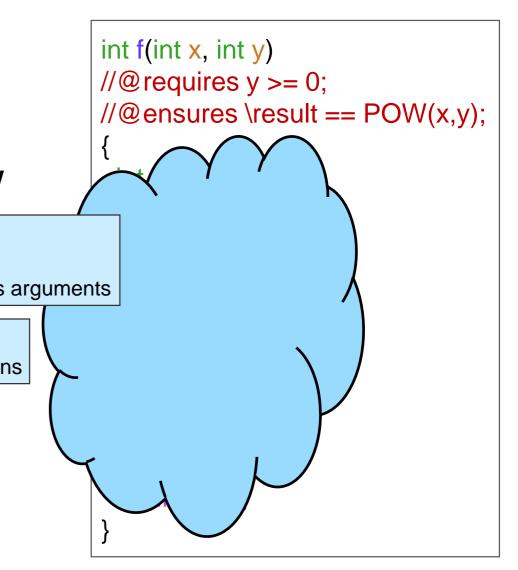
Preconditions describe valid inputs Postconditions describe what it does

That's what the caller needs to know to use the function

```
    int f(int x, int y)
    //@requires y >= 0;
    //@ensures \result == POW(x,y);
    Contracts:
    pre- and post-conditions
```

 The caller should be able to use it without knowing anything about how it is implemented

The implementation details are abstracted away



Abstraction

Split a complex system into small chunks that can be understood independently

Bother with as few details as possible at any time

Computer science is all about abstraction

The Function's Perspective

Preconditions describe valid inputs
Postconditions describe what it does

- That's what the implementation is to do
 - guidelines to write the body of the function
- How to write good code
 - First write the contracts
 - and then the body
 - in this way, you always know what you are aiming for

```
int f(int x, int y)
//@ requires y >= 0;
//@ ensures \result == POW(x,y);
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
   e = e / 2;
```

Now, we need to look at the body of f to find the bug

Loop Invariants

Diving In

- We need to look at the body of f
 - The complicated part is the loop
 - ➤ the values of the variables change at each iteration
 - > it's unclear how many iterations there are
 - If we understand the loop, we understand the function
- How to go about that?

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```

Abstraction

- If we understand the loop,
 we understand the function
- How to go about that?
 - Contracts summarize what a function does so we don't need to bother with the details of its implementation
 - > An abstraction over functions
 - Come up with a summary of the loop so we don't need to bother with the details of its implementation
 - > An abstraction over loops!

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 return r * b;
```

Loop Invariants

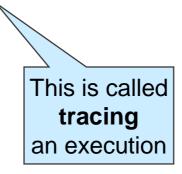
The values of the variables change at each iteration

- One valuable abstraction is what does not change
 - This is called a loop invariant
 - ➤ a quantity that remains constant at each iteration of the loop
 - □ a quantity may be an expression, not just a variable

```
We will see what makes some loop invariants really valuable shortly
```

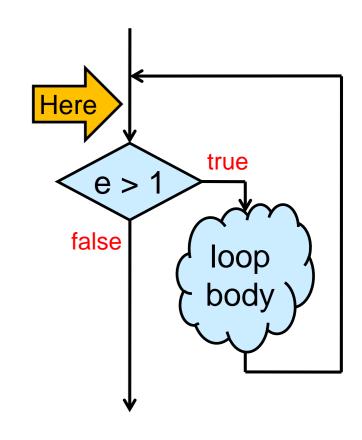
```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```

- How to find a loop invariant?
 - ➤ a quantity that remains constant at each iteration of the loop
- Run the function on sample inputs
- Track the value of the variables
 - ▶ b, e, r
 - no need to bother with x and y since they don't change
 - just before the loop guard is tested
 - ➤ That's e > 1



Look for patterns

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
   if (e % 2 \Rightarrow 1) {
    r = b * r;
   b = b * b;
                      Loop guard
  e = e / 2;
 return r * b;
```

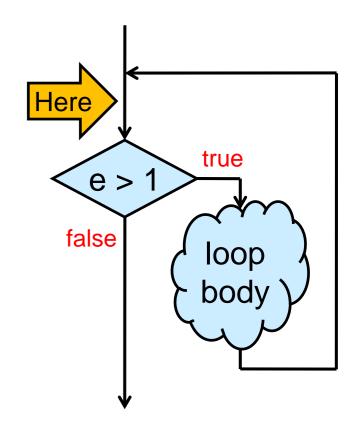


- Run the function on sample inputs and track the value of the variables
 - Let's try with f(2,8)

b	е	r	
2	8	1	
4	4	1	
16	2	1 At this power exit the	int
256	1	1we exit the	loop

Ocan we spot a quantity that doesn't change?

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e % 2 == 1) {
    r = b * r;
                     This checks
  b = b * b;
                      if e is odd
  e = e / 2;
 return r * b;
```

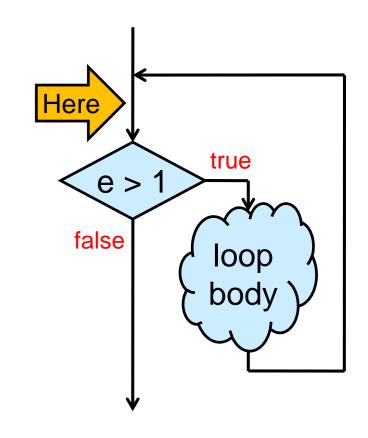


- Trying with f(2,8)
 - Can we spot a quantity that doesn't change?
 - be is always 256

þe	r	е	b
256	1	8	2
256	1	4	4
256	1	2	16
256	1	1	256

- This is a candidate loop invariant
 - > **b**^e is constant on one set of inputs
 - > a loop invariant must stay constant on all inputs

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \ | == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```

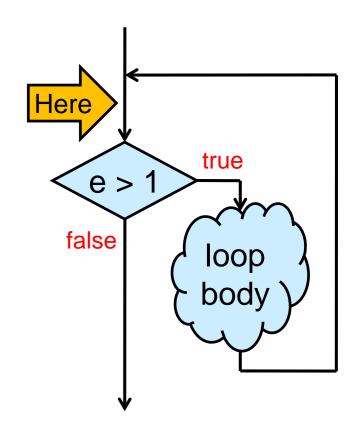


• **b**^e is a *candidate* loop invariant

t'a tm	with f	(2 7)		
et's try	WILII I	(\mathbf{Z}, \mathbf{I})		Not constant
				on these
b	е	r	be	inputs
2	7	1	128	
4	3	2	64	
16	1	8	8	

- be is not invariant on these inputs!
 - ➤ It was a candidate that didn't pan out
- Can we spot another quantity that doesn't change?

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \ | == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```



- Trying with f(2,7)
 - Can we spot a quantity that doesn't change?
 - **b**^e * **r** is always 128

b	е	r	pe	be * r
2	7	1	128	128
4	3	2	64	128
16	1	8	8	128

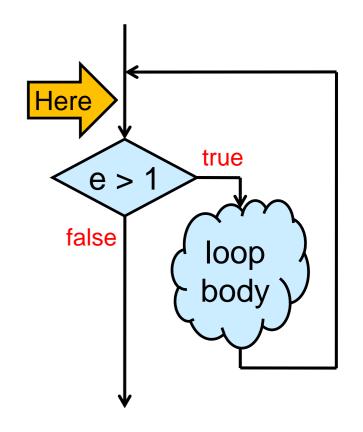
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
 if (e % 2 == 1) {
 r = b * r;
 }
 b = b * b;
 e = e / 2;
 }
 return r * b;
}

int f(int x, int y)

- This is another candidate loop invariant
 - Let's test it on f(3,5)

b ^e * r	r	е	b
243	1	5	3
243	3	2	9
243	3	1	81

This seems to work



A Candidate Loop Invariant

- be * r is a promising candidate loop invariant
 - Olt works on three inputs!
- How do we know it works in general?
 - We can't test it on all inputs
 - We need to provide a proof

But first, let's add it to our code

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1) {
  if (e \% 2 == 1) {
    r = b * r;
  b = b * b:
  e = e / 2;
 return r * b;
```

Loop Invariants in C0

In C0, we use the directive

//@loop_invariant

to specify a loop invariant

C0 keyword to specify a loop invariant
• written between the loop guard and the loop body

• Then, simply write

```
//@loop_invariant POW(b, e) * r;
```

- O ... this won't work
 - ➤ C0 would need to keep track of the values of this expression across all iterations of the loop
 - ➤ also, what if the loop runs 0 times?

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x:
 int e = y;
 int r = 1;
 while (e > 1)
 //@loop_invariant ...;
  if (e % 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
```

- In C0, loop invariants must be boolean expressions
 - o true means it was satisfied in the current iteration
 - o false means it wasn't

Loop Invariants in C0

- They are boolean expressions
 - true means satisfied
- What can we use?

b ^e * r	r	е	b
128	1	7	2
128	2	3	4
128	8	1	16

As we enter the loop,b is x and e is y

 \triangleright so $\mathbf{x}^{\mathbf{y}}$ is 128 too

 \triangleright thus, **b**^e * **r** = **x**^y

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x:
 int e = y;
 int r = 1;
 while (e > 1)
 1/00 loop_invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
   r = b * r;
  b = b * b;
  e = e / 2;
 return r * b;
                              Execution will abort
                               when ran with -d
                               if LI is ever false
```

Then, we can write

 $//@loop_invariant POW(b, e) * r == POW(x, y);$

Safety

We have two new calls to POW

- Are they safe?
- POW(x, y)
 - \geq To show: y >= 0
 - \circ y >= 0 by line 2 (precondition of f)

- POW(b, e)
 - **>** To show: e >= 0
 - o "e is initially equal to y which is >= 0 and it is halved at each iteration of the loop so e is always >= 0"
 - This is an example of operational reasoning
 - ➤ The justification relies on what is happening in all the iterations of the loop
 □ This is error-prone

1. int f(int x, int y)

int b = x;

int e = y;

int r = 1;

10.

11.

12.

13.

18.

while (e > 1)

r = b * r;

b = b * b;

e = e / 2;

17. return r * b;

if (e % 2 == 1) {

 $_2$. //@requires y >= 0; —

3. //@ensures \result == POW(x,y):

 $//@loop_invarian(POW(b,e)*r == POW(x,e)*$

> We will disallow safety proofs based on operational reasoning on loops

Safety

POW(b, e)

- **>** To show: e >= 0
- We can sort of do it with operational reasoning
 - ➤ error prone!
- but we really want to prove it using point-to reasoning
- We do believe that e >= 0 at every iteration of the loop
 - Turn it into a candidate loop invariant!

```
//@loop_invariant e >= 0;
```

- > We will need to prove later that it is valid
- Then we prove that POW(b, e) is safe by pointing to line 9

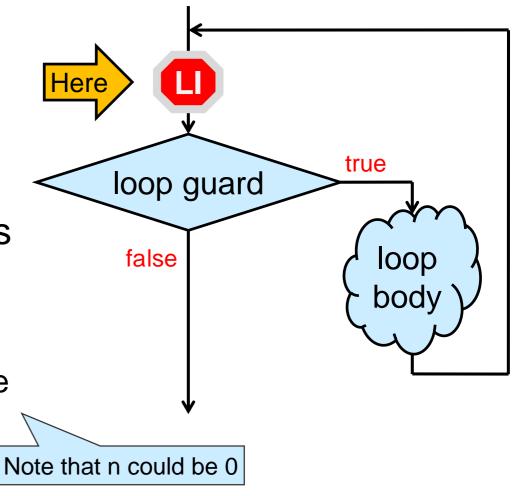
```
1. int f(int x, int y)
_{2.} //@requires y >= 0; -
3. //@ensures \result == POW(x,y);
   int b = x;
    int e = y;
    int r = 1;
    while (e > 1)
9. \sqrt{//}@loop_invariant e >= 0;
   //@loop_invariant POW(b,e) < r == POW(x,y);
11.
     if (e % 2 == 1) {
12.
      r = b * r;
13.
     b = b * b;
     e = e / 2;
17.
18. return r * b;
19.
```

An operational hunch is often a good candidate loop invariant

How Loop Invariants Work

Important!

- Loop invariants are checked just
 before the loop guard is tested
- If the loop body runs n times,
 - the loop invariant is checked n+1 times
 - > must be **true** all n+1 times
 - the loop guard is tested n+1 times too
 - > true the first n times and false the last time
- When we exit the loop
 - the loop invariant is true
 - the loop guard false



Validating Loop Invariants

Where are we?

- We have learned even more about f
 - The contracts tell us what it is meant to do
 - The loop invariants give us useful information about how the loop works
 - > but these are candidate loop invariants
 - > we need to prove that they are valid

```
1. int f(int x, int y)
_2. //@requires y >= 0;
3. //@ensures \result == POW(x,y);
   int b = x;
   int e = y;
   int r = 1;
   while (e > 1)
   //@loop invariant e \ge 0;
   //@loop invariant POW(b,e) * r == POW(x,y):
11.
     if (e % 2 == 1) {
      r = b * r;
13.
     b = b * b;
     e = e / 2;
17.
18. return r * b;
19.
```

- We have started learning about proving things about code
 - > just safety so far
 - point-to reasoning: good
 - operational reasoning: error prone

Proving a Loop Invariant Valid

- We cannot show a loop invariant is valid by running it on all possible inputs
 - We need to supply a proof
 - using point-to reasoning
- Two steps

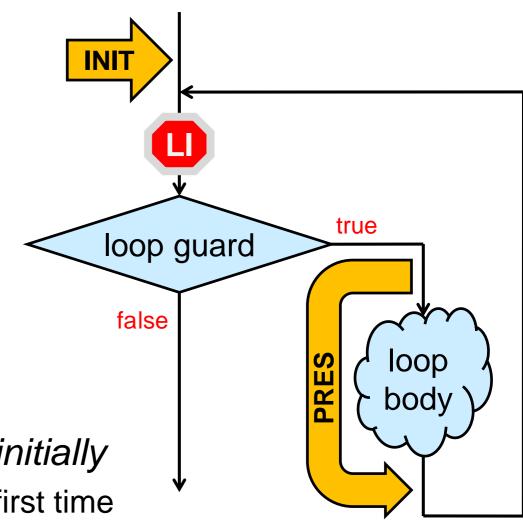
INIT: show that the loop invariant is true *initially*

> just before we test the loop guard the very first time

PRES: show that the loop invariant is preserved by the loop

- > if it is true at the beginning of an **arbitrary iteration** of the loop,
- > then it is also true at the end of this iteration

But it may become false temporarily in the middle of the loop body



We use math notation for brevity Validity of $e \ge 0$

INIT:

> To show: e ≥ 0 initially

A. $y \ge 0$ by line 2

B. e = y by line 6

C. $e \ge 0$ by math on A and B

This is a typical proof format in this course

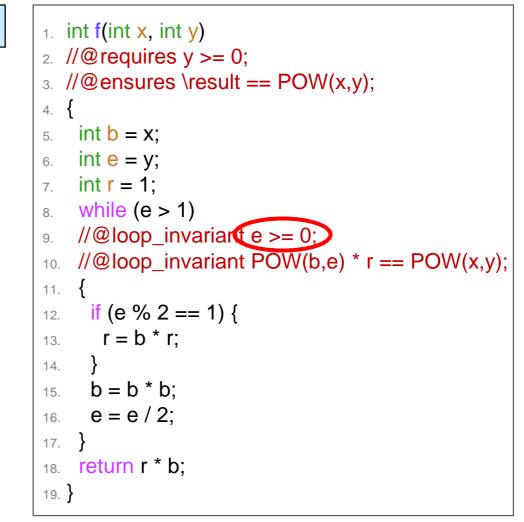
PRES:

 \triangleright To show: if $e \ge 0$, then $e \ge 0$

LI at **start** of LI at end of current iteration current iteration

But isn't this trivially true?

- The value of e changes in the body of the loop
- We need a way to distinguish the value at the start and end of the current iteration
 - value of e at the **start** of the current iteration
 - value of e at the **end** of the current iteration **>** e'



Validity of $e \ge 0$

INIT: e ≥ 0 initially

PRES:

LI at **start** of current iteration

LI at **end** of current iteration

> To show: if $e \ge 0$, then $e' \ge 0$

A. $e \ge 0$ by assumption

B. e' = e/2 by line 16

C. $e/2 \ge 0$ by math on A

D. $e' \ge 0$ by B and C

Both INIT and PRES were proved by point-to reasoning

```
1. int f(int x, int y)
2. //@requires y >= 0;
3. //@ ensures \result == POW(x,y);
   int b = x;
   int e = v;
   int r = 1;
   while (e > 1)
   //@loop_invariant e >= 0;
   //@loop invariant POW(b,e) * r == POW(x,y);
11.
     if (e % 2 == 1) {
      r = b * r;
     b = b * b;
     e = e / 2;
17.
18. return r * b;
19.
```

Validity of $b^e r = x^y$

INIT:

 \triangleright To show: $b^e r = x^y$ initially

A. b = x by line 5

B. e = y by line 6

C. r = 1 by line 7

D. $b^e r = x^y$ by math on A, B, C


```
1. int f(int x, int y)
_2. //@requires y >= 0;
3. //@ ensures \result == POW(x,y);
   int b = x;
   int e = v;
   int r = 1;
   while (e > 1)
   //@loop invariant e \ge 0;
  //@loop invariant POW(b,e) * r == POW(x,y);
     if (e % 2 == 1) {
      r = b * r;
     b = b * b;
     e = e / 2;
17.
18. return r * b;
19.
```

PRES:

LI at **start** of current iteration

LI at **end** of current iteration

 \triangleright To show: if $b^e r = x^y$, then $b'^{e'} r' = x^y$

x and y don't change in the loop

We need to distinguish 2 cases based on the test e % 2 == 1

➤ e % 2 == 1 is true — e is odd

> e % 2 == 1 is **false** — *e is even*

Validity of $b^e r = x^y$

PRES:

- ightharpoonup To show: if be $r = x^y$, then b'e' $r' = x^y$
- ➤ Case **e is odd** (e % 2 == 1)
 - \Box Then e = 2n+1 for some n

A.
$$b' = b*b$$

by line 15

B.
$$e' = e/2$$

by line 16

$$C_{\cdot} = n$$

by case assumption and math

D.
$$r' = b * r$$

by line 13

E.
$$b'^{e'}$$
 $r' = (b*b)^n b*r$

by A, B, C, D

 $F. = b(b^2)^n r$

by math

G. = $b^{2n+1} r$

by math

Н.

= be r

by case assumption

 $= x^y$

by assumption

```
1. int f(int x, int y)
_2. //@requires y >= 0;
3. //@ensures \result == POW(x,y);
   int b = x;
   int e = v;
   int r = 1;
  while (e > 1)
  //@loop invariant e \geq = 0;
10. //@loop_invariant POW(b,e) * r == POW(x,y);
    if (e % 2 == 1) {
      r = b * r;
     b = b * b;
     e = e / 2;
17.
18. return r * b;
19.
```

This is one of the most complex proofs in this course

This proves the first case

Validity of $b^e r = x^y$

PRES:

- ightharpoonup To show: if be $r = x^y$, then b'e' $r' = x^y$
- ➤ Case **e is even** (e % 2 == 0)
 - \Box Then e = 2n for some n

A.
$$b' = b*b$$

by line 15

B. e' =
$$e/2$$

by line 16

$$C. = n$$

by case assumption and math

$$D. r' = r$$

since r is unchanged

E.
$$b'^{e'} r' = (b^*b)^n r$$
 by A, B, C, D

F.
$$= (b^2)^n$$
 r by math

G.
$$= b^{2n} r$$
 by math

H.
$$= b^e r$$
 by case assumption

$$1. = x^y \qquad \text{by assumption}$$

PRES holds

1. int f(int x, int y)

int b = x; int e = v; int r = 1;

while (e > 1)

 $_2$. //@requires y >= 0;

3. //@ ensures \result == POW(x,y);

//@loop invariant e $\geq = 0$;

if (e % 2 == 1) {

r = b * r;

b = b * b; e = e / 2;

18. **return r * b**;

17.

19.

10. //@loop_invariant POW(b,e) * r == POW(x,y);

for $b^e r = x^y$

This proves the second case too

Loop Invariants

• $e \ge 0$ is valid

- o it holds **INIT**ially
- it is **PRES**erved by an arbitrary iteration of the loop
 - \succ if $e \ge 0$, then $e' \ge 0$
- $b^e r = x^y$ is valid

- o it holds **INIT**ially
- it is PREServed by an arbitrary iteration of the loop

```
\rightarrow if be r = x^y, then b'e' r' = x^y
```

- This shows that both are genuine loop invariants
 - not just candidates
 - we can forget about the body of the loop when reasoning about this function

```
1. int f(int x, int y)
_2. //@requires y >= 0;
3. //@ensures \result == POW(x,y);
   int b = x;
   int e = y;
   int r = 1;
    //@loop invariant e >= 0;
    //@loop_invariant POW(b,e) * r == POW(x,y)
     if (e % 2 == 1) {
      r = b * r;
     b = b * b;
     e = e / 2;
17.
18. return r * b;
19.
```

Proof-directed Debugging

Where are we?

- The contracts tell us what the function is meant to do
 - > but we know there is a bug in there
- The loop invariants abstract away the details of the loop

But what to do with them is still a bit mysterious

Let's find the bug!

```
1. int f(int x, int y)
2. //@requires y >= 0;
3. //@ ensures \result == POW(x,y);
   int b = x;
   int e = y;
   int r = 1;
   while (e > 1)
   //@loop invariant e >= 0;
   //@loop_invariant POW(b,e) * r == POW(x,y);
18. return r * b;
19.
```

After the Loop

- What do we know when execution exits the loop?
 - the loop guard is false

```
> e ≤ 1
```

the loop invariants are true

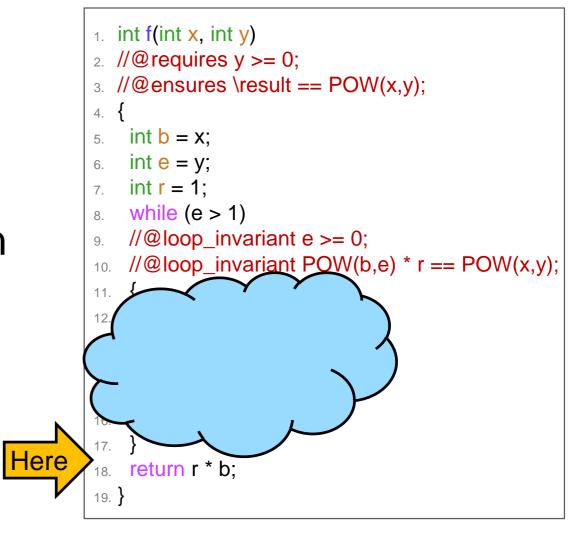
```
\Rightarrow e \ge 0
\Rightarrow be r = x^y
```

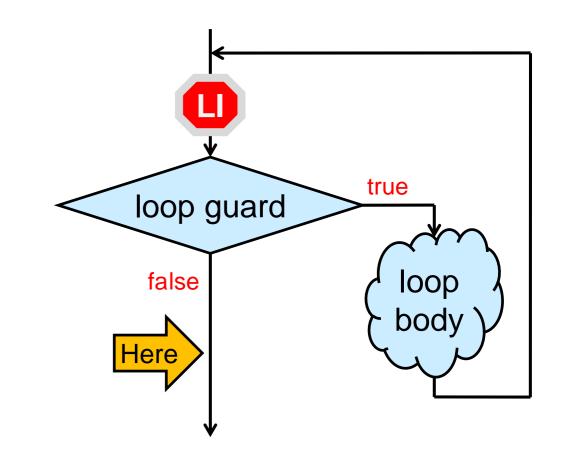
- From e ≤ 1 and e ≥ 0,
 we have that
 - \circ either e = 0

```
\circ or e = 1
```

as we exit the loop

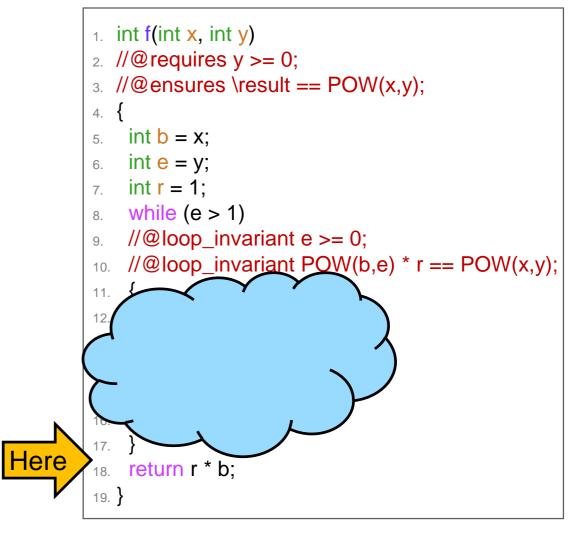
Recall that e has type int





After the Loop

- \bullet Either e = 0 or e = 1
 - Let's plug these values in the other loop invariant, be r = xy



- \rightarrow If e = 1, then $x^y = b^e r = b^1 r = r b$
 - \circ Thus, $x^y = r b$ in this case

 \rightarrow if e = 0, then $x^y = b^e r = b^0 r = r$

This is exactly what f returns.

This is not what f returns.

This is the bug!

Tracking the Bug

- The bug is when e = 0 as we exit the loop
- This can happen only if f is called with 0 as y
 - if e = 1, the loop doesn't run and e stays 1
 - if e > 1 at the start of an iteration, then e' ≥ 1 as we end it

```
1. int f(int x, int y)
_2. //@requires y >= 0;
3. //@ ensures \result == POW(x,y);
   int b = x;
    int e = y;
   int r = 1;
    while (e > 1)
    //@loop invariant e >= 0;
    //@loop_invariant POW(b,e) * r == POW(x,y);
     if (e \% 2 == 1) {
      r = b * r;
     b = b * b;
     e = e / 2;
18. return r * b;
19.
```

Here

Idea #1: return 1 if y = 0

- This works but it introduces a special case in the code
- Special cases leads to contrived, unmaintainable code
 - sometimes unavoidable
 - o but let's see if we can do better

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
if (y == 0) return 1;
 int b = x:
 int e = y;
 int r = 1;
 while (e > 1)
 //@loop_invariant e >= 0;
 //@loop invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
   r = b * r:
  b = b * b:
  e = e / 2:
 return r * b;
```

- Idea #2: change the precondition to y > 0
- This forces the caller to have special cases in their code!
 - o calls to f need to be guarded

```
int c = f(a, b) int c = 1;
if (b > 0) c = f(a, b);
```

```
int f(int x, int y)
//@requires y > 0;
//@ensures \result == POW(x,y);
{
   int b = x;
   int e = y;
   int r = 1;
   while (e > 1)
   //@loop_invariant e >= 0;
   //@loop_invariant POW(b,e) * r == POW(x,y);
   {
     if (e % 2 == 1) {
        r = b * r;
     }
        b = b * b;
        e = e / 2;
   }
   return r * b;
}
```

- This also means that f is not the power function any more
 undefined when exponent is 0
- Not a great solution

Idea #3: forget about f and use POW instead

- Recall the trace of f(2,8)the loop ran 4 times
- b e r
 2 8 1
 4 4 1
 16 2 1
 256 1 1

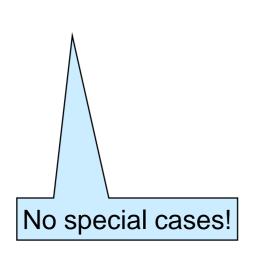
- Trace POW(2, 8)9 recursive calls
- f is much more efficient

```
x y
2 8
2 7
2 6
2 5
2 4
2 3
2 2
2 1
2 0
```

```
int POW(int x, int y)
//@ requires y >= 0;
 if (y == 0) return 1;
 return POW(x, y-1) * x;
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 1)
 //@loop_invariant e >= 0;
 //@loop_invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
    r = b * r;
  b = b * b;
  e = e / 2:
 return r * b;
```


Idea #4: make f return only when e = 0

- change the loop guard to e > 0
 - \triangleright the loop always end with e = 0
- return r instead of r * b
 - \triangleright that's what we had to return when e = 0



```
int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
   int b = x;
   int e = y;
   int r = 1;
   while (e > 0)
   //@loop_invariant e >= 0;
   //@loop_invariant POW(b,e) * r == POW(x,y);
   {
     if (e % 2 == 1) {
        r = b * r;
     }
     b = b * b;
     e = e / 2;
   }
   return r;
}
```


Rather than getting rid of the bad case (e = 0), we make it the good case and do away with the other case (e = 1)

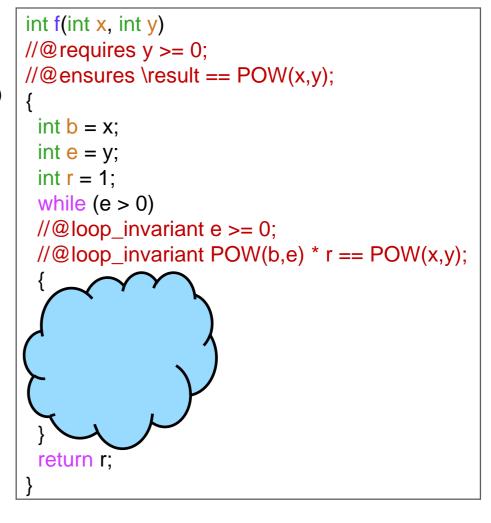
How's this for a movie plot?

Correctness

Did we Really Fix the Bug?

- The loop invariants are still valid
 - we didn't change the body of the loop
 - we changed the loop guard
 - but it doesn't impact the validity proof

Check for yourself



- Right after the loop, we know that
 - the loop guard is **false**: $e \le 0$
 - o the 1st loop invariant is true: e ≥ 0
 - \circ the 2nd loop invariant is **true**: be $r = x^y$

> so
$$x^y = b^e r = b^0 r = r$$

This is what f returns now

so e = 0

Assertions

Right after the loop, we know that e = 0

- We can note this with the directive
 //@assert e == 0;
 - checked only when running with -d
 - aborts execution if the test is false
- //@assert is a great way to note
 - intermediate steps of reasoning
 - expectations about execution

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop invariant POW(b,e) * r == POW(x,y);
  if (e \% 2 == 1) {
    r = b * r:
  b = b * b;
  e = e / 2:
//@assert e == 0;
return r;
       //@assert can appear
      anywhere a statement
             is expected
```

These are all the run-time directives of C0

//@requires, //@ensures, //@loop_invariant, //@assert

There are no others

Is the Function Correct?

Correctness: for any safe input, the postconditions are true

We just proved that, as we exit the loop, r = x^y
 just before return r;

 This tells us that f will never return the wrong result

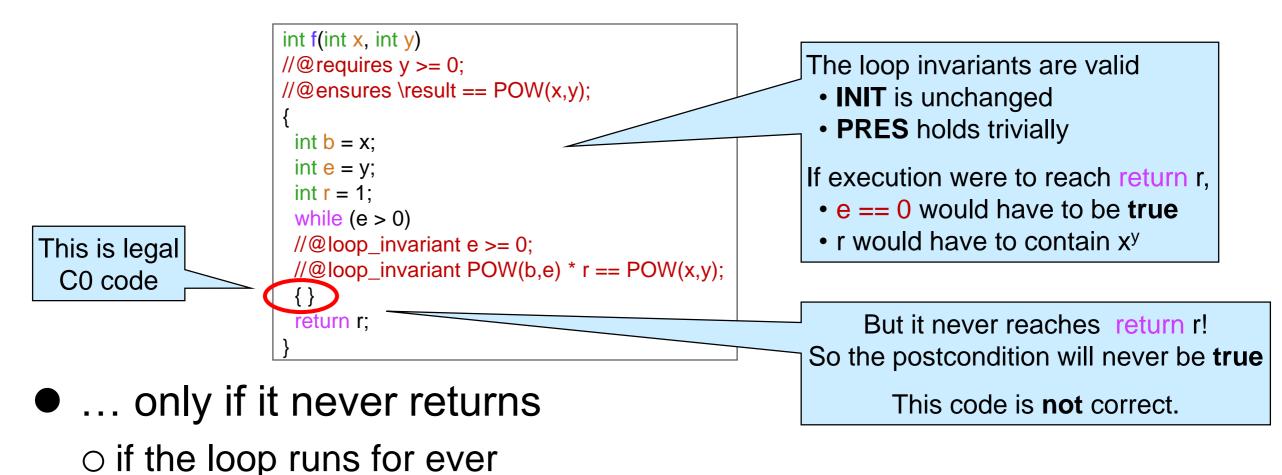
```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop_invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
    r = b * r:
  b = b * b;
  e = e / 2:
 //@assert e == 0;
 return r;
```

but will it always return the right result?

Is the Function Correct?

Correctness: for any safe input, the postconditions are true

- Can a function never return the wrong result and yet not necessarily always return the right result?
 - Let's empty out the loop body in our example



Termination

- We need to have a reason to believe the loop terminates
 - > it doesn't run for ever
- Here's a proof of termination
 - o as the loop runs,
 - > e gets strictly smaller at each iteration
 - > it can never become smaller than 0
 - \rightarrow the loop guard is **false** when e = 0
 - so the loop must terminate

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop_invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
    r = b * r:
  b = b * b;
  e = e / 2;
//@assert e == 0;
return r;
```

This is an **operational** proof: we are not pointing to anything

Termination

- Operational proof
 - ➤ as the loop runs, e gets strictly smaller, it can never become smaller than 0, and the loop guard is false when e = 0
 - > so the loop must terminate
- Can we prove it using point-to reasoning?
 - Yes! Here's what we need to show
 - in an arbitrary iteration of the loop,

```
    if e ≥ 0,
    then e' < e</li>
    and e' ≥ 0
    0 is a lower bound for e
    e is strictly decreasing
    0 stays a lower bound for e
```

```
if e starts >= 0,
it gets strictly smaller and
can never becomes smaller than 0
```

the loop guard is false when e = 0

```
 > 0 > 0  is false
```

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x:
 int e = y;
 int r = 1;
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
    r = b * r:
   b = b * b;
  e = e / 2:
//@assert e == 0:
return r;
```

Termination

Point-to proof

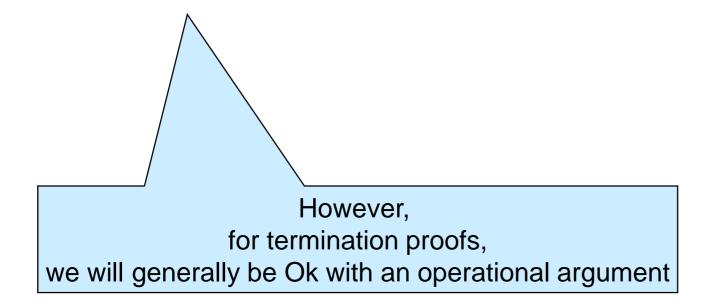
 \triangleright To show: if e ≥ 0, then e' < e and e' ≥ 0

A. e > 0 by line 8 (loop guard)

B. e' = e/2 by line 16

C. e' < e by math

D. $e' \ge 0$ by math



```
int f(int x, int y)
   //@requires y >= 0;
   //@ensures \result == POW(x,y);
     int b = x;
     int e = y;
     int r = 1;
     while (e > 0)
     //@loop_invariant e >= 0;
     //@loop_invariant POW(b,e) * r == POW(x,y);
11.
      if (e % 2 == 1) {
12.
        r = b * r;
13.
14.
      b = b * b;
15.
      e = e / 2;
16.
17.
    //@assert e == 0;
    return r;
19.
20.
```

Reasoning about Code

Reasoning about C0

- C0 programs have a precise behavior
 - we can reason about them mathematically
- We used two types of reasoning
 - Operational reasoning: drawing conclusions about how things change when certain lines of code are executed
 - Point-to reasoning: drawing conclusions about what we <u>know</u> to be true by pointing to specific lines of code that justify them
 - ➤ boolean expressions
 - basic mathematical properties
 - variable assignments _

This is operational reasoning, but really simple

Operational Reasoning

Examples

- Value of variables right after an assignment
- Things happening in the body of a loop from outside this loop
- Things happening in the body of a function being called
- Previously true statements after variables in it have changed



- very error prone!
- We want to stay away from anything beyond simple assignments
 - > except in termination proofs

If a proof about loops uses words like "always", "never", "each", you are doing operational reasoning

But operational intuitions are a good way to form conjectures that we can then prove using point-to reasoning

Point-to Reasoning

Examples

 Boolean conditions 	1
> condition of an if statement in the "then" branch	\checkmark
> negation of the condition of an if statement in the "else" branch	\checkmark
➤ loop guard inside the body of a loop	\checkmark
> negation of the loop guard after the loop	\checkmark
 Contract annotations 	√
preconditions of the current function	\checkmark
postconditions of a function just called	\checkmark
➤ loop invariant inside the loop body	\checkmark
➤ loop invariant after the loop	\checkmark
earlier fully justified assertions	\checkmark
 Math 	1
> laws of logic	\checkmark
> some laws of arithmetic	\checkmark
 Value of variables right after an assignment 	1

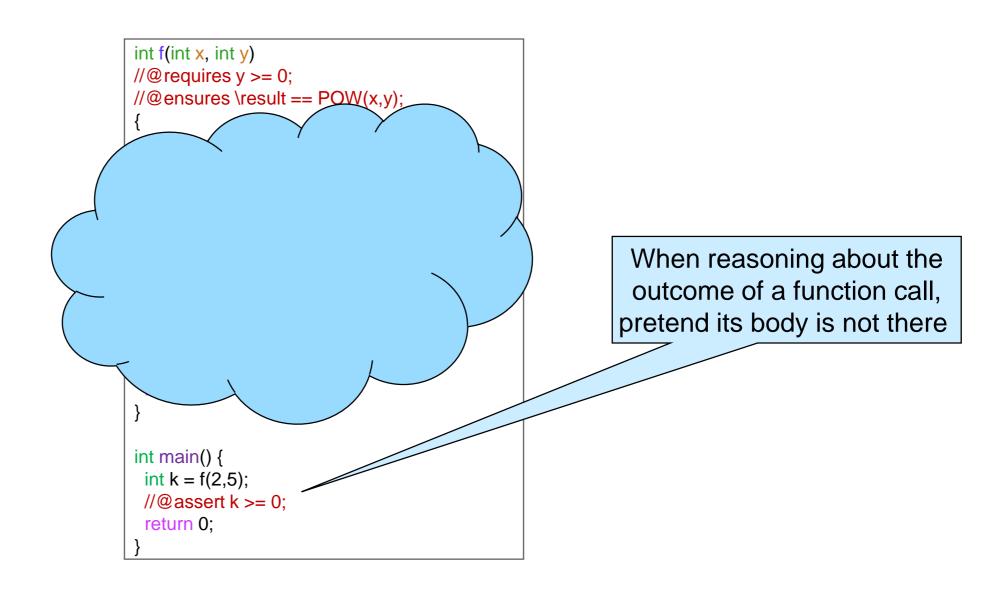
Point-to Reasoning: Tips and Tricks

- When reasoning about an earlier loop,
 pretend the body of the loop is not there
 - Only rely on the loop guard and loop invariants

```
int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
  int b = x;
  int e = y;
  int r = 1;
  while (e > 0)
//@loop_invariant e >= 0;
//@loop_invariant POW(b,e) * r == POW(x,y);
{
    When reasoning about an earlier loop,
    pretend its body is not there
}
//@assert r = POW(x,y);
return r;
}
```

Point-to Reasoning: Tips and Tricks

- When reasoning about a function being called,
 pretend the body of the function is not there
 - > unless it's a specification function
 - Only rely on its contracts



Safety

- The inputs of a function call satisfy the function's preconditions
 - we will generalize this definition in the future

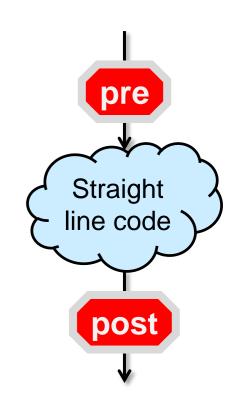
We will exclusively use point-to reasoning to justify safety

Correctness

- The postconditions of a function will be true on any call that satisfies the preconditions
 - We will not need to generalize this definition

Straight Line Functions

A non-recursive function without loops



 Proving correctness amounts to combining assignments

```
To show: \result = x
A. b = x
B. r = 1
C. \result = r * b
by line 7
C. \result = r * b
by line 8
D. r * b = x
by math on A, B, C
```

```
1. int f(int x, int y)
2. //@requires y >= 0;
3. //@ensures \result == x;
4. {
5. int b = x;
6. int e = y;
7. int r = 1;
8. return r * b;
9. }
```

Proving correctness involves 3 steps

Show that the loop invariants are valid

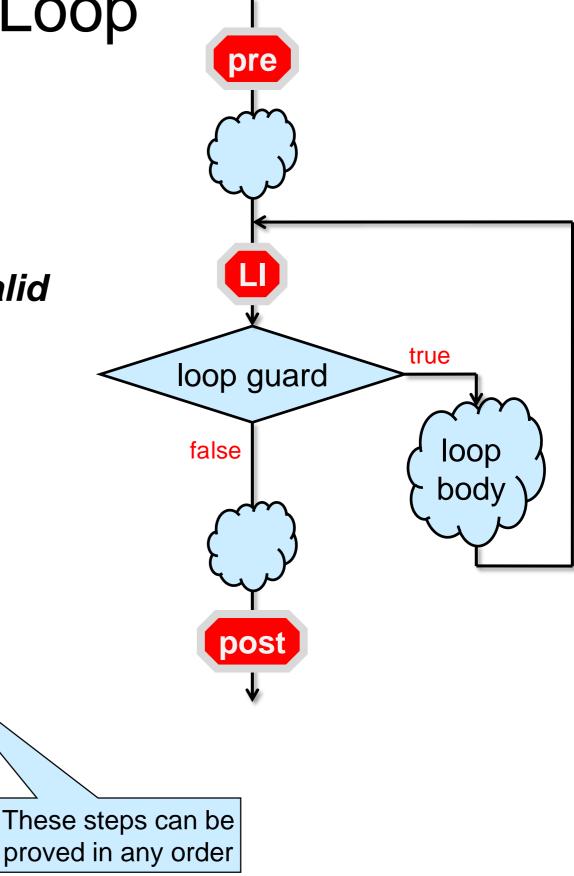
> INIT: the LI are true initially

➤ PRES: the LI are preserved by an arbitrary iteration of the loop

 EXIT: the LI and the negation of the loop guard imply the postcondition

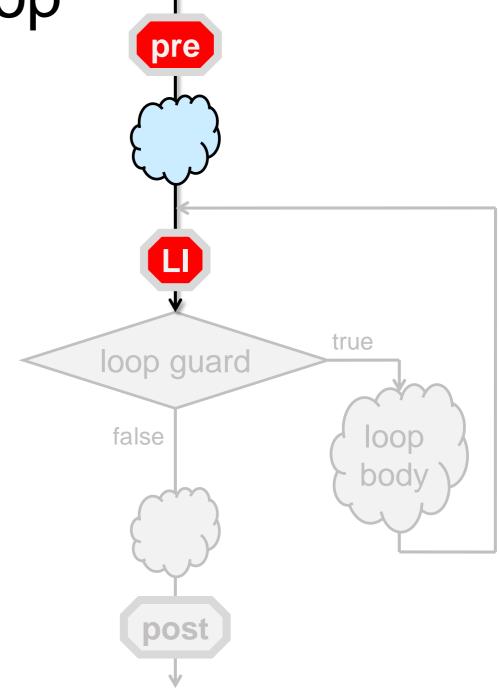
TERM: the loop terminates

That's exactly what we did for our mystery function



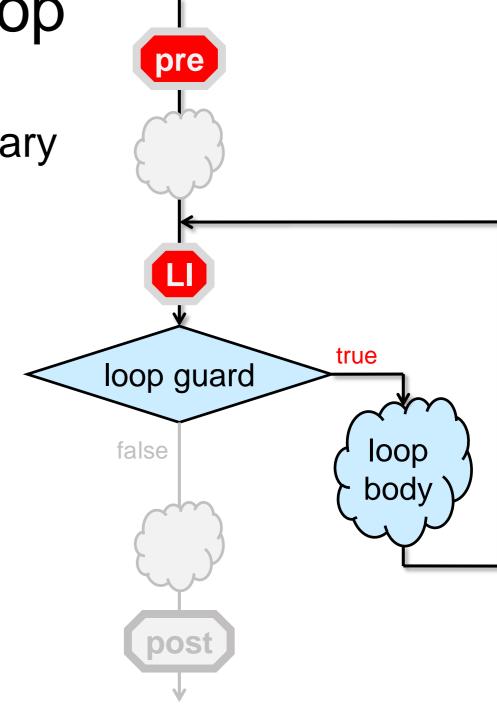
INIT: the loop invariant is true initially

- proved by <u>point-to reasoning</u>
 typically using
 - the preconditions
 - simple assignments before the loop



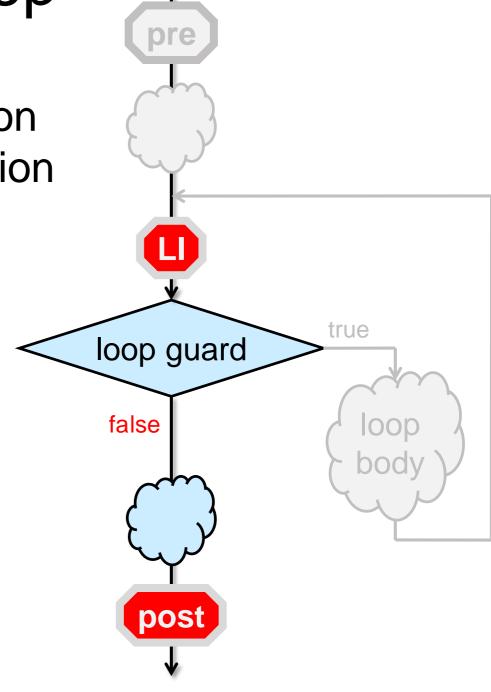
PRES: the LI are preserved by an arbitrary iteration of the loop

- proved by <u>point-to reasoning</u> typically using
 - the assumption that the LI is true at the beginning of the iteration
 - o the loop guard
 - simple assignments and conditionals in the loop body
 - the preconditions (sometimes)



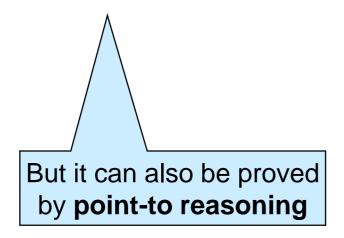
EXIT: the loop invariants and the negation of the loop guard imply the postcondition

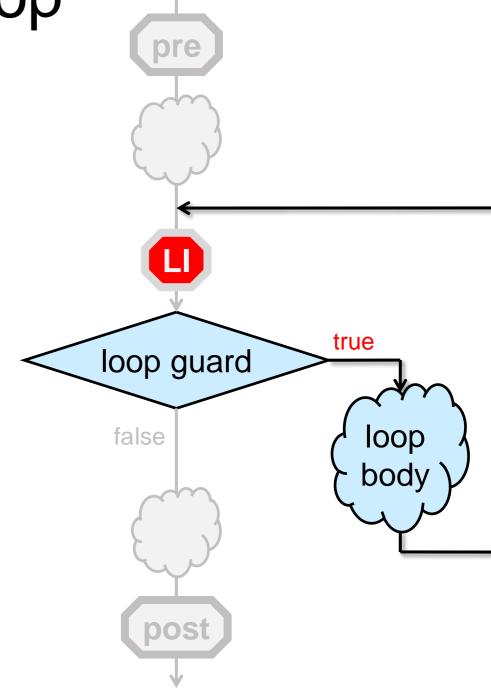
- proved by <u>point-to reasoning</u> typically using
 - the loop invariant
 - the negation of the loop guard
 - simple assignments and conditionals after the loop



TERM: the loop terminates

- proved by <u>operational reasoning</u> typically using
 - the assumption that the LI is true at the beginning of the iteration
 - the loop guard
 - simple assignments and conditionals in the loop body





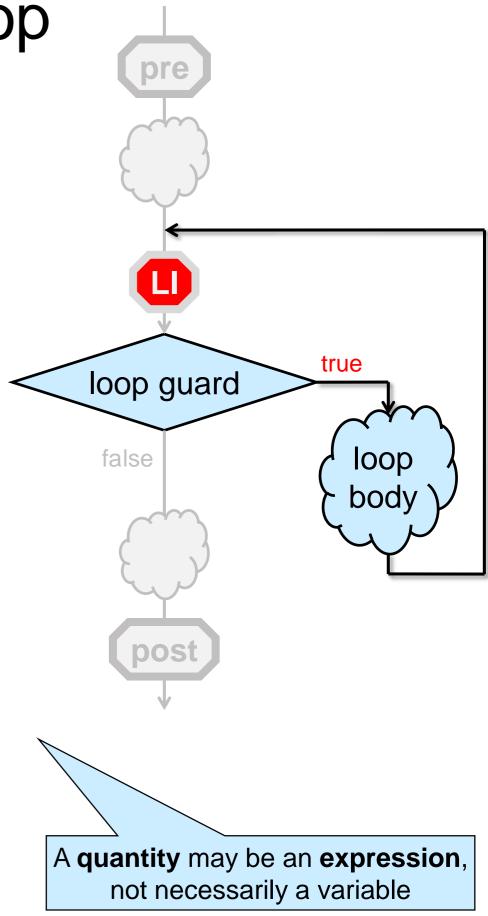
TERM: the loop terminates

 Format of a termination proof using operational reasoning

> "on an arbitrary iteration of the loop, the quantity _____ gets strictly smaller but it can't ever get smaller than ____" on which the loop guard is false

or

"on an arbitrary iteration of the loop, the quantity _____ gets strictly bigger but it can't ever get bigger than _____' on which the loop guard is false



More Complex Functions

- These techniques can be extended
 - but we will rarely deal with functions with more than one loop
- We can also factor out nested loops and the like into helper functions
 - o and then use the technique we just saw

Seriously??

- All these proofs and complicated reasoning seem overkill!
 - o the mystery function wasn't all that hard after all
 - we could just spot what was going on
- Yes, but it won't be that easy for more complex functions
 - o the technique we saw is systematic and scalable
 - reasoning about code will pay off
- Point-to reasoning is what we do in our head all the time when programming
 - writing it down as loop invariants and contracts makes it easier not to get confused
 - and the -d flag will catch lingering issues at run time

Epilogue

Where are we?

- We fully documented f
 - function contracts
 - loop invariants
 - key assertions
- We fixed the bug
- We gave mathematical proofs that
 - o all the calls it makes are safe
 - o it is correct
- Let's enjoy the fruit of our labor with some more testing!

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
    r = b * r:
  b = b * b;
  e = e / 2:
//@assert e == 0:
return r;
```

Sanity Checks

Let's do a last round of testing

```
Linux Terminal
# coin -d mystery.c0
C0 interpreter (coin) ...
--> f(2, 0);
1 (int)
                                          Bug fixed!
--> f(2, 1);
2 (int)
--> f(2, 7);
128 (int)
                                           Looking good
--> f(2, 8);
256 (int)
--> f(2, 19);
524288 (int)
                                           Plausible
--> f(2, 31);
-2147483648 (int)
                                           What?
--> f(2, 32);
0 (int)
                                           What?
```

```
int f(int x, int y)
//@ requires y >= 0;
//@ensures \result == POW(x,y);
 int b = x;
 int e = y;
 int r = 1;
 while (e > 0)
 //@loop_invariant e >= 0;
 //@loop_invariant POW(b,e) * r == POW(x,y);
  if (e % 2 == 1) {
    r = b * r:
  b = b * b;
  e = e / 2;
//@assert e == 0:
return r;
```

The story continues ...