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Abstract

This report presents a technique for estimating the propagation of uncertainty in measurements into mathematical
simulations of heat transfer. The motivation for this report is to show the dramatic uncertainty associated with estimating
the value of the so-called “lethal temperature,” even in a case where a perfect correlation appears to exist between histo-
pathologic observations and a corresponding heat transfer simulation. Although the example presented in this report
relates to cryosurgery, the technique proposed in this report is rather general and can be applied to any heat transfer
problem. The uncertainty analysis presented in this report can be considered as an extension of the well-known concept of
the rule of the square root of the sum of the square errors. A comparison of the new technique with the worst case scenario
concept is also presented. In conclusion, it is recommended that the proposed technique be routinely applied when

presenting simulated results, whether as a part of a theoretical study, or in comparison with experimental data.
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A principle concept in experimental engineering
is that no measurement can be taken without er-
ror. Hence, neither the exact value of the quantity
being measured, nor the exact error associated
with the measurement can be ascertained. In en-
gineering, as in biology, the uncomfortable prin-
ciple of indeterminacy exists. While uncertainties
may be associated with an inaccurate experimental
work performed in a less-than-perfect world, un-
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certainties can be very useful and, like friction, are
often a blessing in disguise. It is common practice
to report on experimental data with an estimation
of uncertainty. However, when experimental data
are applied to mathematical analyses of bioheat
transfer, experimental uncertainties are typically
ignored, and only average values are taken into
consideration. Hence, the propagation of uncer-
tainty in measurements into the mathematical so-
lution is typically overlooked.

The solved parameter in a bioheat transfer
problem is most frequently the transient tempera-
ture distribution. In a freezing/thawing problem,
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the solution also includes the location of a freez-
ing/thawing front. Many parameters are involved
in a mathematical solution of a bioheat transfer
problem (the terms ‘mathematical solution’ and
‘mathematical simulation’ are synonymous in this
context), and can generally be separated into four
groups: (i) intrinsic physical properties, such as
thermal conductivity, specific heat, density, and
latent heat; (ii) biological parameters, such as
blood perfusion rate, metabolic heat generation,
and core body temperature; (iii) geometrical pa-
rameters, including dimensions and orientation of
the solved domain, as well as specific details on
blood vessels, and ducts; and (iv) thermal bound-
ary conditions, describing the driving mechanism
of cooling and/or warming.

Mathematical solutions of bioheat transfer may
be used for a large variety of purposes, such as
theoretical studies, parametric estimation of
physical properties, and analysis of experimental
results [6,23]. Either way, the mathematical solu-
tion relies on a prior knowledge of some of the
above parameters, each of which is associated with
a unique level of uncertainty. Even when the un-
certainty associated with each parameter is fairly
estimated, estimating the level of uncertainty as-
sociated with the solved parameters—the temper-
ature distribution, and possibly the freezing front
location—remains a major challenge.

A common concept for estimating the propa-
gation of measurement uncertainties into a math-
ematical solution is based on a worst case scenario
analysis. Using this concept, parametric studies are
performed based on sets of extreme parameter
values, in order to bound the possible range in
which the real solution is likely to exist [19,24].
While the concept of worst case scenario may be
based on some rational arguments, there is no
mathematical background for its support. In some
cases, the worst case scenario concept may lead to
an extremely high overestimation of uncertainty of
the mathematical solution.

An alternative concept for estimating the
propagation of measurement uncertainties into a
mathematical solution is based on Monte Carlo
simulations [11]. Using this concept, the mathe-
matical solution is repeated many times, each time
using a randomly selected set of parameter values,

where the interval for random selection of each
parameter is its range of uncertainty. Statistical
analysis of such a large number of mathematical
solutions provides the range in which the real so-
lution is likely to exist; this is the uncertainty in-
terval of the solution. The same statistical analysis
also provides a probability distribution of the
uncertainty, which indicates the likelihood of
finding the real solution at any given point within
the uncertainty interval. In general, the Monte
Carlo analysis requires many simulations and
therefore is very expensive.

The purpose of the current report is to present a
third concept for estimating the propagation of
measurement uncertainties into a mathematical
solution of bioheat transfer. This concept leads to
a straightforward technique, which is far less ex-
pensive than the Monte Carlo technique. The new
concept relies on statistical principles, however, no
actual statistical work is required. This report in-
cludes a method for the application of the new
concept with examples related to cryosurgery and
in vivo measurements of the lethal temperature.
Nevertheless, the technique can be applied to any
heat transfer process.

The current report does not include uncertainty
effects due to interaction between the sensor and
the sensed phenomenon. In the context of cryobi-
ology, this interaction results in heat conduction
by sensors and instrumentation, which either ele-
vate or decrease the temperature at the point of
measurement [17,18].

Mathematical formulation of uncertainty

Analysis of uncertainty is required in order to
evaluate the quality of experimental data, estimate
the propagation of measurement uncertainties into
a mathematical solution, or to evaluate the quality
of empirical correlations. Techniques for evaluat-
ing the quality of experimental data are widely
available in the literature, and are beyond the
scope of the current report. A formulation for es-
timating the propagation of measurement uncer-
tainties into a mathematical solution is presented
below. Following is an expansion of the formula-
tion for empirical correlations.
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Uncertainty in mathematical simulations of bioheat
transfer

Three elements are required in order to simulate
heat transfer in a specific problem: (i) a thermal
model of heat transfer, most commonly presented
in the form of a differential equation (integral and
lumped formulations are well-established alterna-
tives); (ii) a numerical technique for translating the
thermal model into a numerical scheme; and (iii) a
list of numerical values for all the thermal model
parameters, as listed in the introduction.

Modeling of a physical problem with mathe-
matical equations is associated with some level of
uncertainty. For example, there were at least five
generations of modeling of bioheat transfer [3,5].
After the first model, widely known as “the clas-
sical bioheat equation” [14], new models were of-
fered to decrease the level of model uncertainty.
Comparison of uncertainty between different
models can only be done based on observations
made on a specifically designed experimental setup
[3,5], which is beyond the scope of the current
report.

Translating the physical model into a numerical
solution is also associated with some level of un-
certainty. In broad terms, this uncertainty results
from numerical discretization of the mathematical
model, stability and convergence of the solution,
and round off errors in computer calculations.
Software compilers and computer hardware can
also contribute to uncertainty in mathematical
simulations. Analysis of uncertainty in numerical
schemes are widely available in the literature [2],
and are routinely presented with reports on new
numerical schemes. Uncertainty analysis of spe-
cific numerical techniques is beyond the aims of
the current report. Nevertheless, the discussion
section of the current report includes a comparison
of uncertainty due to numerical simulations with
uncertainty due to propagation of measurement
uncertainties into a mathematical solution.

Consistent with the above arguments, it is as-
sumed in the current report that the thermal model
and the numerical scheme are established. In
general, the solution for the temperature distribu-
tion at a specific time can be presented as a func-
tion of all of the model parameters:

T=f(}71’p2a"'pia~--7pn)
:f(kvcaL7qmet,Wa Tb)a (1)

where T is the temperature solution, f'is a function,
p; is a representative parameter, and 7 is the total
number of relevant model parameters. For dem-
onstration purposes, the following set of relevant
parameters is assumed (also included in Eq. (1)): k
is the thermal conductivity, C is the volumetric
specific heat, L is the latent heat of phase transi-
tion, gme is the metabolic heat generation, w is the
blood perfusion rate, and T; is the blood temper-
ature.

The value of each parameter is assumed to be
independently associated with some uncertainty
interval 8. This uncertainty interval is frequently
reported in scientific reports on experimental
work, and is assumed to be known when the heat
transfer problem is solved. The only unknown
uncertainty is that of the calculated temperature
distribution:

Ti5T=f(}71:|:5p1,p2i5p2,...,

pi :l: 5171'7 cee 7pn :t 5p")
= f(k + 6k,C +6C,L % 5L,
Gmet + 5qmetaw + 5W7 Tb + 5Tb) (2)

Estimation of the level of uncertainty in tempera-
ture, 67, is the motivation for developing the
current formulation. Assuming that each ¢ repre-
sents a small interval, a Taylor expansion series of
a first order can be written for the temperature:

Ti5T=f+Z<:|:%5p,-)
i=1
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When the solution for T is linearly dependent on
pi» Eq. (3) holds, even when ¢ is not small. In the
case when the uncertainty interval Jdp; is of the
same order as of property p;, and when T is not
linearly dependent on p;, a higher order Taylor
expansion is required than that presented in Eq.
(3). On the other hand, estimating the uncertainty
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in temperature when Jdp; is of the same order as of
p; requires further discussion and is addressed be-
low. Since T and f are identical, Eq. (3) can be
reduced to:

n af
+6T = ( + = 5p,-)
i:zl Op;
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=g okt 5pdC oLty — et

of of

i%(miﬁ‘m' 4)
Since each term in Eq. (4) can have either a minus
or a plus sign, accounting for the combined effect
of all of these uncertainties may not be obvious.
To calculate the maximum possible uncertainty in
temperature, one may take the worst case scenario,
where all signs are identical. An alternative way to
estimate the magnitude of 67 in Eq. (4), is based
on a statistical approach [9]. For this purpose,
assume that: (i) the probability of the real value of
p: to be within a range of +dp;, centered around its
estimated value, is known; (ii) the probability
distribution of uncertainty is similar for all pa-
rameters (most frequently—normal probability dis-
tribution, addressed below); and (iii) all the
parameters, p;, are independent of each other.
Under these assumptions, it can be shown that 6T
has a probability distribution similar to the un-
certainty probability distribution of all of the
primitive parameters, when 67 is calculated as
follows [9]:

Eq. (5) is known as the rule of the square root of
the sum of the square errors, and is often used to
analyze uncertainty in experimental systems. To
the best of this author’s knowledge, Eq. (5) has
never before been used to analyze uncertainty in
mathematical solutions of bioheat transfer.
Gauss-Laplace normal probability distribution is
most frequently observed in engineering measure-
ments [9]. For normal distribution, the direct in-
terpretation of the standard deviation, o, is that
68.2% of all possible values of p; will fall within the

+o interval, centered on the average value. Simi-
larly, 95.5% of all possible values of p; will fall
within the +2¢ interval, centered on the average
value. For any engineering application, o inter-
val is not good enough, and a wider interval must
be employed to express greater confidence, where
the probability that an individual measurement
will fall outside of the uncertainty interval is typ-
ically 1:20 (corresponds to 1.960). The value of
in reports on experimental work is typically o.
Normal probability distribution of uncertainties is
assumed for all parameters in the current report,
and 0 is assumed to be 2¢.

While Egs. (1)-(5) present a well-established
approach of uncertainty formulation, the out-
standing question is how to incorporate this for-
mulation into a numerical solution of a bioheat
transfer problem. For the purpose of discussion, it is
assumed that heat transfer in biological tissues can
be modeled by the classical bioheat equation [14]:

or
pazv-(kVT)-i-wab(Tb—T)+qmet) (6)

where ¢ is time. It is further assumed that a nu-
merical solution for Eq. (6) is available.

The solution of Eq. (6) is a transient temperature
distribution. The temperature solution at a specific
location in space and at a specific point in time is:

TOET(x17x27x37t) zf(PlaP2>~~vPi7~--aPn)> (7)

where xi, x,, and x; are spatial coordinates and
where average parameter values are used to gen-
erate the solution. Let another solution be ob-
tained at the same location and time, using average
values for all parameters with only one exception—
the value of parameter i is taken as p; + dp;. The
second solution is defined as:

I;' = T(xlyxZax37t)
= f(pi,p2,- s Di +0Diy ..., Dn)- (8)

Eq. (8) represents a series of n solutions, each with
the variation of a different model parameter.

The partial derivatives in Eq. (5) can readily be
obtained by:

%5 QE_TO
6p,- Pi = Ap,

0p; = [T = Tolaysp = AT 09)
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Note that, for simplicity, Ap, was chosen to be
equal to dp; in the right two terms of Eq. (9).
Thus far the formulation has been presented for
uncertainty in temperature, however, the solution
in some bioheat transfer problem includes other
parameters, such as interface location, and heat
fluxes along specific boundaries. The mathematical
treatment of uncertainty in these parameters of
solution is identical to the uncertainty formulation
for temperature, when the symbol T in Egs. (1)—(5)
and Eqgs. (7)—(9) is replaced with the symbol rep-
resenting the relevant parameter of the solution.

Uncertainty in experimental correlations

An experimental correlation is a mathematical
description of a physical phenomenon based on
experimental observations, and not on a theoreti-
cal model. A well-known empirical correlation in
cryobiology is the relationship between the cooling
rate during freezing and cell destruction [12]. A
well-known empirical correlation in cryosurgery is
the lethal temperature value for different organs,
where the term “lethal temperature” refers to a
temperature threshold below which maximum cell
destruction is achieved [8]. Identifying the value of
the lethal temperature, for example, is performed
by comparing temperature measurements with
histo-pathologic observations. However, since
neither the lethal temperature value nor its loca-
tion at the end of freezing are known a priori, a
mathematical solution is required to correlate
temperature at discrete points of measurement
with the continuous temperature distribution. One
of the objectives of the current report is to offer
a systematic technique to estimate the uncer-
tainty associated with estimations of the lethal
temperature.

Uncertainty analysis of an empirical correlation
can follow the rule of the square root of the sum
of the square errors, Eq. (5), where the model
parameters also include sensors in the system. The
process of uncertainty analysis in this case follows
the same procedure described in Eqs. (1)—(9). Ex-
tending the example presented in Eq. (4), and as-
suming that comparison of experimental data with
computer simulations also includes uncertainty
in temperature sensor localization and hardware,

the uncertainty in the computed temperature
becomes:

+0T = :i:afék i of 5Ci ZJ;
af of of
:l:%éqmetia ow iaTbéTb
of of A
gt dn e on koL, (10)

where T, is an experimentally measured tempera-
ture used as an input for the mathematical solu-
tion, 07, is temperature uncertainty due to
hardware, and Jx; is uncertainty in location of
analysis. A numerical example for experimental
correlation is given in the discussion section.

Solution parameters

Thermophysical properties of biomaterials at
the normal body temperature range are widely
available in the literature [4]. However, data on
thermophysical properties of biomaterials at
cryogenic temperatures is very limited. In the ab-
sence of more specific knowledge, and as a first
order approximation, thermophysical properties
of pure ice are typically assumed for biomaterial.
Typical ranges for the most common solution
parameters are presented below. This presentation
is provided to develop a sense of the corresponding
uncertainty range, and to prepare the grounds for
the numerical examples given below. However, by
no means is this presentation meant to cover all
available experimental data in detail.

Thermal conductivity. Thermal conductivity of
pure ice can be approximated as [20]:

ko

"
™’

(11)
where m and k, are constants; for pure ice:
m=1235 and k =2135W/mK'"™", and for
blood: m = 1.15 and k = 1005W/mK'™". Ther-
mal conductivity range for pure ice, at some se-
lected temperatures is presented in Fig. 1(a),
compiled from eight experimental reports reviewed
by Fukusako [7] and Rabin [20]. In the absence of
uncertainty analysis in those early experimental



114

Y. Rabin | Cryobiology 46 (2003) 109-120

T T
100 15% 100
] ] Y]
g 150 12.9% S 150
= E
g ] 8
o o
£ £
& 2004 (a) 8 200
250 Maximal Range = -/+ 14.4% 250
1 | 1

w

i
Maximal Range =
-+ 13%

T T T T T
Constant Value
) 1deal Triangular i 1
""""" 1°C/min i
“=*= $°C/min i

""" 20°C/min

—
=3
T

w
T

1
Normalized Effective Specific Heat

Pid 7

0 2 4 6 8 0
Thermal Conductivity of Ice, W/m-K

0.5

1

Perfused cat brain,

white matter, 37C
Nonperfused cat brain,}
white matter, 37C

26 =30%

l 20 = 22%‘/ Average

Nonperfused cat brain,} <20

gray matter, 37C

20 =56% "ZGﬂ ]
J ]

Perfused rat I — 190,
kidney, 37C 2o=12%
Perfused rat — 110
flank, 37C om% @)
Fresh bovine
20 =18%

muscle, 23C SE- e ° L ° .

0 0.5 1 1.5 2 2.5 3

Thermal Diffusivity, a x10” m%s

0
250 255 260 265

Temperature, K

1.5 2

(e 1.

0 2 4 6 8
Blood Flow in the Forearm. ml blood/ml tissue - sec

10 12

Fig. 1. Thermophysical properties and blood perfusion rate: (a) thermal conductivity range for pure ice, compiled from eight ex-
perimental reports reviewed by Fukusako [7] and Rabin [20]; (b) specific heat range of pure ice, compiled from six experimental reports
reviewed by Fukusako [7]; (c) normalized effective specific heat compiled from experimental work on PBS by Smith et al. [24]; (d)
thermal diffusivity distribution of biomaterials, measured by Newman and Lele [13]; and (¢) blood flow in the forearm, compiled from

experimental reports reviewed by Altman and Dittmer [1].

reports, the range in Fig. 1(a) is based on extreme
values found in the literature and not on a specific
uncertainty analysis.

Specific heat. Based on experimental observa-
tions [7], specific heat of pure ice can be approxi-
mated as:

C=0.1854+0.689 x 10> x T MJ/m’K;
273K > T > 90K,
C=0895+102xT MIJ/m*K;
90K > T > 40K.

(12)

The specific heat range for pure ice at some se-
lected temperatures, is presented in Fig. 1(b),
compiled from six experimental reports reviewed
by Fukusako [7]. Similar to the presentation in
Fig. 1(a), and in the absence of uncertainty anal-
ysis in those early experimental reports, the range
in Fig. 1(b) is based on extreme values found in the
literature. The specific heat of biomaterials in the
frozen state, close to the lower boundary of phase

transition (i.e., —22 °C), is typically in the range of
1.8 to 2MJ/m*K [4,16].

Latent heat. Latent heat of soft biological tis-
sues is typically in the range of 250-333 MJ/m?
[10,24], where the upper boundary is the latent
heat value of pure water. The latent heat is the
enthalpy change of the material as a result of
phase transition. In biological tissues, phase tran-
sition occurs over a relatively wide temperature
range of up to 22°C (assuming that biological
solutions can be first order approximated as an
NaCl solution). For the purpose of mathematical
simulations, it is very convenient to substitute the
intrinsic property of latent heat with an effective
property of specific heat, which is known as the
“enthalpy approach.” The effective specific heat is
chosen so that the integral of the effective specific
heat over temperature, within the boundaries of
phase transition, is equal to the value of the latent
heat. The functional behavior of the latent heat
can be chosen based on experimental observations,
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or arbitrarily, as long as the latent heat value is
preserved through the definition of the effective
specific heat. Nonetheless, the mathematical solu-
tion is typically not sensitive to the choice of the
functional behavior of the effective specific heat
[15]. In experiments on phosphor-buffered solu-
tions (PBS), Smith et al. [24] showed that the latent
heat is strongly dependent on the cooling rate, a
typically overlooked phenomenon. Fig. 1(c) pre-
sents two possible choices of the effective specific
heat: (i) uniformly distributed value and (ii) an
ideal triangular shape [19]. The effective specific
heat scale is normalized with respect to the uni-
formly distributed effective specific heat. Also
presented in Fig. 1(c) is the normalized effective
specific heat of PBS, at various cooling rates, as
compiled from Smith et al. [24]. A latent heat value
250 MJ/m? + 2% has been reported for all cooling
rates by Smith et al. [24].

Thermal diffusivity: The thermal diffusivity of
biomaterials at normal body temperatures is pre-
sented in Fig. 1(d) [13]. Reports on thermophysical
properties of biomaterials at normal body tem-
perature are comprehensive [4]. It can clearly be
seen that the uncertainty range of thermal diffu-
sivity may be very significant. In general, thermal
conductivity and specific heat show similar un-
certainty intervals, where thermal diffusivity is the
ratio of the former to the latter. The thermal
conductivity range of soft biological tissues (ex-
cluding fat) in normal body temperatures is typi-
cally in the range 0.39-0.58 W/m K, while specific
heat is typically in the range 3-4MJ/m*K [4].
Measurements of thermal conductivity and ther-
mal diffusivity can be significantly affected by the
rate of blood perfusion in the area of the mea-
surements [25].

Blood perfusion: A comprehensive review of
blood flow rates is given by Altman and Dittmer
[1]. For example, Fig. 1(e) shows the range of
possible average blood flow rate in the human
forearm. The specific technique of measurement is
based on immersing the limb in a water bath,
momentarily blocking the central vein, and mea-
suring the change of the water level in the bath.
This measurement is translated into a value of the
total flow rate of blood, which causes the change in
water level. Fig. 1(e) offers an interesting oppor-

tunity to identify the dependency of blood tem-
perature on the surrounding temperature (water in
this case). More detail about this relationship can
be found in [22]. Fig. 1(e) represents the typically
high uncertainty associated with blood flow rate.
Moreover, it is predicted that that the maximal
possible blood flow rate in internal organs can far
exceed the values shown in Fig. 1(e) by an order of
magnitude. It has been suggested by Shitzer [22]
that the maximum possible blood flow can yield a
heating effect of 40kW/m? K, where the latter is
defined as the product of the blood flow rate and
its volumetric specific heat (w,Cy, in Eq. (6)).

Results and discussion

For the purpose of discussion, a typical nu-
merical example of cryosurgery is given. The
mathematical solution is of a 1D heat transfer
problem around a cylindrical cryoprobe. The di-
ameter of the cryoprobe is 1.5mm. The cooling
protocol is typical to a Joule-Thomson cryoprobe
using Argon gas: cooling from 310K (37°C) to
128 K (-=145°C) in 30 s, and a constant temperature
of 128 K thereafter [21]. Other solution parameters
are listed in Table 1. Thermal conductivity of blood
is assumed for soft tissues in the frozen state, an
average thermal conductivity value of biomaterials
is assumed in the unfrozen state, and a linear de-
pendency of thermal conductivity in temperature is
assumed in the phase transition range. Linear
temperature dependency is assumed for specific
heat in the cryogenic temperature range, starting
from zero at absolute zero temperature and
reaching a value of 1.9MJ/m3K at the lower
boundary of phase transition. A uniform effective
specific heat is assumed in the phase transition
temperature range, related to an average latent
heat of 285 MJ/m®. An average specific heat value is
assumed in the unfrozen region. The blood perfu-
sion rate is typically the model parameter with the
highest uncertainty in bioheat transfer simulations.
One half of the maximum value is assumed as an
average value with an uncertainty level of 100%.
Clearly this is a large uncertainty interval, and the
formulation presented above is valid only if at least
one of the following conditions is met: (i) the effect
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Table 1
Model parameters used for computer simulations

Parameter Value

Uncertainty range (%)

Phase transition temperature range
Thermal conductivity, W/mK

0.485,

Specific heat, MJ/m* K

12.95,

3.5,

Blood heating effect, kW/m?* K wpCy = 20

{7‘57>< 103 x T, T<T,
C =

I;=251Kto7,=273K —

1005 x T-"15, T<T, 20
k=4¢16184+0.0575xT, T;<T<T,,
I.<T
15
I <T<T,
I.<T
100

of uncertainty in blood perfusion does not over-
whelm the effects of other sources of uncertainty, or
(ii) the uncertainty of the mathematical solution is
linearly dependent on the uncertainty in blood
perfusion. All numerical work in this study is
based on the numerical scheme presented by
Rabin and Shitzer [19] for cryosurgery simulations,
which is based on a general numerical approach by
Rabin and Korin [15].

The results of this numerical example are shown
in Fig. 2. From Fig. 2(b) it can be seen that during
the 10min of simulation, the level of uncertainty
does not change significantly with time in the
frozen region. In the frozen region, uncertainty in
temperature increases almost linearly with tem-
perature, from 0 to 7K at the lower boundary of
phase transition temperature range. It can further
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I
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be seen that the maximal uncertainty in the un-
frozen region is found at the upper boundary of
the phase transition temperature range. The level
of uncertainty in the unfrozen region increases
almost linearly with time, from 12.2K after 1 min
(not shown in the figure), to 17K after 10 min.
Uncertainty within the phase transition tempera-
ture range is bounded by the maximum uncer-
tainty values in the frozen and unfrozen regions.
Fig. 3 provides insight on the effect of each
model parameter on the overall level of uncer-
tainty. In Fig. 3, AT; represents uncertainty in
temperature due to uncertainty in model parame-
ter i (the right term of Eq. (9)). It can be seen that
the maximum value of AT, increases from 9.8 K
after 1 min of freezing, to 10.5K after 10 min of
freezing. At the same time, the maximum value of
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Fig. 2. Mathematical solution of temperature distribution around a cylindrical cryosurgical probe (a), and the corresponding esti-

mation of uncertainty (b).
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Fig. 3. Uncertainty in temperature at (a) 1 min, (b) S5min, and (c) 10 min from the beginning of freezing. AT; represents the absolute
temperature difference between the solution based on average properties, and a solution based on a variation in property i only. The

overall uncertainty is calculated using Eq. (5).

AT, in the frozen region decreases from 6 to 4.2 K,
respectively. It can be seen that the maximum va-
lue of AT decreases from 8.8 K after 1 min of
freezing, to 6.2K after 10min of freezing. At the
same time, the maximal value of AT¢ in the frozen
region decreases from 3.6 to 2.8 K, respectively.
The maximum value of AT, increases almost lin-
early with time, from a value of 3K after 1 min of
freezing, to a value of 13.6K after 10min of
freezing. In fact, the linear increase in the maxi-
mum uncertainty value in Fig. 2(b) is mainly at-
tributed to the linear increase in AT,. The
maximum value of AT, in the frozen region also

increases almost linearly with time, from a value of
0.8 K after 1 min of freezing, to a value of 4.7K
after 10 min of freezing. The observation that the
uncertainty in temperature is linearly dependent
on the uncertainty in blood perfusion is consistent
with the underlying assumptions of the mathe-
matical formulation presented above. It can be
seen from Fig. 3 that an extremely high uncer-
tainty value of blood perfusion of 100%, leads to
as much as 7.5% of uncertainty in the calculated
temperature (13.6 K divided by the maximal tem-
perature range of 128 and 310K, and multiplied
by 100).
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For the purpose of discussion, the numerical
example is now modified to include experimental
observations. For this purpose, the following ad-
ditional assumptions are made: (i) the purpose of
the numerical simulation is to correlate the tem-
perature distribution with histo-pathological find-
ings, seeking the so-called lethal temperature; (ii)
the experimental setup can be accurately modeled
using the previous numerical example, i.e., ID in a
cylindrical geometry; (iii) the pathologist who an-
alyzed the histology cross-sections identified a well
defined edge of cryodestruction region at a radius
R, with an uncertainty in measurements of +0.5
mm; and (iv) the computer simulation predicts
228 K (or, —45°C) at the exact same location, R. In
other words, the —45 °C isotherm appears to be the
lethal temperature threshold in the hypothetical
experiment. Fig. 4 presents the uncertainty in es-
timation of the lethal temperature value for the
location identified by the pathologist, where R is a
the studied parameter. The radius R ranges from
2.4 to 8.4mm in Fig. 4, which corresponds to the
correlated location of the 228 K isotherm, from
30s to 10 min of freezing, respectively. In the latter
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Fig. 4. Uncertainty in estimation of the lethal temperature
value around a predicted average value of —45°C (228K) in a
1D case. R is the radial location of an assumed edge of the
cryoinjured region, where the uncertainty associated with R
measurements is 0.5 mm. AT,y represents the overall uncer-
tainty using Eq. (5), while ATy case T€presents the worst case
scenario, by summing the absolute value of all AT, presented in
the figure.

case, the uncertainty in histology measurements is
taken into account as:

of or

in a similar way to the one presented in Eqs. (4)
and (5).

It can be seen from Fig. 4 that the uncertainty in
estimating the lethal temperature at the radius in-
dicated by the pathologist, decreases monotoni-
cally with the increase in radius, from a range of
22.3K after 30s, to a range of 6.1 K after 10 min of
freezing. It can further be seen that all sources
of uncertainty taken into account in this study
have a similar magnitude after 10 min of freezing.
This observation has an impact on experimental
design, where, for example, the lethal temperature
analysis based on a larger frozen region is expected
to be significantly more accurate.

Based on the results shown in Fig. 4, the worst
case scenario can be estimated by the arithmetic
sum of all individual uncertainties A7; (excluding
ATyeran). If follows that the worst case scenario
leads to an uncertainty level which ranges from
31.1K after 30s, to 12.2K after 10 min of freezing.
Note that the uncertainty level based on the worst
case scenario is double the uncertainty level based
on the formulation suggested in the current report
after 10 min. Furthermore, the worst case scenario
approximation shown in Fig. 4 is a conservative
one, and presented here for the purpose of dis-
cussion only. By trial-and-error sensitivity analy-
sis, one may find a set of model parameters leading
to a much more severe worst case scenario than
that presented in Fig. 4, all within the same esti-
mated range of the uncertainty for the individual
model parameters.

The computer simulation is given for a 1D case.
Uncertainty analysis based on a 1D case defines
the lower limit of uncertainty when compared with
the full 3D case. The reason is that temperature
gradients in a 3D case are steeper. It follows that a
similar uncertainty in location of measurements in
the 3D case leads to a higher uncertainty in the
simulated temperature at the location of interest.
Other reasons are associated with difficulties in
measuring the precise location of measurements in
a 3D experimental setup. '
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The mathematical formulation presented above
is suitable for estimation of propagation of ex-
perimental uncertainties into computer simula-
tions, when the functional behavior of each model
parameter is known. However, this formulation is
not suitable for analysis of uncertainty associated
with modeling itself. For example, the current
formulation cannot provide a systematic way to
estimate uncertainty in computer simulation, due
to uncertainty in the functional behavior of the
latent heat. In the course of developing data for
the current report, two functional behaviors of the
latent heat have been considered, the first associ-
ated with a uniformly distributed effective specific
heat, and the second behavior an ideal triangular
shape, as illustrated in Fig. 1(c). Results presented
in Figs. 1-4 are based on a uniformly distributed
effective specific heat. Results based on an ideal
triangular shape showed maximum temperature
differences of less than 0.7K in uncertainty anal-
yses, which is deemed insignificant in the current
study. However, this value of 0.7 K cannot be ta-
ken into account in Eqgs. (1)-(10). This difference in
temperature is likely to be related to numerical
discretization, and not to the functional behavior
of the latent heat [15].

Rabin and Korin [15] have shown that the spe-
cific numerical technique used in the current report
inherently conserves energy. They have also shown
that a typical difference between results of the
current numerical technique and exact solutions of
classical mathematical problems is measured in the
order of 0.1% or less, which is translated to 0.1 °C
or less in the current report. Comparison with
other numerical techniques is also presented there.
The reported study by Rabin and Korin [15] has
been performed more than a decade ago on a 16 bit
machine having an 8 MHz microprocessor and 640
KB of computer memory. Under those conditions,
the numerical simulation had to be pushed to the
limits of stability with a coarse mesh, in order to
obtain results. Numerical results for the current
report were generated on a 32 bit machine having a
1 GHz microprocessor and 512 MB of computer
memory. The new conditions allow for fine mesh
and significantly smaller time intervals than those
required by stability criteria. The current computer
parameters lead to a higher accuracy in numerical

results in orders of magnitude. It is noted that the
numerical technique presented by Rabin and Korin
[15] is a very expensive technique in terms of
computer resources, with a resulting exceptionally
low uncertainty. It .is concluded that the effect of
numerical uncertainty on the mathematical simu-
lation is overwhelmed by the effects of experimental
uncertainty of the model parameters.

Finally, all data presented in this report are
based on a forward numerical formulation of de-
rivatives in f, Eq. (9). Alternatively, the derivative of
fcould be based on a backward numerical formu-
lation. There is no apparent reason why a forward
formulation is superior to a backward formulation,
or vice versa. Either way, similar uncertainty values
are found, as long as either the uncertainty level
of the model parameters is small, or when the re-
sulted uncertainty in temperature is linearly de-
pendent on the uncertainty in the model parameter.

Summary and conclusions

This report presents a concept for estimating
the propagation of measurement uncertainties into
a mathematical solution of bioheat transfer, which
can be considered as an extension of the well-
known concept of the rule of the square root of the
sum of the square errors. Three elements are re-
quired in order to simulate heat transfer in a spe-
cific problem: (i) a thermal model of heat transfer,
most commonly presented in the form of a differ-
ential equation (integral and lumped formulations
are well established alternatives); (ii) a numerical
technique for translating the thermal model into a
numerical scheme; and (iii) a list of numerical
values for all the thermal model parameters, as
listed in the introduction. In this study, it was as-
sumed that the thermal model and the functional
behavior of all model parameters are known. This
study is not dependent on a specific numerical
technique. This report includes a method for the
application of the new concept, which requires »
consecutive numerical solutions, where n is the
number of model parameters associate with a sig-
nificant uncertainty in measurements.

A typical case of cryosurgery was analyzed,
simulating an Argon cryoprobe in a 1D heat
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transfer process. It was found that, in general, the
uncertainty in temperature in the frozen region
increases almost linearly with temperature, up to a
value of 7K after 10 min of simulation. The level
of uncertainty in the unfrozen region increases
almost linearly with time, from 12K after 1 min to
17K after 10 min of freezing. A linear dependency
of the uncertainty in temperature on blood per-
fusion has been identified in the unfrozen region,
which has a minor effect on the calculated tem-
perature in the frozen region.

An advanced numerical example has been con-
sidered, in which computer simulations are used
to estimate the lethal temperature value. It has been
shown that prediction of the lethal temperature of
—45°C (228 K) is likely to be associated with un-
certainty interval ranging from 22.3K after 30s to
6.2K after 10min of freezing, while the frozen
region developed to a diameter of 32 mm. Finally,
the worst case scenario analysis is likely to predict
much higher uncertainty analysis, by at least a
factor of two, after 10 minutes of simulation.

In conclusion, it is highly recommended that the
current technique for uncertainty analysis be used
routinely when presenting computerized results,
whether as a part of theoretical analysis, or in
comparison with experimental data.
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