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Combined Solution of the
Inverse Stefan Problem for
Successive Freezing/Thawing in
Nonideal Biological Tissues

A new combined solution of the one-dimensional inverse Stefan problem in biological
tissues is presented. The tissue is assumed to be a nonideal material in which phase
transition occurs over a temperature range. The solution includes the thermal effects
of blood perfusion and metabolic heat generation. The analysis combines a heat
balance integral solution in the frozen region and a numerical enthalpy-based solution
approach in the unfrozen region. The subregion of phase transition is included in
the unfrozen region. Thermal effects of blood perfusion and metabolic heat generation
are assumed to be temperature dependent and present in the unfrozen region only. An
arbitrary initial condition is assumed that renders the solution useful for cryosurgical
applications employing repeated freezing/thawing cycles. Very good agreement is
obtained between the combined and an exact solution of a similar problem with
constant thermophysical properties and a uniform initial condition. The solution
indicated that blood perfusion does not appreciably affect either the shape of the
temperature forcing function on the cryoprobe or the location and depth of penetration
of the freezing front in peripheral tissues. It does, however, have a major influence
on the freezing/thawing cycle duration, which is most pronounced during the thawing
stage. The cooling rate imposed at the freezing front also has a major inverse effect
on the duration of the freezing/thawing.

Introduction

One of the critical factors in determining the success of a
cryosurgical procedure relates to the control of the cooling rate
during phase change (Mazur, 1963; Orpwood, 1981; Fahy,
1981). It is customary to assume that at very low or, alterna-
tively, at very high cooling rates maximum tissue destruction
is achieved (Farrant, 1971; Miller and Mazur, 1976; Akhtar et
al., 1979; Gage et al., 1985; Augustynowicz and Gage, 1985).
These cooling rates are of the order of a few, or hundreds
of degrees Centigrade per minute, at the two extremes of the
spectrum, respectively (Rubinsky and Onik, 1991).

The thawing rate applied to the tissue at the end of the freez-
ing process also affects the outcome of the cryosurgical proce-
dure. Thus, slow thawing rates may enhance cell destruction
(Miller and Mazur, 1976). Uncontrolled thawing, due to natural
heat exchange with surrounding tissues and the environment,
may be deemed sufficiently slow for this application. Other
experiments demonstrated that under certain circumstances,
high thawing rates may be conducive to tissue destruction, e.g.,
red blood cells (Akhtar et al., 1979). Additional evidence indi-
cates that the extent of damage caused by cryosurgery may be
appreciably enhanced by the application of successive cooling/
thawing cycles to the tissue (Gage et al., 1985; Rand et al.,
1985).

Ordinary heat transfer problems involving change of phase,
in which the boundary conditions are specified at the external,
stationary surface, are usually referred to as ‘‘Stefan problems”’
(Stefan, 1891). Those problems for which the boundary condi-
tions are specified at the moving phase-change front are usually
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termed ‘‘inverse Stefan problems’’. In this group of problems,
the temperature forcing function at the stationary boundary is
one of the sought-after results. The requirement of certain cool-
ing rates at the moving boundary in biological tissues undergo-
ing cryosurgery classifies them as inverse Stefan problems.

Change of phase in biological tissues, which are highly non-
ideal substances in the thermal sense, occurs over a rather wide
temperature range. The upper limit of this range may be between
—0.5°C to —1°C, while the lower limit may be between —5°C
to —8°C (Altman and Dittmer, 1971; Wessling and Blackshear,
1973). This wide range of temperatures excludes the direct
application of existing analytical solutions to inverse Stefan
problems. This is because these solutions were developed for
problems involving pure materials in which phase change oc-
curs at a single, well-defined temperature (Carslaw and Jaeger,
1959; Rubinsky and Shitzer, 1976). The only existing analytical
solution that addresses phase change problems in biological
tissues was developed for a uniform initial temperature in the
tissue (Rabin and Shitzer, 1995). It thus does not permit the
consideration of successive multiple freezing/thawing cycles.
Moreover, the analyses presented by Rubinsky and Shitzer
(1976) and Rabin and Shitzer (1995) assume constant blood
perfusion and metabolic heat generation rates, which are known
to be temperature dependent. The only approximate analytical
solution (Budman et al., 1995) that treats the biological tissue
as nonideal substances subjected to arbitrary initial conditions,
disregards the thermal effects of either blood perfusion or meta-
bolic heat generation.

In this article a combined solution to the one-dimensional,
inverse Stefan problem in biological tissues is presented in
Cartesian coordinates. The solution combines an approximate
analytical approach in the frozen region with a numerical analy-
sis of the unfrozen region. In both regions the solutions are
based on integral methods. In the frozen region the thermophysi-
cal properties are constant and the temperature distribution is
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derived from energy conservation considerations in the entire
region (Goodman, 1958; Voller, 1986). In the unfrozen region
the solution is calculated numerically according to a tempera-
ture-dependent specific heat, which is defined using the enthalpy
approach (also known as the ‘‘weak solution’’; Shamsundar and
Sparrow, 1975). The biological tissue is treated as a nonideal
substance in which change of phase occurs over a given temper-
ature range. The solution incorporates the thermal effects of
blood perfusion and metabolic heat generation, both of which
are assumed to be temperature dependent in the unfrozen region.
The solution is developed for any given arbitrary initial tempera-
ture distribution.

The combined solution is rather general in nature and can be
applied to solving nonbiological problems as well. This is done
by simply setting the terms representing blood perfusion and
metabolic heat generation to zero. Examples to the wide class
of problems that can thus be analyzed are the determination of
optimal cooling rates in the frozen food industry, prevention of
thermal stresses in metal solidification, etc.

Problem Definition

For the purpose of the combined solution, let the fully
frozen region be defined by the index f and the rest of the
medium by index u. This implies that both the unfrozen and
the phase transition regions, are grouped into a single subre-
gion in the analysis. As a consequence, a single freezing
front, s, is defined that represents the lower limit of the tem-
perature range over which phase change occurs, T,,. This
front actually separates the fully frozen region from the rest
of the medium. It, thus, also separates the region in which
the approximate analytical solution is applied from that which
is analyzed numerically.

The following additional assumptions are made:

(a) The problem is one dimensional and semi-infinite.

(b) The thermal conductivity is a steplike function across
the freezing front, possessing two constant, but different values,
Fig. 1.

(¢) The volumetric specific heat is temperature dependent
in the unfrozen region, u, and possesses a constant value in the
frozen region, f, Fig. 1. In the phase transition subregion, this
property is taken as an effective one, which includes the latent
heat of phase change (Goodman, 1958).

(d) Metabolic heat generation is temperature dependent in
the unfrozen region, and is absent in the frozen region, Fig. 1.

(e) Blood perfusion is temperature dependent in the un-
frozen region, and is absent in the frozen region, Fig. 1.

(f) Blood temperature is constant in time and uniform in
the arteries supplying the tissue. This assumption is particularly
applicable in peripheral tissues.

Nomenclature

Region f Region u
(frozen) (transition + unfrozen)
i€
k
R
&
&
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Fig. 1 Schematic representation of the assumed temperature depen-
dence of thermal and thermophysiological properties

(g) The initial temperature is a known arbitrary func-
tion.

Figure 1 represents the schematic behavior of the various
properties listed above. However, the functional behavior of
these properties needs to be defined for computational pur-
poses. The properties are assumed to be dependent on temper-
ature as follows: Metabolic heat generation rate is represented
by the Q10 exponential function (Eberhart, 1985). Blood
perfusion is assumed to vary linearly from a constant value
at normal tissue temperature down to zero at the upper tem-
perature limit of phase transition. Volumetric specific heat is
composed of two linear segments, which intersect at the peak
temperature of the phase transition region. The slopes of the
linear segments are chosen such that the integral of the spe-
cific heat over the phase transition temperature range equals
the sum of the latent plus sensible heats (Comini and del
Giudice, 1976; Rabin and Shitzer, 1995). Outside the phase-
change region the volumetric specific heat is assumed to be
constant at different values. Values used in this study are
listed in Table 1.

Analysis

It is customary to assume that in those biological tissues
characterized by relatively low blood perfusion rates and a dense
distribution of capillary vessels, e.g., peripheral tissues, the heat
balance in the unfrozen region is given by the bio-heat equation
(Pennes, 1948):

C = volumetric specific heat, J/m?-°C
H = cooling rate, °C/s
k = thermal conductivity, W/m-°C

1/s
x = coordinate, m

w = blood perfusion parameter, Eq. (6),

{ = total enthalpy per unit area of the
frozen region, Eq. (20), J/m?

n = node number @ = thermal diffusivity, m*/s Subscripts
Gmee = metabolic heat generation rate, B = nondimensional interface velocity in 0 = initial
W/m? the numerical solution, Eq. (13) b = blood
g = metabolic heat generation parame- <y = nondimensional blood perfusion in f = frozen
ter, Eq. (7), °C/s the numerical solution, Eq. (14) i = nodes counter

s = phase-change interface location, m
s = phase-change interface velocity,
m/s
t = time, s
T = temperature, °C
w, = volumetric blood perfusion rate,

(15)

N\ = nondimensional thermal diffusivity
in the numerical solution, Eq. (12)
1 = nondimensional metabolic heat gen-
eration in the numerical solution, Eq.

¢ = transformed coordinate, Eq. (5), m
1/s @ = constant in the temperature distribu-

met = metabolic
ml = upper limit of phase transition
temperature range
mf = lower limit of phase transition
temperature range
p = time counter
u = unfrozen

tion in the frozen region, 1/m
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Table 1 Typical thermophysiological properties of biological tissues in
peripheral areas

Uniform initial temperature 37°C

Blood temperature 370C

Upper phase change temperature -1oC

Peak phase change temperature -3oC

Lower phase charge temperature -8oC

Thermal conductivity in the unfrozen region 0.5 W/m-°C

Thermal conductivity in the frozen region 2.0 W/m-°C

Volumetric specific heat in the unfrozen region 3.6 MJ/m3-°C

Volumetric specific heat in the frozen region 1.8 MJ/m3-oC

Latent heat of freezing 233.4 MJ/m3

Volumetric specfic heat source of the blood 0 - 25 kW/m3-°C

2

Cugzk“g%+wbcb(Tb-T)+Qmel s=x<® (1)

When the interface location, s, is known, the heat transfer pro-
cess in this region is well defined mathematically by specifying
temperature boundary conditions at the freezing front and at
infinity, respectively:

T(s,t) =T, (2a)
T(o,t) =T. (2b)

and by defining an initial condition:
T(x,0) =Ty(x) s=x=o (2¢)

It is, thus, possible to obtain a mathematical solution for the
temperature distribution in the unfrozen region independent of
the temperature distribution in the adjacent frozen region.

The location of the freezing front may be determined by
applying Stefan’s condition of a constant cooling rate at this
front:

or (s,t) =H,

o 3)

where the *‘+’’ sign indicates the unfrozen region.

An additional condition is necessary to specify the initial
location of the freezing front. In the present analysis, freezing
occurs over a range of temperatures. Thus, two distinct fronts
may be identified: the temperature front, 7,,, at which the
first ice crystals begin to form and the second, T,;, behind
which the freezing process is fully completed. This second
front is defined here as the ‘‘freezing front.”” The simplest
case, insofar as the initial location of this freezing front is
concerned, is the one for which no fully frozen regions exist
initially in the medium. This condition is expressed mathe-
matically by:

s(0)=0 4)

For a general initial condition and temperature-dependent

thermophysical properties, the temperature distribution and
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the location of the freezing front may be calculated by numer-
ical techniques only. The numerical solution is developed in
a coordinate system, the origin of which tracks the freezing
front:

E=x—3 (5)
For convenience, additional parameters are defined by:

- _ WGy

= 6

v=c (6)
~ qmet

= 7

q C. (7

¢ n=Tkx1n-T, (8)

Application of Egs. (5) — (8) transforms the governing equation
and boundary and initial conditions to:

Z—Z=aug—g+s-g%—w+qu 0=¢=o0 (9)
0, 0)=T,—-T, (10a)

T(», 1) =T. - T, (10b)

T(& 0) = To(x) = T, (10¢)

where in Eq. (10c¢) it is tacitly assumed that initially there does
not exist a frozen region immediately adjacent to the interface
with the cryoprobe. It is noted that the proposed solution does
not exclude the existence of frozen regions inside the medium
away from the outer interface. However, in cryosurgical appli-
cations, and for obtaining maximal tissue destruction, the thaw-
ing of the frozen tissue should be complete before the next
freezing cycle is initiated.

In the transformed coordinate system &, Stefan’s condi-
tion of a constant cooling rate on the freezing front is ex-
pressed by:

LOT|*
—§ =

o€ (0,1) = H,

(11)

It follows from this condition that at a quasi-steady state,
wherein the temperature gradient on the freezing front is con-
stant in time, the requirement of a constant cooling rate thereon
will impose a constant velocity of the freezing front. For this
condition the present analysis coincides with a previous exact
solution to the problem (Rabin and Shitzer, 1995).

Numerical solution of Eq. (9) in the unfrozen region may be
obtained by a modified Crank—Nicholson technique (Carnahan
et al., 1969). For the purposes of the present analysis this tech-
nique should be adapted to include the thermal effects of meta-
bolic heat generation and blood perfusion. The numerical solu-
tion is performed in terms of the following dimensionless vari-
ables:

gri = SAt (13)
4(A6)

Yo = %w{.’-”z At (14)

W= g2 Ay (15)
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The bio-heat equation, Eq. (9), is rewritten next in terms of
these variables:

—(9T = BT
(12T T — (0T BT,
= (T2 BT + (1= 2 =y T
+ O BT + T (16)

Temperature distribution in the unfrozen region is obtained
by simultaneously solving Eq. (16) for all the numerical grid
points. The n X n coefficient matrix may be made to be tridiago-
nal, by careful selection of the grid points, which is then easily
solvable by Thomas’ algorithm. Since in this problem the ther-
mophysical properties are strongly temperature dependent, par-
ticularly during phase change, a solution by the predictor—cor-
rector method is suggested as follows:

(a) Estimation of the temperature distribution at time level
p by the thermophysical properties and temperature distribution
at time level p — 1;

(b) Assessment of the values of the thermophysical proper-
ties at time level p — 1 by the average temperature distributions
at time levels p — 1 and p; and,

(c) Recalculation of the temperature distribution at time
level p by the values of the thermophysical properties at time
level p — 1 and the temperature distribution at time level p —
1. The resulting numerical scheme is of a second order both in
time and in space and converges unconditionally (Carnahan et
al., 1969).

We now turn to analyzing the frozen region. In this region
the bio-heat equation, Eq. (1), reduces to a simple heat balance
equation due to the absence of blood perfusion and metabolic
activities. Assuming constant and uniform thermophysical prop-
erties, this equation is given by:

aT a°T
— =k
Crar =k o

O=x=s 7
subjected to boundary conditions presenting continuity require-
ments in the temperature and in the heat flux at the freezing
front:

T(s,t) =T (18a)
oT|~ oT|*
_kfg); (s, 1) = —k, o (s, 1) (18b)

Note that a free boundary condition is tacitly assumed on the
cryoprobe surface. It was assumed that no fully frozen region
exists initially in the medium, Eq. (4). Thus:

T(x—0,t=0) =T, (18¢)

The solution of the frozen region is performed by an integral
method (Goodman, 1958; Voller, 1986). The functional behav-
ior of the temperature distribution is assumed first. The coeffi-
cients of this function are calculated next, using the integral
form of Eq. (17), yielding:

k.H,
QOka

T =Ty~ {1 —explp(s —x)]} (19)
which satisfies both the boundary and initial conditions, Egs.
(18a)—(18c¢). To calculate the coefficient ¢ in Eq. (19), the
total enthalpy, ¢, of the frozen region is defined by:
Y= f Ci(T — T,p)dx (20)
0

The change in this property during each time interval, con-
forming to the numerical solution of the unfrozen region, may
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be calculated in two ways. One is through the requirement that
the heat balance equation, Eq. (17), be satisfied in the integral
sense. The second is by substitution of the assumed temperature
distribution in the frozen region, Eq. (19), into Eq. (20). Equat-
ing the results obtained by these operations would yield the
value of the coefficient .

First, Eq. (17) is integrated across the entire frozen region,
0 =x = s, to yield:

¢ oT ° 9T
qu“ L”w”

o

(21

The right-hand side integral can be evaluated explicitly. The
left-hand side integral is handled by substituting the expression
for the total enthalpy, Eq. (20), which yields:

M _

ot (22)

or orT
kf[a (s, 1) — o (0, t)]

Further substitution of the assumed temperature distribution,
Eq. (19), would obtain:

o _ kM, _
Fy i [exp(ps) — 1]

The change in total enthalpy during each time interval, At,
conforming to the numerical solution of the unfrozen region, is

given by:
t+ At alp
ay=[ 2y
(/, t ot !

By assuming a constant velocity of propagation of the freez-
ing front over each time interval, which may still change be-
tween time intervals, the change in total enthalpy is obtained:

Al/l - kuf'lu
S

(23)
(24)

{i exp(pst)[exp(psAt) — 1]—At} (25)

Alternatively, the change in total enthalpy may also be calcu-
lated explicitly by substituting the assumed temperature distri-
bution, Eq. (19), into the definition of this property, Eq. (20),
to yield:

Ay = y(r + Ar) = ¢(1)
_ kH,
sarp

{—:; exp(pst)[exp(psAt)] — s’At} (26)

Equating Eqgs. (25) and (26) obtains the expression for the
coefficient ¢:

p=— (27)

ay

and the temperature distribution in the frozen region is given

by:
k.H, $
T="Tuy— ijz{l—exp[a(s—x)]} (28)

which may be rewritten in terms of the thermophysical proper-
ties in the frozen region by employing Eq. (3), boundary condi-
tion (18b), and by noting that « = k/C:

T=tﬁ—wm{1—em[§ms—n]} (29)

§? z

where H; is the cooling rate as viewed from the frozen region.
It is noted that the velocity of propagation of the freezing
front may change from one time interval to the next. At a quasi-
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steady state, the temperature distribution, given by Eq. (29),
conforms precisely to the exact solution obtained by Rabin
and Shitzer (1995): hence the motivation for expressing the
temperature distribution by Eq. (19). For the general case of a
variable velocity of propagation of the freezing front, the solu-
tion given by Eq. (29) would be an approximate one. However,
due to the application of the enthalpy approach, it may be ex-
pected to yield a relatively good estimate for the location of the
freezing front.

Results and Discussion

Validation of the combined solution developed here is done
by comparing it to an exact solution (Rabin and Shitzer, 1995).
This exact solution is actually a particular case of the combined
solution for a quasi-steady state. It is, additionally, a particular
case in which both the metabolic heating rate and the thermal
effects of blood perfusion are constant in time and uniformly
distributed in the unfrozen region of the tissue.

For comparison purposes, the problem was evaluated for two
limiting cases: one in which there is no blood perfusion and the
other in which perfusion is high in peripheral tissues. These
two cases are defined by specifying the values of the products
of blood perfusion and heat capacity, a quantity that represents
the specific heating rate of blood, at 0 and 10 kW /m?*-°C, respec-
tively. The solution to the inverse Stefan problem for these two
cases is presented for a constant velocity of propagation of the
freezing front of 1.5 mm/min. Thermophysical values are listed
in Table 1. This velocity of propagation of the freezing front
induces cooling rates of 7°C/min and 8°C/min at the freezing
front for the two blood flow rates given above, respectively.

The combined solution is derived for a uniform initial condi-
tion. The boundary condition imposed at the outer interface,
until the freezing front begins to form, is extracted from the
exact solution. The computation was carried out until the tem-
perature at the cryoprobe surface had reached —196°C, which
is the lowest temperature limit for cryosurgical applications
employing liquid nitrogen as the cryofluid. The numerical solu-
tion was performed for 0.1 mm space intervals and 1 s time
intervals.

The analytical solution of the frozen region revealed that,
throughout the entire process, the velocity of propagation of the
freezing front has maintained its initial constant value to within
five significant figures. For this situation the exact and the com-
bined solutions coincide, as noted above. It can, therefore, be
concluded that in the frozen region the integral solution yields
sufficiently accurate predictions.

The unfrozen region, on the other hand, is solved numerically
by the proposed combined solution. Thus, comparison of the
temperature distributions obtained thereof with those of the ex-
act solution, is required for validation. Figure 2 indicates that
the proposed numerical solution produces rather accurate tem-
perature distributions in the unfrozen region. This is further
accentuated by noting that the initial temperature in the unfrozen
region was uniform and, thus, underwent considerable changes
during the process.

The subregion in which the largest deviations between the
two solutions may be expected is the phase-change region. Dur-
ing phase transition, the volumetric specific heat changes appre-
ciably from 1.8 and 3.6 MJ/m?*-°C in the frozen and unfrozen
regions, respectively, to about 67 MJ/m*-°C at the peak phase
transition temperature range (see Fig. 1). Comparison of the
exact and combined solutions in this region is shown in Fig. 3.
It is seen that very good conformity is obtained. The maximal
deviation obtained is smaller than 0.1°C, which represents an
error of less than 0.2 percent compared to the maximal tempera-
ture change in the unfrozen region throughout the entire process.
The *“+* signs in Fig. 3 designate all the grid points of the
numerical solution. As seen, only four to five grid points are
required to reside within the phase-change temperature range
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Fig. 2 Comparison of calculated temperature distributions in the un-
frozen region with an exact solution (Rabin and Shitzer, 1995) for zero
and relatively high blood perfusion rates

for a rather good conformity between the two solutions to be
obtained.

Further validation of this solution was done by comparing
its predictions to a series of in vivo cryoprocedures performed
on the skeletal muscle of rabbits’ hindlimbs. Details are given
by Rabin and Shitzer (1996) and Rabin et al. (1996).

The capabilities of the combined solution in cases of several
repeated freezing/thawing cycles, are demonstrated next. Each
cycle in this demonstration is composed of four stages:

(a) Precooling, in which the temperature of the cryoprobe
changes linearly until the lower temperature limit of phase
change, T,.;, is reached and a completely frozen front is initiated.
(b) Freezing, in which the temperature of the cryoprobe
changes according to the forcing function calculated by the
combined solution. This stage proceeds until the lowest temper-
ature of the boiling cryofluid is reached at the surface of the
cryoprobe (e.g., —196°C for liquid nitrogen).

(¢) Heating, in which the temperature of the cryorpobe
changes linearly until it reaches its initial level, and,

(d) Thawing, in which the temperature of the cryoprobe is
maintained at its initial level. Complete thawing is obtained
when all regions inside the domain have exceeded the upper
temperature limit of phase transition, 7,,.

Stages (a), (c), and (d) are analyzed as ordinary Stefan
problems. The solution for these stages, in the entire domain,
is obtained by a numerical scheme similar to the combined
solution in the unfrozen region, Eq. (16). Since in these stages
there is no freezing front, 5 becomes 0 in the modified equation.
Moreover, it is assumed that all metabolic and blood perfusion
activities do not exist in the frozen regions and thus 7y and
become zero in the frozen region, as well.

Thawing is assumed to occur over the same temperature
range as for freezing. It is recognized that these processes are
governed by different mechanisms, which may result in differ-
ent temperature ranges. However, the analysis is capable of
handling any specified temperature ranges for each stage in the
cryoprocedure. This may slightly affect the calculated location
of the freezing front. It will, however, have essentially no effect
on the duration of the freezing/thawing cycle due to the use of
an effective specific heat function over the entire temperature
range, as discussed above.

Computational capabilities of the solution were demonstrated
for two cases of zero and extremely high blood perfusions,
represented by 0 and 25 kW /m?-°C, respectively. It is assumed,
for demonstration purposes, that complete destruction of blood
vessels occurs by the freezing process. Thus, the solution in
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Fig.3 Comparison of calculated temperature distributions, in the phase
change region, with an exact solution (Rabin and Shitzer, 1995), at the
end of the cooling stage (when the cryoprobe reaches —196°C) for zero
and high blood perfusion rates

the unfrozen region of the second case does not include blood
perfusion in the thawed region. This assumption accentuates
the flexibility of the numerical solution in the unfrozen region.
The following parameters were used in this demonstration:
cryoprobe cooling rate of 40°C/min in stage (a); cooling rates
of 5°C/mm and 10°C/min at the freezing front in stage (b),
which relate to maximal cell destruction (Orpwood, 1981);
cryoprobe heating rate of 50°C/min in stage (c), which is a
reasonable rate for cryoprocedures; and initial temperature of
37°C in stage (d). Stage (b) was terminated when the boiling
temperature of liquid nitrogen, —196°C, had been reached.
Figures 4—6 present results of the first five successive freez-
ing/thawing cycles. It can be seen in Fig. 4 that there is only a
relatively small difference, in the calculated temperature forcing
function at the cryoprobe—tissue interface of stage (»), between
the first and the fifth cycles. Moreover, there are only minor
differences between the two cases considered of zero and ex-
tremely high blood perfusion. The total durations of the cooling
period of stages (a) and (b) in the fifth cycle are shorter by 5
and 9 percent than the first cycle, for the cases of zero and
extremely high blood perfusion in peripheral tissues, respec-
tively. In general, there is an apparent similarity between the
temperature forcing functions for the cases of freezing rates of
5°C/min and 10°C/min. However, the differences between the
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o
S
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0

Fig. 4 Calculated temperature forcing functions at the cryoprobe-tis-
sue interface during the freezing process, for the first and the fifth freez-
ing/thawing cycles for different blood perfusion rates
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Fig. 5 Freezing front location, for the first and the fifth repeated freez-
ing/thawing cycles for different blood perfusion rates and cooling rates.
The “@” signs indicate the end of the freezing stage (b) and the initiation
of the heating stage (c).

temperature forcing functions within each freezing rate decrease
as these cooling rates increase.

It can be seen in Fig. 5 that the freezing front velocity is
almost linear in time during the freezing stage, in both the first
and the fifth cycles. The freezing front location seems to be
weakly dependent on blood perfusion in the first cycle. How-
ever, the freezing front penetrates deeper in the case of no blood
perfusion, during the beginning of the thawing stage, due to
thermal inertia. The maximal depth of freezing in the fifth cycle
is about 7 percent larger than in the first cycle, in all the cases
considered.

Figure 6 presents the calculated durations of the freezing and
thawing stages in each cycle for all the cases considered. The
freezing stage in the first cycle is about 10 percent longer than in
the fifth one for all cases. This is because the microvasculature is
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Fig. 6 Cycle duration and thawing period of the first five successive
freezing/thawing cycles, in cases of no blood perfusion and a relatively
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assumed to be destroyed by freezing in the first cycle (see
above) and since a lower average initial temperature is obtained
in each successive cycle. Actually, the freezing durations in the
third and fifth cycles are almost identical. As can be expected,
the thawing duration is strongly dominated by blood perfusion.
In the case of extremely high blood perfusion, the thawing
durations of the first cycle are about 10 percent shorter than in
the fifth one. Another dominant factor is the cooling rate. It is
seen that the thawing durations in the case of zero blood perfu-
sion are about 38 and 45 percent shorter in the first cycle with
respect to the fifth one, for the cases of freezing rates of 5°C/
min and 10°C/min, respectively. Similar values are obtained for
the freezing stage.

It is noted in Fig. 6 that cycle durations are rather long and,
in certain cases, may well exceed one hour. From a clinical
view point this may be undesirable or even unacceptable. How-
ever, these rather long durations of application are chiefly deter-
mined by the cooling rate required at the freezing front; the
lower the cooling rate, the longer the duration of the freezing/
thawing cycle. The desired cooling rate is determined by biolog-
ical and physical considerations. Thus, cycle durations will de-
pend on this factor, the depth of freezing required, and, to a
somewhat lesser extent, on blood perfusion in the first cycle of
freezing/thawing.

From Figs. 4-6 it can be deduced that there are only minor
differences in the shape of the temperature forcing function and
in the freezing front location, as the number of freeze/thaw
cycles increases. The largest differences are observed between
the first and the second cycles in each case, as is to be expected.
The thermal effect of blood perfusion does not appreciably
affect the forcing function, nor does it affect the freezing front
location. However, it has a major influence on cycle duration,
especially during the thawing stage. The parametric study was
repeated for the case of a physiologically unrealistic specific
heat source of blood of 100 kW/m?-°C, which is used to test
the nature of the mathematical solution. In this case the extent
of penetration of the freezing front is only about 50 percent as
compared to the case of zero blood perfusion.

An additional third case was also investigated, with an ex-
tremely high blood perfusion as in the second case, but under
the assumption of full recovery of the vascular system, i.e., the
blood perfusion returns to its pre-treatment level in the thawed
region. Results of this third case were found to be bound by
the results of these two cases.

Conclusions

This paper presents a combined integral-numerical solution
to the one-dimensional inverse Stefan problem in a semi-infinite
medium. The frozen region was solved by the integral technique
applied to the heat balance equation. A modified Crank—Nichol-
son numerical scheme was used to solve the temperature distri-
bution in the unfrozen region. This scheme, which was based
on the enthalpy method, was adapted to include the thermal
effects of metabolism and blood perfusion.

Very good conformity was obtained between the results of
the present analysis and a previously published exact solution
of the problem. The proposed solution is unique in its ability
to consider the thermal effects of temperature-dependent metab-
olism and blood perfusion. Also, this solution is applicable to
successive freezing/thawing cycles in cryosurgical procedures
derived from its ability to accommodate any arbitrary initial
condition of the problem.

The temperature forcing function at the cryoprobe—tissue
interface, the freezing front location, and the cycling durations
were calculated, using the combined solution in the freezing
stage, and using a complete numerical solution during the pre-
cooling and thawing periods. It was found that the thermal effect
of blood perfusion does not appreciably affect the shape of

152 / Vol. 119, MAY 1997

the temperature forcing function, or the freezing front location.
However, it was found that metabolism and blood perfusion
have major influences on the cycle duration, and especially
during the thawing stage. The cooling rate imposed at the freez-
ing front also has a dominant effect on cycle durations.
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