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The solution, which is based on the enthalpy method, assumes that phase change occurs
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over a temperature range and includes the thermal effects of metabolic heat generation,
blood perfusion, and density changes. As a first stage a quasi-steady-state solution is
derived, defined by uniform velocities of the freezing fronts and thus by constant cooling

rates at those interfaces. Next, the fixed boundary condition leading to the quasi-steady
state is calculated. It is shown that the inverse-Stefan problem may not be solved exactly
for a uniform initial condition, but rather for a very closely approximating exponential
initial condition. Very good agreement is obtained between the new solution and an
earlier one assuming biological tissues to behave as pure materials in which phase
change occurs at a single temperature. A parametric study of the new solution is pre-
sented taking into account property values of biological tissues at low freezing rates
typical of cryosurgical treatments.

Introduction

The freezing response of most biological tissues can be gen-
eralized by a theory known as the ‘‘two-factor hypothesis’” of
freezing damage (Mazur et al., 1972). The recovery of frozen
biological tissue reveals an optimum cooling rate, which sug-
gests this hypothesis. Tissue destruction at low cooling rates is
linked to the ‘‘solution effect’” whereas tissue destruction at
high cooling rates is linked to the formation of intracellular ice
(Mazur, 1963; Fahy, 1981; McGrath 1993). It is generally ac-
cepted that at those widely different cooling rates maximal de-
struction of biological tissues is achievable (Farrant, 1971;
Akhtar et al., 1979; Gage et al., 1985; Miller and Mazur, 1976;
Augustynowicz and Gage, 1985). These cooling rates, of the
order of a few or hundreds of degrees Centigrade per minute,
respectively, may vary among different tissues (Rubinsky and
Onik, 1991).

Freezing at low cooling rates is better suited for cryosurgical
applications as it allows deeper penetration of the cryotreatment.
Therefore, one of the most important criteria for the success of
a cryosurgical treatment is the maintenance of a desired low cool-
ing rate at the freezing front during phase change (Orpwood,
1981).

In typical cryosurgical processes, the cooling rates vary
throughout the tissue. An appropriate analysis of this problem,
termed the Stefan problem, would facilitate the prediction of
these variable cooling rates, and the location of the freezing front,
e.g., Carslaw and Jaeger (1959). In these processes the variation
of the temperature forcing function as effected by the cryoprobe,
is specified as a boundary condition in the solution.

There also exists another family of solutions for phase change
problems known as the inverse-Stefan problems. In this class of
problems the desired cooling rate at the freezing front is the re-
quired boundary condition, whereas the temperature forcing
function, at the interface with the cryoprobe, is calculated by the
analysis. In this paper, we address this class of inverse-Stefan
problems, namely, calculate the temperature forcing function,
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which is required to achieve certain desired cooling rates at the
phase-change front in the tissue.

Phase change in a biological tissue, which is a nonideal ma-
terial, occurs over a relatively wide temperature range. The upper
limit of this range may be between —0.5°C and —1°C, whereas
the lower limit may be between —5°C and —8°C (Altman and
Dittmer, 1971; Wessling and Blackshear, 1973). This range of
temperatures within which phase transition occurs excludes the
application of existing analytic solutions to the inverse-Stefan
problems, which assume phase change to occur at a single tem-
perature (Carslaw and Jaeger, 1959; Rubinsky and Shitzer, 1976;
Alexiades and Solomon, 1993). The only existing approximate
analytic solution by Budman et al. (1993), which treats the bio-
logical tissue as a nonideal material, does not include heating due
to metabolic processes nor does it account for the effects of blood
perfusion. Rubinsky (1989) developed a microscopic scale
model describing the relationship between heat and mass transfer
and the response of the cells and blood vessels. The analysis is
limited to cases without blood perfusion.

This paper presents an exact analytic solution to the inverse-
Stefan problem in a biological tissue. The tissue is treated as a
nonideal substance, freezing over a range of temperatures, which
includes both metabolic heat and blood perfusion effects. The
solution presented is based on the enthalpy method, which as-
sumes that the latent heat of solidification is incorporated into
the specific heat. Initially, the solution to the quasi-steady-state
inverse-Stefan problem is presented. Based on this solution, a
boundary condition that yields this quasi-steady state, is calcu-
lated.

The solution presented is general and is applicable to non-
biological materials by simply setting metabolic heat and blood
perfusion to zero. Applications are numerous, including calcu-
lation of optimal cooling rates in food processing, prevention of
thermal stresses in metal casting processes, etc.

Problem Definition

The peak phase-change temperature T, is defined as that at
which the specific heat function attains a maximal value, Fig. 1.
Enclosing this temperature are two regions undergoing phase
transition: region [1] in which the temperature is below the upper
limit of the phase-change temperature range, T,,; = T < T,y, and
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region [2] in which the temperature is above the lower limit of
the phase-change temperature range, 7, < T < T,,,. All in all,
we identify four regions in the medium: unfrozen, frozen, and
the two regions in the phase transition range. These regions are
separated by three freezing fronts, sy, 5, and s,, defined by the
isotherms 7,5, T,.;, and T,,, respectively, Fig. 1.

It is noted that the division of the domain into four regions and
the definition of freezing front s, is due to mathematical consid-
erations and does not bear any physiological significance. This
division facilitates the inclusion of the variations of the thermo-
physical properties in the solution as assumed in Fig. 1.

The one-dimensional, analytic solution is developed for the
following conditions:

(a) The thermal conductivity is assumed to behave like a
three-step temperature dependent function, Fig. 1. Pre-
vious solutions treated this property as a one-step (Rub-
insky and Shitzer, 1976) or a two-step function (Bud-
man et al., 1993). The present assumption moderates
heat fluxes at the various boundaries and further provides
for a more realistic depiction of the realistic conditions.
The volumetric specific heat is assumed to vary linearly
throughout regions [1] and [2], Fig. 1. According to the
enthalpy method, or the ‘‘weak solution’” (Goodman,
1958; Voller, 1986), the coefficients of the specific heat
function in these regions may be calculated by the
known peak phase-change temperature and the latent
heat.

During phase change there is a volume change, while the
density is assumed constant in each region. This volume
change is included in the volumetric specific heat dis-
cussed in section (b) above.

Blood perfusion in the unfrozen region is constant and
uniform. This condition approximates closely peripheral
tissues, which are supplied by a dense network of cap-
illaries at relatively low blood perfusion rates.
Metabolic heat generation in the unfrozen region is con-
stant and uniform.

The tissue is assumed to be depicted by a semi-infinite,
thermally homogeneous medium.

Initially the temperature is uniform throughout the tissue.

(b)

(c)

(d)

(e)
)
(8

In contrast to the existing analytic solutions of closely related
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Fig. 1 Schematic presentation of the temperature-dependent thermal
conductivity and specific heat functions applied in this study

quasi-steady-state problem is treated first. Subsequently, a forc-
ing function is calculated at the interface between the tissue and
the cryoprobe. A quasi-steady state is defined as a full steady
state in a system of coordinates that follows the three freezing
fronts, Fig. 2. Thus, at this state all freezing fronts advance at a
constant and equal velocity and there is no change in the extent
of the frozen region. It follows that in a quasi-steady state the
cooling rates at the various freezing fronts are constant but may
be different from one front to the other. Moreover, there may be
a difference in the cooling rates on either side of any front due
to the change in the thermophysical properties.

Analysis

It is customary to assume that in biological tissues character-
ized by low blood perfusion supplied by a dense capillary net-
work, as is the case for peripheral tissues, the heat balance is
given by the classical bioheat equation (Pennes, 1948):

roblems (Carslaw and Jaeger, 1959; Rubinsky and Shitzer, ?_T _ ﬁ . _ .
1976; Alexiades and Solomon, 1993, Budman et al. 1995, the Cigr =% gz ¥ WC(To = 1) + G ()
Nomenclature
a = constant defined in Egs. (25) k = thermal conductivity, W/m-°C .
and (27) in regions [1] and L = latent heat, J/m’ Subscripts
[2], respectively, 1/m? ¢ = volumetric heat source, W/m> 0 = initial
b = constant defined in Egs. (26) s = interface location, m 1 = of region [1]
and (28) in regions [1] and t = time, s 2 = of region [2]
[2], respectively, 1/m T = temperature, °C il = slope of a temperature-dependent
C; = volumetric specific heat coef- W, = volumetric blood perfusion per property in region [i]
ficients in region i, J/m3-°C? unit volume of tissue, 1/s i2 = constant of a property in region
for j = 1 and J/m*-°C for j = x = coordinate, m [i1
2 a = thermal diffusivity, m%/s b = blood
C, = volumetric specific heat, J/m>- ¢ = initial condition parameter defined f = frozen
°C in Eq. (18) i,j = indices
D = constant of the solution in the «;; = C;;s/k; = ratio of freezing front I = unfrozen
unfrozen region, Eq. (3), 1/m velocity and thermal diffusivity, met = metabolic
812 = integration constant in Eq. defined in Eq. (11), 1/m-°C for j ml = peak value of specific heat in the
(12), m =1 and 1/m forj = 2 phase transition region
&1, 821 = integration constants in Egs. n = transformed coordinate, m mf = lower phase transition tempera-
(12) and (15), respectively, ¢ = transformed coordinate, m ture boundary
1/m 7 = time required for freezing front ml = upper phase transition tempera-
h = volumetric specific enthalpy, formation, s ture boundary
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Fig.2 Schematic presentation of the various coordinate systems tracing
the freezing fronts

In the present analysis we distinguish between two main
regions in the tissue: frozen and unfrozen. The cooling process
in the unfrozen region in a quasi-steady state is well defined
mathematically by the temperatures specified on its two bound-
aries. Thus, the bioheat equation may be solved for this region,
independent of the other regions. As suggested by Rubinsky and
Shitzer (1976), the temperature distribution in the unfrozen re-
gion is given by:

T, = (Tb + Dt )'[1 —exp(—DE)] + T,y exp(—DE) (2)
Wbe
Do §+ (s2 + 4w, Coalk)'? 3)

2a,

Equations (2) and (3) apply to a coordinate system moving
with isotherm T,,;, Fig. 2. The variable s designates the interface
velocity, which is identical at all moving fronts in a quasy-steady
state.

Once freezing of the tissue is initiated, we assume that both
blood perfusion and all metabolic activities cease. This assump-
tion reduces the bioheat equation to a conventional heat diffusion
equation, which applies in regions [1], [2], and [f], including
the linear dependence of specific heat on the temperature:

CuT; + C, 0T, 9°T;
Li204i 9 1 4
k,* at 3x2 ( )

where the index i can be 1, 2 or f.
Solution of this equation is subject to the following boundary
conditions:

Ti |x=.\'j = ij (5)

aT; |* oT; |~
. —L = —k —< 6
k ox |, 7 ox s (6)

where the index i is as in Eq. (4), and the index j relates to
regions [/], [1], or [2].

Equations (4)— (6) are transformed to the coordinate systems
i, to yield:

0T, CuT; + Cy (0T, .OT;
on? k a T’ an,.) ™
Ti|n,~=0= Tmi (8)
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T,
—k,a—' for (i=1)
9|,
k or, -
i 5 T
i, 0 9L for (i=2.j=1)

J Inj=ng

or (i=f,j=2) (9)

In a quasi-steady state the temperature distribution in the 7,
coordinate system is independent of time. Thus, the time deriv-
ative in Eq. (7) may be omitted and the partial derivatives may
be replaced by ordinary ones to yield:

d’T; dT;
dn? = (ki T; + Kiz)‘d_ni (10)
where:
Cis
Ky = k_I, (11)

Equation (10) is integrated in two steps. The first step involves
the substitution of the derivative dT;/dn; by a dummy variable.
This yields a first-order differential equation the solution of
which is straightforward. In the second step the dummy variable
is replaced by its defining derivative and the resulting equation
is integrated again, to yield:

11

1
T, = o {gn tan I:% (m + glz)] - KlZ} (12)

where g,, and g, are the integration coefficients in region [1]. It
follows from Eq. (12) that k,; # 0 implying that the specific heat
may not be constant in region [1]. Substitution of boundary con-
dition (8) into Eq. (12) yields the functional relationship be-
tween g, and g,;. This leaves only one integration coefficient,
&1, in the expression for T':

1 [g (ki T + Ki2) + g1 tan (gum/2)
1 -

T, =—
"k g1 — (kT + ki2) tan (gym/2)

Klz] (13)

The remaining boundary condition, Eq. (9), is now used to
obtain an implicit expression for coefficient gy;:

qm(
kD\ Ty — Ty — =
t ( i b Wbe>

= kigh sec? [tan"'(————K“TMl ha Klz)] (14)
2k 81

A similar procedure is applied to region [2] for a coordinate
system located on isotherm T,,,. The resulting temperature dis-
tribution in region [2], using boundary condition (8), is given
by:

1
T,=— [8
K21

where g, is given by the implicit expression which was obtained
by substitution of Eq. (9) into Eq. (15):

ki g} kT +
1811 secz[tan" ( 114 mi 12
Kii 81

2 L+
L £ T, [tanh" (———"”T' K”)] (16)

K21 821

The frozen region, [f], is treated next to complete the com-
putation procedure for the quasi-steady state. It is noted that the
specific heat in this region is constant and thus x, = 0. Upon
integration of Eq. (10), using boundary conditions (8) and (9),

(k21 Ty + K22) + g2 tanh (= g21m2/2) —x ]
" g1 + (kniTwi + kn) tanh (—gam/2)
(15)
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Table 1 Typical thermophysical properties of a peripheral biological tis-
sue; data compiled from Chato (1985)

Initial Temperature, °C 37
Blood Temperature, °C 37
Thermal Conductivity in the unfrozen region 0.5
W/m°C

Thermal Conductivity in region [1], W/m°C 1.7
Thermal Conductivity in region [2], W/meC 1.9
Thermal Conductivity in the frozen region, 2.0
W/m°C

Volumetric Specific Heat in the unfrozen 3.6
region, MJ/m3 °C

Volumetric Specific Heat in the frozen region, 1.8
MJ/m3 °C

Latent Heat of solidification, MJ/m3 233.4
Volumetric Specific Heat Source of Blood, 2.5
WpCh, kW/m3 °oC

Metabolic Heat Generation, kW/m3 2.5

an explicit temperature distribution for the frozen region is ob-
tained:

k, g3 T, +
Ty=-" 83 och? [tanh‘l (—Kzl S KZZ)]
kf 2Kf2K21 821

X [1 —exp(kpme)] + T (17)

We now turn to finding the boundary condition, or the forcing
function, at the interface between the cryoprobe and the phase
changing medium. This boundary condition may be visualized
as the temperature variations obtained by an observer moving at
a constant velocity from + in the —x direction relative to the
quasi-steady-state solution. The boundary condition obtained by
this method is precise but is impractical since infinite time is
required to travel from x = ® to x = 0. We, therefore, turn to
seeking an approximate solution to the forcing function at
x=0.

It is first noted that the temperature distribution in the unfrozen
region decays exponentially to a constant value, Fig. 2. We can
now place the observer, who is moving at a constant velocity in
the negative x direction, on point x,. The location of this point
can be selected such that the exponential in Eq. (2) would be of
an arbitrarily small value, e:

€ = exp(—Dxp) (18)

This amounts to replacing the uniform initial condition with
an exponential condition. The maximal difference between these
two conditions appears at the interface between the cryoprobe
and the phase changing medium. The new approximate boundary
condition, at the interface between the cryoprobe and the tissue,
may now be expressed by:

q ‘met

T(0,t) = | T, +
(0, 1) (b iiCo

) [1 — € exp(—Dst)]

+ €T, exp(—Dst) (19)

As discussed above, under quasi-steady state, wherein all
freezing fronts are moving at a constant and identical velocity,
the cooling rates on these fronts would also be invariable. This
condition of fixed cooling rates at the freezing fronts is actually
the desired Stefan’s condition (1891). These cooling rates may
now be evaluated by an inverse transformation from coordinate
system £ back to x:

6T1 aT,

o =75, t)—s (€ )] (20)

23
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Since in the coordinate system £ the medium is in a quasi-
steady state, the cooling rate at the front s,, as viewed from the
unfrozen region, is given by:

orT,

_(S/,t) s_‘(é. 0)_SD<T Tb_

dg
By equating heat fluxes at both sides of freezing front s, the
cooling rate, as viewed from the freezing region [1], is given by:

T, k oT,
ot ky Ot

Similar mathematical derivations may be applied at freezing
fronts s, and s;. This involves differentiation of the temperature
distributions at the origins of the coordinate systems and equating
the heat fluxes on both sides of each front. Since this method
involves an iterative process of calculation of coefficients, an
alternative integral procedure is proposed. This procedure allows
the calculation of the cooling rates at the freezing fronts s, and
sy, based on the cooling rate at front s,, Eq. (21).

We first define a control volume encompassing regions [1] and
[2] in which phase change is occurring. In a quasi-steady state,
the difference between the incoming and outgoing heat fluxes
equals the change in enthalpy in the control volume:

or|* oT|~
<_ kz_"’ X=S,> < kf a

Ox

where the superscripts (+) and (—) indicate calculation by the
unfrozen and frozen regions, respectively. It is noted that the
change in enthalpy inside the control volume due to sensible heat
is about two orders of magnitude smaller than that due to latent
heat. Thus, as a first approximation, the change in enthalpy may
be taken as the latent heat of freezing. With this approximation
and coordinate transformation in Eq. (23), substitution into Eq.
(20) yields the cooling rate as viewed from the frozen region:

qmet
—_— 21
o c,,) (21)

(sls ) (S{, t) (22)

d.
) = (h]ymy — hlm,);f (23)

X=sf

oT|~ . dr ks dT s?
7 = d = _k;d_ _k—(h|x=s,_h|x=sf)
] ey, 2,20 ¢ A€y ks
k, OT|* 2L
4] -5
¢ O, Kk

As noted above, the rate of change of temperature on sy,
viewed from region [2], is equal to the product of the change
given by Eq. (24) and the ratio of thermal conductivities of re-
gion [2] and of the frozen region. Equation (24) reveals that,
with the increase of the freezing front velocity, the cooling rate
in the frozen region would also increase.

Results and Discussion

The present solution is compared to an existing analytic so-
lution to an inverse-Stefan problem in a pure material (Rubinsky
and Shitzer, 1976). In this solution phase change is assumed to
occur at a single temperature at which the thermophysical prop-
erties are assumed to change stepwise. Unlike the present solu-
tion, the previous one assumes that the entire latent heat of freez-
ing is absorbed at the single freezing front. The two solutions are
in complete agreement in the unfrozen region. Therefore, com-

Table 2 Phase-change interface temperatures, in °C, used for the com-
parison of the present solution with an existing one of a pure material
(Rubinsky and Shitzer, 1976)

Y Tmi T
AT, -1.0 -1.05 -1.1
AT, -1.0 -1.5 -2.0
ATy -1.0 -3.0 -5.0
ATy -1.0 -3.0 -8.0
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Fig. 3 Comparison of a solution to an inverse-Stefan problem in a bio-
logical tissue behaving like a pure material (Rubinsky and Shitzer, 1976)
with the present solution of a nonideal biological tissue. Parameter values
are presented in Table 1

parison is carried out in the frozen region and in the regions
undergoing phase change. For comparison purposes we assume
thermophysical properties typical to peripheral biological tissues,
Table 1.

Comparison is presented for four cases differing in the tem-
perature range in which phase change occurs, Table 2 and Fig.
3. The first case depicts a freezing process in pure materials in
which phase change occurs at a single temperature. The second
case depicts a real material that differs only slightly from a pure
material. The third and fourth cases simulate typical biological
materials in which phase change occurs gradually over a range
of temperatures. These latter two cases demonstrate, among other
things, the uncertainty relating to the precise temperatures that
define the phase-change range. Thus, it is common to assume
that peak phase change in a biological medium occurs at —3°C.
The lower temperature bound, on the other hand, is less certain
and ranges between —5°C and —8°C (Altman and Dittmer, 1971;
Wessling and Blackshear, 1973).

Figure 3 shows the similarity in the temperature distributions
in the frozen region for all cases studied. This similarity is re-
tained even in the fourth case wherein an asymmetric specific
heat function was assumed. Practically, all four temperature dis-
tributions may be considered to be identical following adjust-
ments of the different temperature ranges in which phase change
occurs. This similarity of solutions could be expected since the
resulting temperature distributions in the phase-changing range
are functionally dependent on the specific heat. Figure 3 indi-
cates, clearly, that the various cases evaluated by the present
solution conform closer to the existing solution as the phase-
change temperature range is narrowed down.

The functional behavior of the solution coefficients, g,, and
821, is discussed next. These coefficients are obtained, through
an iterative process, by Eqgs. (14) and (16) for regions [1] and
[2], respectively. It is noted that although the solutions, as pre-
sented by Egs. (13) and (15), are straightforward, their actual
computation requires the values of the g;, coefficients. These are
obtainable by a trial and error process. Results for g, are pre-
sented graphically in Fig. 4 by means of the following two co-

efficients:
(26)

It is noted that for fixed values of the coefficient b,, there is a
similarity in the behavior of g,, over a wide range of physiolog-
ically relevant values. At large values of the coefficient a,, values
of g,; converge asymptotically to the same function, and become
independent of b,, Fig. 4.

Coefficients g,, are presented in Fig. 5. Here, too, we define
two new coefficients to facilitate the graphic presentation of g;:

e (85222)]

b, = k3T + k22 (28)

qmet

2
w,C, (23)

k
a, = 2Ky, k_lD(Tml -T, -
1

by = kT + Kp2

KiuTm + Kz
81

_ K2|klg%|

K11K2

a, =

It is seen that for a range of low values of a, and for b, > 0, g3,
assumes constant values, which are dependent on b,. At high
values of a,, g, converges to a log-linear function, independent
of b,, Fig. 5.
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Fig. 4 Computed values of the integration constant g.,, Eq. (14), versus the coefficients a, and

b, defined by Eqs. (25) and (26), respectively
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Fig. 5 Computed values of the integration constant g,,, Eq. (16), versus
the coefficients a, and b,, defined by Eqgs. (27) and (28), respectively

We now turn to the cryosurgical process. In this study it is
assumed that enhanced success of this process may be achieved
by maintaining a prespecified cooling rate on the freezing front.
In this case the freezing rates of interest are those existing at
fronts s, and s,, as calculated in the frozen and unfrozen regions,
respectively. Figure 6 shows the relationship between the veloc-
ity of propagation and the cooling rate at freezing front s;. It is
seen that these two parameters are exponentially dependent for
a case of zero blood flow. As blood perfusion increases, acting
essentially as a heat source in the medium, cooling rate must also
increase to maintain any desired constant velocity of propagation
of the freezing front.

The relationship between cooling rate ratio and the velocity of
propagation of freezing fronts is shown in Fig. 7. The cooling
rate ratio is taken as the one between the unfrozen and frozen
regions, as viewed from those regions, respectively. It is seen
that as the velocity of propagation increases, the effect of blood
perfusion on the cooling rate ratio diminishes. Actually, at very
high velocities of propagation of the freezing front, which may
not be attainable in practice, the cooling rate ratio equals that of
the in-vitro case of no blood flow. As can be seen from Eq. (24),
the cooling rate ratio depends linearly on the thermal conductiv-
ity ratio and on the enthalpy changes. The thermal conductivity

l(x): T

—
[=]
T

W, Cp, [KW / m3-°C]

0.0
25
5.0

COOLING RATE, °C/min

1 1 10
INTERFACE VELOCITY, mm /min

Fig. 6 Cooling rate at the freezing front s, as viewed from the frozen
region, versus the freezing front velocity
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Fig. 7 Cooling rates ratio of the unfrozen to frozen region at the freezing
fronts versus the interface velocity

values in the frozen and unfrozen regions bound the values in
regions [1] and [2] while the enthalpy changes monotonically
with temperature across these regions. Thus, the cooling rates
within the regions undergoing phase change are between the
cooling rates at the frozen and the unfrozen interfaces.

The forcing function solution of the inverse-Stefan problem is
studied next. This function is evaluated for five cases of various
combinations of metabolic heat generation and specific heat
source of the blood, Table 3, and for thermophysical properties
listed in Table 1. A freezing rate of 10°C/min was assumed in
the frozen region at the freezing front, which leads to freezing
fronts velocities of about 1.6 mm/min, as can be seen in Fig. 6.

The expression for the forcing function for the condition in
which the unfrozen region is in contact with the cryoprobe was
obtained by Eq. (19), using an initial parameter value of ¢ =
0.05. The forcing functions relating to regions [1] and [2] were
calculated next, by replacing 7, and 7, with s¢, in Eqs. (13) and
(15), respectively. The integration constants g,, and g,, were
evaluated from Eqgs. (14) and (16), as presented in Figs. 4 and
5, respectively. It is noted that for typical thermophysical prop-
erties of biological tissues and for cooling rates above 4°C/min
in the frozen region at the freezing front, the integration constants
g and g, are almost log-linearly dependent on a, and a,, re-
spectively, and are independent of b, and b,. These simplified
relations are: g;; = a}’*. The forcing function relating to the
frozen region was calculated last by a similar procedure, replac-
ing 7, with st in Eq. (17), following the formation of all of the
freezing fronts. The liquid nitrogen boiling temperature, —196°C,
was taken as the lowest temperature bound of the forcing func-
tions.

The results obtained for the forcing functions for the five cases
studied, for a cooling rate of 10°C/min at s;, are presented in Fig.

Table 3 Duration and depth of penetration of cryotreatments, for a cool-
ing rate of 10°C/min at the frozen front s,, for five cases of various com-
binations of metabolic heat generation and specific heat source of the
blood

Case | WuCyp dmer | Duration of Depth of freezing | Phase
No. |kW/m3-°C |kW/m3 [cryotreatment, |penetration - transition
min s¢ front, mm width (regions
[1] and [2],
mm
1 0.0 0.0 37.1 40.1 3.8
2 5.0 0.0 32.7 36.7 2.9
3 5.0 10.0 32.1 35.8 2.8
4 10.0 0.0 30.1 34.5 2.5
5 10.0 10.0 29.8 34.1 2.4
Transactions of the ASME
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Fig.8 Forcing functions of the inverse-Stefan problem for various com-
binations of heat sources and a cooling rate of 10°C/min at the frozen
front s,. Parameter values are presented in Tables 1 and 3.

8. Numerical results of the duration of the cryotreatment, depth,
and freezing penetration (defined by s;), and the phase transition
width (defined by the distance between the freezing fronts s, and
s;) are all presented in Table 3. It is seen that the dependence of
the forcing function on the relatively high metabolic heat gen-
eration, with respect to blood perfusion, is relatively weak. It can
also be seen that with the increasing of blood perfusion, the slope
of the forcing function increases, the depth of freezing penetra-
tion decreases, and the phase transition widens. Maximal blood
perfusion and metabolic heat generation (Case 5) reduce the du-
ration of cryotreatment by 20 percent, reduce the depth of freez-
ing penetration by 15 percent, and reduce the phase transition
width by 37 percent, all with respect to a tissue devoid of heat
sources (Case 1).

The proposed exact solution of the inverse Stefan problem is
one dimensional and is presented for Cartesian coordinates. It
can be shown mathematically that a solution to the multidimen-
sional inverse Stefan problem may not exist except for unique
cases. However, observing that cell destruction increases with
the decreasing of the freezing rates, in the range of low freezing
rates, the present solution can be used as an upper bound forcing
function for the multidimensional problem. By applying the pro-
posed forcing function solution to a multidimensional cryotreat-
ment one can ensure that the actual freezing rates would be equal
to, or lower than, the defined freezing rate of the one-dimensional
solution at all times. It can be expected that in superficial cryo-
treatments, and in cases of low depth of freezing penetration with
respect to a typical cryoprobe dimension, the one-dimensional
case will be close to the multidimensional one. Accordingly, the
depth of freezing penetration in the one-dimensional case can be
taken as the maximal bound for the multidimensional case.

Conclusion

An analytic solution to the inverse-Stefan problem in a bio-
logical tissue, in which a constant cooling rate is maintained at
the freezing front, is presented. The solution is derived for a
nonideal material and is based on the enthalpy method applied
in the range of phase-change temperatures. Thermal effects of
blood perfusion as well as metabolic heat and density changes
are accounted for. Results are compared to an existing solution
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derived for a pure material. The comparison was facilitated by
assuming that phase change occurs over a very narrow temper-
ature range, essentially simulating the behavior of a pure mate-
rial. Conformity of the results of the two solutions is very good.

The solution is studied for a range of parameters, which are
applicable to biological tissues undergoing cryosurgical pro-
cesses. The relationship between the velocity of propagation of
the freezing front and the constant cooling rates maintained at
the freezing fronts is presented graphically. Results indicate the
possibility to control the cooling rate at the freezing front for a
range of phase-change temperatures, thermophysical and physi-
ological properties and parameters.
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