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Abstract—We present a technique for repairing C code to pro-
tect against potential violations of spatial memory safety. Many
existing techniques can harden software against memory bugs as
part of a compiler pass. However, this creates dependencies on
the compiler and makes it difficult to fine-tune or even inspect
the repairs. We propose an automated technique for repairing
the source code to eliminate spatial memory vulnerabilities.

Performing the repair at the source-code level introduces a
new challenge: analysis and transformation are most easily done
on an intermediate representation (IR), but existing techniques
using IRs have fundamental limitations in regards to translating
changes back to the level of source code. We break this challenge
into two parts: (1) translating changes at the level of the IR to
the abstract syntax tree (AST) level, and (2) translating changes
at the AST level back to the original source-code text.

Preemptively repairing potential memory bugs leads to a trade-
off between performance overhead and memory safety. While for
safety-critical applications this trade-off may be acceptable, for
other applications we can reduce the performance overhead by
only repairing suspicious locations.

We implemented our approach in a tool called ACR and show
that it can repair spatial memory vulnerabilities on buggy pro-
grams from the Software Verification Competition. Additionally,
we also ran ACR on medium-size programs and preliminary
results show the scalability of ACR for thousands of lines of code.
Finally, we integrated ACR with static analysis tools and show that
the performance overhead is small when repairing only locations
that are flagged by a static analyzer.

Index Terms—code repair, memory safety, code transformation

I. INTRODUCTION

Memory violations are among the most common and most
severe types of vulnerabilities. For the past 3 years, spatial
memory violations were 15% of CVEs in the NIST Na-
tional Vulnerability Database and 24% of the critical-severity
CVEs. Researchers in academia and industry have studied
memory bugs for decades [1]. One approach to guarantee
memory safety of C programs is to extend the C language
with memory-safe pointers [2], [3], [4], [5]. However, this
approach has the downside of not supporting legacy code
since existing code would need to be rewritten in a new
safe language. Alternatively, the structure of pointers can be
extended to track the bounds of the objects it points to so
that all memory reads and writes are within the bounds of
the memory region [6], [7], [8], [9], [10], [11], [12], [13].
These approaches guarantee memory safety by inserting bound
checks during the compilation process, rather than changing
the source code.

In this work, we propose to repair a C program against po-
tential violations of spatial memory safety at the source-code
level. Our goal differs from traditional program repair [14],
[15] since we do not repair the functionality of the program
but instead repair potential security vulnerabilities so that the
program cannot be exploited by an attacker. Performing the
repair at the source-code level instead of doing it during the
compilation process introduces new challenges. Analysis and
transformation of code are most easily done at an intermediate
representation (IR) level. However, existing approaches are not
able to perform backward translation from IR to source code
while preserving the structure of the original code. We tackle
this challenge by breaking it into two parts: (1) translating
changes from the IR level to abstract syntax tree (AST) level,
and (2) translating changes from the AST level back to the
original source-code. For the first part, we show that it is
possible to carefully design ASTØIR transformation rules and
repair transformations together, so that repairs done at the IR
level are easily lifted to the AST level. For the second part,
we have modified Clang to produce an AST annotated with
corresponding locations in the original source-code files.

Repairing all potential memory spatial vulnerabilities can
lead to a large performance overhead, due to inserted bounds
checks and propagation of bounds metadata. While this can be
acceptable for safety critical applications, this may be an issue
for other applications. To reduce this overhead, we can perform
partial repairs where we take as input a set of suspicious
source-code locations and only guarantee the memory safety
of those locations. These suspicious locations can be given by
either a systems analyst or a static analysis tool.

We implemented our approach in a tool called ACR and
evaluated it on programs with spatial memory bugs from
the Software Verification Competition and on programs from
the SPEC CPU2006 benchmarks. To increase confidence in
our implementation, we ran SYMBIOTIC [16], a verification
tool for memory safety, on the programs repaired by ACR
for the Software Verification Competition. To evaluate the
performance of the files repaired by ACR, we repaired larger
programs from the SPEC CPU2006 benchmarks. Prelimi-
nary results show that the repaired programs are on average
around 46% slower than the original programs. However, when
only repairing a subset of locations that were flagged by
a commercial program analyzer, the average time overhead
of running the partially repaired program decreases to 19%,
being as low as 3% for some programs. Even when there is
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Fig. 1: Overview of the source-to-source repair

struct FatPtr_T {
T* rp; /* raw pointer */
char* base; /* of allocated memory region */
size_t size; /* in bytes */

};

Fig. 2: Fat-pointer structure definition

a large overhead, this can be an acceptable trade-off for the
guarantee that these programs will not have spatial memory
violations. If efficiency is critical, then we can repair only
the more suspicious locations and substantially improve the
performance of the system.

This paper makes the following key contributions:
‚ We propose an approach that can translate from source

code to an IR, perform transformations at the IR level,
and map back to a modified version of the source code
with the desired transformations.

‚ We implemented our approach in a tool called ACR that
can repair a diversity of C programs and ensure that they
are spatially memory safe.

‚ We allow partial repairs where ACR can just repair a
subset of locations that can be flagged by a commercial
static analyzer.

II. OVERVIEW

Memory safety is often divided into two parts: spatial and
temporal. A program has a spatial memory violation if a write
or read is performed beyond the bounds of a memory region.
A program has a temporal memory violation if a write or read
is done to a region after it has been deallocated. In this work,
we focus on assuring spatial memory safety of C programs.

Figure 1 shows an overview of our repair approach. The
input to our system is a C program and the output is a repaired
C program that avoids any potential spatial memory violation.
Although we want to make repairs at the level of the original
source code, in many aspects it is easier to analyze and repair
the code at the level of an intermediate representation (IR).
Our solution is to reversibly transform the source code to an
IR, make repairs on the IR, and then translate the repairs back
to the original source code. We break this procedure into three
stages: a sourceÑIR stage (Section III), repair of the code at
the IR level (Section V), and transforming the repairs from IR
to source code (Section VI).

A common approach to ensure spatial memory safety is to
use fat pointers [6], [7]. A fat pointer is a structure containing
three fields: the raw pointer itself, the base of the memory
region, and the size of the memory region, in bytes. For each
pointer type T*, we introduce a fat-pointer type as defined in
Figure 2.

1 // before repair
2 char* p = malloc(size);
3 while ((c = nondet_char()) != 0) {
4 *p = c;
5 p = p + 1; }

1 // after repair
2 struct FatPtr_char p = malloc_FatPtr_char(size);
3 while((c = nondet_char()) != 0) {
4 *bound_check(p) = c;
5 p = fatp_add(p, 1); }

Fig. 3: Example of repair using fat pointers

Fat pointers have the disadvantage of increasing the time
and memory overhead of the program and having compatibility
issues with external libraries. Other approaches have been
proposed, where the pointer structure is not modified but the
bound information is encoded directly in the memory layout
of the pointer [8], [12], [10], [11]. However, we advocate that
the use of fat pointers is a better fit for repair of source code
since they can be used to make local repairs that do not require
global changes to the program and are more portable.

Figure 3 shows an example of our approach on a small
example. The fat pointers and functions used during the
fattening process are defined in a header file and do not need
to be modified by the programmer. We can observe that the
repaired code is faithful to the original code and can be easily
interpreted and modified.

Note that the repair, including the bound checks, is done
at the source code level. This contrasts with prior work that
guarantees spatial memory safety via bound checks that are
introduced during compilation [6], [7], [8], [12], [10], [11]. In
our case, we want the repairs to be readable by programmers
(as opposed to present only in the binary executable). Some
advantages of repairing the source code with our approach
when compared to a compiler pass are:
‚ Repairs to the source code are easily audited.
‚ Repairs to the source code can be tweaked to improve

performance, if necessary. Usually, only a small percent-
age of a codebase is performance-critical.

‚ Doing repair as part of the compilation makes the build
process dependent on using a compiler with such func-
tionality. This can cause future problems if the repair
technology is no longer maintained1 or if the code needs
to be compiled on a different platform.

III. FROM SOURCE CODE TO IR

For clarity of presentation, and due to space constraints,
in this paper we consider only a subset of C. (However, our
implementation handles most of standard C, but lacks support
for some uncommonly-used features such as variable-length
arrays.) Additionally, we use a different syntax than C for

1This concern applies mainly to custom repair tools, not to tools such as
AddressSanitizer [17] that are integrated into a major compiler.
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‚ t1 = t2 ‹b t3; ‚ t1 = ‹ut2;
‚ t1 = *t2; ‚ *t1 = t2;
‚ t1 = &v; ‚ t0 = tf(t1, ..., tn);
‚ t0 = (type){t1, ..., tn}; ‚ t1 = (type)t2;
‚ t1 = & t2->field; ‚ return t;
‚ goto label; ‚ label:;
‚ ; /* empty statement */ ‚ var-decl;
‚ t1 = x; /* where x is a variable, function, or literal */
‚ if (t) goto label1 else goto label2;

Fig. 4: Statements in the IR language. A “t” (with or without
a subscript) denotes a temporary variable introduced by the
transformation from the original source code to the IR.

types and declarations, so that the type is not intermingled
with the identifier being declared, in order to avoid confusion
when discussing transformations for using fat pointers: We
write “ptr<type>” to denote the type of a pointer to an
object of type type, and we write “type var;” to denote a
declaration of a variable var of type type.

Our intermediate representation (IR) language is shown
in Figure 4. We allow each syntactic unit (i.e., expression,
statement, etc.) to be annotated with a set of tuples that convey
information about how to transform back to original source
code. Given a syntactic unit u, we write “(u)@tag” to denote
that u is annotated with tag , where tag is a tuple.

In Figure 5, we show the transformations used for trans-
forming the original AST to IR and for transforming the
repaired IR back to an AST. Each transformation is indicated
by two boxes connected with a bidirectional arrow. The code
in the top box is semantically equivalent to the code in the
bottom box, provided that any temporary variables that are
defined in the bottom box but not the top box are fresh (i.e.,
not occur elsewhere in the program). When transforming from
the original AST to IR, code that matches the top box is
transformed into code in the bottom box. Likewise, when
transforming from the repaired IR to AST, code that matches
the bottom box is transformed into code in the top box.

Each AST node of the original AST is annotated
with a pair xL, locy where loc is a tuple of the form
xfilename, byte offset start , byte offset end , ast idy,
identifying the location of the source-code text corresponding
to the AST node.2 Here, ast id is a unique number for each
AST node; it is used to identify AST nodes in the event that
multiple AST nodes have the same source-code range (e.g.,
in a macro expansion, all the resulting AST nodes have a
source-code range corresponding to the macro use).

Before the repair, we store a mapping LocToOrigAST that
maps the L tuple of each AST node to the original AST node.

Regarding the sizeof operator: In C, the argument to
sizeof expression is not always evaluated if it is an expres-
sion. Generating IR for the argument of sizeof complicates
the semantic correspondence of the IR to the AST, if the

2The “L” in “xL, locy” is just a literal letter “L”, to indicate that the
annotation specifies a location, as opposed to other types of annotations.

argument to sizeof has side-effects. However, the only
negative effect in our case is that our points-to analysis
becomes less precise. We consider it an acceptable trade-off.

IV. ANALYSIS FOR FATTENING ELIGIBILITY

Fattening a pointer that is stored in memory changes the
memory layout of the program. Fattening a parameter to a
function changes the program’s binary interface. In either case,
the fattening might break the program in the presence of
external code (i.e., code not available to the repair tool) or
platform-specific code. Accordingly, we consider a pointer to
be ineligible to be fattened in the following cases:
‚ Pointers in memory passed to external code are ineligible.
‚ If a function is passed to external code, then the function’s

arguments and return value are ineligible to be fattened.
‚ If memory can be accessed via different types of pointers,

then pointers stored in that memory are ineligible. (E.g.,
if a pointer to an array of pointers is cast to char* to
read/write the individual bytes of the pointers, then the
pointers in the array cannot be fattened.)

Given a type ty and a set of locations L, we write
“FattenTypty , Lq” to denote the fattened type of an object
originally of type ty that is stored in L, except that if any
location in L is ineligible for fattening, then ty must not be
fattened, so FattenTypty , Lq “ ty . Given a variable v whose
memory location is ` and whose declared type is ty , we write
“FattenVarTypepvq” to denote FattenTypty , t`uq.

V. REPAIRS AT THE IR LEVEL

Our tool inserts code to perform a bounds check immedi-
ately before dereferencing a fat pointer. That is, it replaces
a pointer dereference “*p” with “*bound check(p)”, where
bound check is a function that aborts the program if the
pointer is out-of-bounds and otherwise returns the raw pointer.
In Standard C, we can define such a function for each
pointer type T . Alternatively, we can define a single macro
bound check that works with all fat-pointer types, using
widely-supported extensions to Standard C introduced by gcc.
There are also other auxiliary functions/macros, which are
defined similarly, but are not shown due to space constraints.

Figure 6 shows how we repair statements in the IR language
(due to lack of space, not all could be shown). If a declaration
of a local variable that holds a fat pointer lacks an initializer,
we add an initializer (setting all fields to 0) to prevent an
invalid fat pointer. We repair calls to standard-library functions
to instead call wrapper functions that we developed, which do
bounds checking. The function “fatten raw” converts a
raw pointer of unknown range to a faw pointer, using 0 as the
lower bound and SIZE MAX as the size.

We repair a declaration of a variable v of pointer type by
replacing the declared type with FattenVarTypepvq. We repair
function declarations and definitions by fattening the return
type and the types of arguments (if they are pointer types),
using the FattenTy function.

We repair struct definitions by fattening the fields of
the struct as necessary. More precisely, if the original type

3



Expression statement

(e;)@xL, locy

ò

(;)@xexpr-stmty@xL, locy
t = e;

where e is not an assignment to a
temporary. The purpose is to en-
sure that all arithmetic operations,
function calls, etc. occur on the
right-hand side of an assignment.

Address-of

tt = (&a[i])@xL, locy;

ò

(;)@xarray-addressy
tt = ((a+i))@xL, locy;

Return

(return e;)@xL, locy

ò

(;)@xreturny@xL, locy
tt = e;
tret = tt;
return tret;

Note: tret is redundant but sim-
plifies the repair operations.

Declaration with initializer

(type var = e;)@xL, locy

ò

(;)@xdecl-inity@xL, locy
(type var;)@xhas-inity@xIRy
var = e;

Compound Assignment

tt = ((*L ptr ‹= RHS))
@xL, locy;

ò

(;)@xsubexpr, tty@xL, locy;
tL = L ptr;
tR = RHS;
tt = (*tL ‹= RHS);

Binary Operators

tt = (e1 ‹b e2)@xL, locy

ò

(;)@xsubexpr, tty@xL, locy
t1 = e1;
t2 = e2;
tt = t1 ‹b t2;

Array index, l-value

tt = (a[i] ˚
“ e)@xL, locy;

ò

(;)@xsubexpr, tty@xarr-idxy
tt = (*(a+i) ˚

“ e)@xL, locy;

where “˚“” denotes any assign-
ment operator (“=”, “+=”, etc.).

sizeof

tt = (sizeof(e))@xL, locy;

ò

(;)@xsizeofy@xL, locy
t1 = e;
tt = sizeof(t1);

where e is an expression.

Notation: A variable whose name begins with “t” denotes a temporary variable introduced by the ASTØIR transformation.
In the forward (ASTÑIR) direction, statements already in IR form are not further transformed, even if they match a transformation rule.

Fig. 5: A selection of transformations between the AST and the IR (some are omitted due to space constraints)

Compound Assignment

tt = (*tp += tR);

ð tt = fatp_assign_add(
bound_check(tp), tR);

where tp is a fattenable pointer.

Memory Write

*tp = tR;

ð

*bound check(tp) = e;

where e is defined as e “ tR
unless the memory location
being written to is marked a
non-fattenable and tR is a fat
pointer, in which case
e “ tR.rp.

Pointer arithmetic

tt = tp + tn;

ð tt = fatp_add(tp, tn);

where tn is an integer and tp is
a fattenable pointer. A similar
transformation exists for
“tn ` tp” and for “tp ´ tn”.

Memory Read, case 1

tt = *tp;

ð

tt = *bound check(tp);

If the location being read holds a
non-fattenable pointer, then we
replace “tt = *tp;” with
“tt = fatten raw(ty 1,
*bound check(tp));”.

Address of a field of a struct

tt = &ts->field;

ð

tt = fat_fld_addr(
ty, field, ts);

where ty “ FattenVarTypepttq

Returning a raw pointer

tret = tt;
return tret;

ð

tret = tt.rp;
return tret;

Side condition: The return value
of the function containing the
return statement is a pointer type
and is unfattenable.

External function call,
returning a pointer

tt = tf(t1, . . ., tn);

ð

tt = tf(d1, . . ., dn);

where tf is an external function,
and, for i P t1, ..., nu,

di “

#

ti.rp if ti is a pointer
ti if ti otherwise

If tt is a pointer type, then a
further transformation is applied:

tt = tf(e1, . . ., en);

ð

tt = fatten_raw(ty 1,
tf(e1, . . ., en));

Fig. 6: Transformations for repairing IR (some are omitted due to space constraints)

of a field is ty , then the corresponding type in the repaired
code will be FattenTypty ,FieldLocsq, where FieldLocs is the
set of memory locations that may store the field. The macro
define field addr(Foo, field i, ty 1i) expands to a
definition of a function that takes a fat pointer to a struct
of type Foo and returns a fat pointer to field field of the
struct. In Figure 6, we use the macro fat fld addr to
call this function. The bounds of the fat pointer returned by
fat fld addr are narrowed (with respect to the fat pointer
for the struct) to the bounds of the field. (If the field is an
array, the narrowed bounds encompass the whole array.) This
narrowing of bounds protects against the sub-object corruption
problem [13]. Some programs intentionally take a pointer to

a field and perform pointer arithmetic to get a pointer to the
containing struct; narrowing must be avoided in such cases.

The wrapper for malloc clears its memory, like calloc.
This is needed to ensure the integrity of fat pointers stored in
heap-allocated memory. fat realloc never increases in-
place the size of an already-allocated region of memory; it
always allocates a new region and copies the old data. This is
because resizing in-place would require adjusting the bounds
of all existing fat pointers to the resized memory region.

A. Reducing performance impact of bounds checks

Inserting a bounds check before every memory access
can significantly slow down a repaired program. While such
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performance impacts might often be acceptable if they are
planned for at the design stage, significantly reducing the
performance of existing in-operation systems is often re-
jected. Therefore, we added an option to repair only those
memory accesses that are flagged by an external static anal-
ysis tool. With this option, any expression of the form
“*bound check(e)” is converted to “*(e.rp)” if it orig-
inated from an unflagged line.

VI. IR TO SOURCE

We reconstruct the AST from the repaired IR by applying
(in reverse direction) the transformations in Figure 5 (along
with other transformations that we do not have space to show).

We first determine which AST nodes were modified by
the repair. We do this by comparing each AST node of the
repaired AST to the corresponding node of the original AST
(as determined by the LocToOrigAST table).

Let us say that an AST node is a regen node if either it is
modified or its location overlaps a regen node. (E.g., all nodes
of a macro expansion share the same location, so if a node of
a macro expansion is modified, then all nodes of the macro
expansion must be marked as regen nodes.)

Let us say that a regen node is a top-level regen node if
it is not the descendent of any other regen node. For each
top-level regen node node , we replace the original source (as
indicated by the L tag of node) with the result of generating
source-code text from node in the usual manner of generating
source code from an AST node, except we re-use the original
source-code text of an AST subnode if neither it nor any of its
descendents are marked as regen. (Thus, macro uses that don’t
need repairs are preserved verbatim.) We use heuristics to add
line breaks, semicolons, and indentation where appropriate.

If a header file is included multiple times via the
“#include” directive, we create a repaired version for each
inclusion point. If each repaired version is identical, we write
this common repaired version as the repaired header file. If
there are differences, we write a separate header file for each
different version and flag it for manual review.

In order to be able to apply our tool again to code that has
already been repaired, we implement a defattening operation,
which converts all fat pointers back to raw pointers.

VII. EVALUATION

We have implemented our approach in a tool called ACR.
To evaluate ACR we used C programs from the Software
Verification Competition (SVCOMP) [18] and programs from
the SPEC CPU2006 (SPEC2006) benchmarks [19] for testing
the performance of our approach on larger projects. Our
evaluation aims to answer the following questions:

Q1. Can ACR automatically repair spatial memory bugs?
Q2. How much is the code bloat of the repaired code?
Q3. What is the memory and time overhead of the repair?
Q4. What is the overhead when repairing only locations

flagged by a program analysis tool?

To answer these questions, we performed a series of exper-
iments on these benchmarks.3 All experiments are conducted
on a laptop with a 2.3 GHz Intel Core i5 and 8 GB of memory,
running Ubuntu 18.04 operating system in a Docker container.
The original and repaired programs were compiled with gcc
7.5.0 using optimization setting “-O3”.

A. Benchmarks, Verification, and Static Analysis Tools

We collected 52 programs from SVCOMP that only have
spatial memory bugs such as invalid pointer dereferences.
These programs range from 15 to 153 lines of code, having
39.1 lines of code on average. Even though these C programs
are small in size, they have common bugs made by program-
mers and are used to test the capabilities of verification tools.

To evaluate that ACR generates memory-safe repairs, we
used the verification tool SYMBIOTIC [16], [20]. This tool is
one of the best verification tools for memory safety in the
Software Verification Competition of 2019 and 2020. In this
work, we consider the 2020 version of SYMBIOTIC available
at the SVCOMP website. SYMBIOTIC uses KLEE [21] as
its symbolic engine to check the verification conditions of
memory safety. Note that SYMBIOTIC does not report incorrect
results since it does not use any over- or under-approximations.
However, since SYMBIOTIC uses symbolic execution it does
not scale for programs with infinite paths since these cannot be
fully symbolically executed in finite time. For these programs,
SYMBIOTIC will not be able to prove memory safety and is
only useful to detect bugs that have shallow executions.

To evaluate the overhead of ACR on larger programs, we
used the bzip2, mcf, sjeng, and libquantum programs from
the SPEC2006 benchmarks. These programs contain multiple
files and have between 1,571 and 10,515 lines of code. They
cover a wide range of applications, from compression (bzip2),
combinatorial optimization (mcf), playing chess (sjeng), to
quantum computing (libquantum) and are easy to benchmark
since they include inputs for which they can be tested.

To reduce the overhead of the repairs generated by ACR, we
also support partial repairs where we only insert bounds checks
for program locations flagged by a static analysis tool as a
potential memory violation. To evaluate the impact of partial
repairs, we run Coverity version 2018.01 [22], a state-of-the-
art commercial static analyzer that can flag locations with
potential NULL pointer dereferences and buffer overflows.

B. Repair of spatial memory bugs in SVCOMP programs

We ran SYMBIOTIC with a time limit of 900 seconds per
program. Table I shows the result of SYMBIOTIC which can be
one of the following: “Safe” if SYMBIOTIC was able to prove
memory safety, “Buggy” if a bug was found, “Unknown” if
SYMBIOTIC could not prove memory safety or find a bug
due to limitations of the verification tool, and “Timeout” if
SYMBIOTIC did not terminate within 900 seconds. SYMBIOTIC
found bugs in the majority of the original files. For the repaired

3Logs and benchmarks of the experiments are available for download
at https://figshare.com/s/394170207df298856651. ACR’s source code will be
made publicly available at https://github.com/cmu-sei.
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TABLE I: Verification status returned by SYMBIOTIC

#Safe #Buggy #Unknown #Timeout
Original 0 48 1 3
Repaired 27 0 13 12

TABLE II: Code bloat in SPEC2006 programs
Original Repaired

LOC Bytes LOC Bytes
bzip2 5,720 244,869 7,251 416,370
mcf 1,571 63,348 1,600 81,194
sjeng 10,515 305,311 10,215 398,563
libquantum 2,589 102,143 2,532 122,585

versions, SYMBIOTIC proved memory safety of 27 benchmarks
and did not find any bugs in the remaining ones. This increases
our confidence in the correctness of ACR implementation.
Since proving safety is harder than finding bugs, SYMBIOTIC
had more timeouts for the repaired files.

The repair time of ACR is negligible for these small bench-
marks. ACR takes between 0.4 and 1.2 seconds, with an aver-
age time of 0.7 seconds to repair each of these benchmarks.

C. Repair of spatial memory bugs in SPEC2006 programs

To have a better understanding of the overhead of the code
repaired by ACR in terms of code bloat, partial repairs, time
and memory performance, we analyzed the impact of running
ACR on larger programs from the SPEC2006 benchmarks.
We did not analyze these programs with SYMBIOTIC since
SYMBIOTIC doesn’t scale to the programs this large.

Code bloat. Table II shows the code bloat of the repair,
measured in both lines of code (LOC) and bytes of source
code. In terms of lines of code, all except bzip2 have less
than a 5% change in the number of lines of code. Due to
expansion of macros, repairing bzip2 increased the number
of lines of code by 27%. On sjeng and libquantum, the
repair decreased the number of lines of code; this is due to
formatting changes, e.g., in function definitions, the return type
of a function was rewritten to be on the same line as the
name of the function, rather than its own line. The number of
bytes increases between 20% (libquantum) and 70% (bzip2).
In the case of bzip2, the size of the repaired file increased
substantially since ACR needed to expand macros to repair
them. Also, our current implementation fattens every local
variable of pointer type. In future work, we will avoid fattening
variables where unnecessary for bound checks (when repairing
only those lines flagged by the external static analyzer).

TABLE III: Running time of ACR

Src-to-AST Repair AST-to-Src Total
bzip2 11.85 43.76 8.27 63.88
mcf 11.91 12.90 1.29 26.10
sjeng 15.65 55.78 8.16 79.81
libquantum 11.26 16.25 2.05 29.56

TABLE IV: Number of locations flagged by a static analyzer
that correspond to bounds check

Program bzip2 mcf sjeng libquantum
Flagged LOC 10 5 9 5

Running time of ACR. Table III shows the running time of
ACR. When running ACR on a larger project, we distinguish
the running time of three different phases done by ACR: (i)
parsing the source code into AST (Src-to-AST), (ii) repairing
the AST (Repair), (iii) transforming the repaired AST into
repaired source code (AST-to-Src). The repair time of ACR
dominates the running time of the tool. (This includes the
time for transforming the AST to IR and then transforming
the repaired IR back to AST.) For instance, to repair bzip2,
ACR took 63.88 seconds, where 11.85 seconds were spent to
parse the source code into AST, 43.76 seconds to perform the
repair and 8.27 seconds to transform the repaired AST into
repaired source code. Note that ACR is written in Python and
not optimized for performance but even in its current form can
repair several thousands of lines of code in a few minutes.

Partial repairs. ACR can optionally take as input a set of
lines of code flagged by an external static analyzer; ACR
will limit insertion of bounds checks to only those lines
that are flagged. To evaluate the performance of ACR when
considering partial repairs, we ran a commercial static analyzer
to flag locations with potential NULL pointer dereferences4

and buffer overflows. Table IV shows the number of locations
that were flagged and correspond to bound checks that can be
enforced by ACR. We can observe that for these programs, the
number of flagged locations is relatively small, which avoids
inserting potentially superfluous bound checks.

It may be noted that the partial repair of mcf added a
significant runtime overhead even though bounds checks are
added to only a small number of memory accesses. This is
because we fattened all pointers, regardless of whether the
bounds metadata was actually needed for a bounds check. The
mcf program spends a lot of time traversing a large linked list,
so the increased size of pointers significantly increases the
transfer of data from RAM to the CPU, and the bandwidth
of the memory bus can be a bottleneck. The overhead can be
significantly decreased by fattening only pointers that actually
need to carry the bound metadata. However, the full-fattening
approach that we use here might be more representative of very
large programs, since only a single flagged memory access is
necessary to require fattening of all pointers that can feed
into the flagged memory access. Using a compressed pointer
format (e.g., [10], [23]) may reduce runtime overhead.

Time overhead. We analyzed the time overhead of the repair
by running each program in the testing input included in
their distribution. The running times vary between 39 seconds
for compressing a text file with bzip2 and 304 seconds for

4Dereferencing NULL directly will be caught by hardware on x86, but
won’t necessarily be caught if NULL is used as the base address of an array
in conjunction with a large subscript.
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Fig. 7: Time overhead of the repaired and partially repaired
source code for the SPEC2006 programs

performing combinatorial optimization using mcf. The time
overhead for each program is presented in Figure 7 where
we show the percentage of time that each program takes with
respect to the original code. The execution time of the repaired
version varies between 1.13ˆ and 1.72ˆ the time of the
original version. This is roughly similar to times reported by
Kroes et al. [11] for SoftBound (1.67ˆ) and ASan (1.80ˆ).
Programs that make extensive use of pointers, such as mcf,
have their performance more deteriorated when compared to
programs that make fewer memory accesses.

Memory overhead. We analyzed the memory overhead on
these programs and observed that for some programs (e.g.,
bzip2 and sjeng), the repaired program has less than a 1%
increase in memory allocation over the original program.
However, for programs that use lists extensively, there is
a significant increase in memory usage. For instance, the
libquantum program uses 1.4ˆ more memory and the sjeng
program uses 2ˆ more memory than the original program.

VIII. LIMITATIONS AND DISCUSSION

ACR can already repair a diversity of C programs and protect
against spatial memory bugs. However, the current prototype
could be improved by addressing some of its limitations.

C language. We cannot fatten pointers that are stored in
memory accessible by external code (e.g., libraries and dynam-
ically loaded code). Pointers subjected to non-standard pointer
manipulation (e.g., XOR linked lists) or type punning (e.g.,
to access individual bytes of a pointer stored in memory) also
preclude fattening. We also do not prevent memory corruption
due to race conditions in concurrent code.

Benchmark selection. The benchmarks we use may not be
representative of real-world programs. Even though we used
small programs to validate the memory safety repairs per-
formed by ACR, we also analyzed the performance of ACR
on the SPEC2006 programs which are closer to real-world

programs than the small examples used for program verifi-
cation. Although these programs are still far from the size
of industrial programs, we expect the performance of ACR to
scale to larger programs while maintaining the same overheads
that were observed while repairing the SPEC2006 programs.

Code readability. One of our goals is to maintain the repaired
code as similar as possible to the original code. Even though
the changes to the code are small, it may be that the repaired
code is harder to read and modify. As future work, we propose
to perform a user study to validate our hypothesis that the
repaired code is easy for programmers to modify. We will also
consider code readability metrics [24] and extend them to our
domain to show the maintainability of the repaired code.

IX. RELATED WORK

A. Memory safe languages

A way to guarantee memory safety is to write code in a
language that is memory safe. Cyclone [2] and Deputy [3]
are examples of typesafe dialects of C. Similarly to our work,
Cyclone also uses fat pointers to support pointer arithmetic.
In contrast, Deputy does not change the pointer layout but
requires the programmer to describe the bounds using program
expressions. However, these approaches require the code to be
written in these languages and cannot be used for legacy code.

CCured [4] uses whole-program analysis to divide the
pointers into 3 kinds: (1) safe pointers that are never involved
in pointer arithmetic or unsafe casts, (2) sequential pointers
that are involved in pointer arithmetic but not unsafe casts,
and (3) dynamic pointers that may be involved in both pointer
arithmetic and unsafe casts. The C language is extended to
support these pointers, represented internally as fat pointers.

Checked C [5] has been recently proposed as an extension
to C that is designed to support spatial memory safety.
Checked C does not change the pointer layout and introduces
checked pointers that can be used by a programmer to specify
single objects, arrays, and NULL-terminated arrays, where the
bounds are specified explicitly. These bounds are used by
the compiler to prove that a given memory access is safe;
otherwise, a run-time bound check is inserted.

B. Pointers to assure memory safety

Ensuring memory safety by extending the structure of
pointers to track the bounds of objects and checking if pointer
arithmetic stays in bounds is a common approach to guarantee
memory safety [6], [7], [8], [9], [10], [11], [12], [13]. For
instance, Austin et al. [6] extended the notion of pointers to fat
pointers and developed a source-to-binary compiler pass that
inserts bounds checks using fat pointers. Alternatively, instead
of changing the structure of the pointers, one can encode
the bound information directly in the memory layout of the
pointer [8], [12], [10], [11]. For instance, low-fat pointers [10]
restrict the possible allocation sizes to a fixed finite set and
allocate same-sized objects in one region of virtual address
space. Another approach is done by SoftBound [13] where
bounds are stored in a separate memory region. Delta Point-
ers [11] are also based on pointer tagging with modifications
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to the pointer structure to perform the overflow check at the
hardware level, which allows it to be more efficient than other
pointer tagging approaches.

The run-time and memory overhead of approaches based on
modified pointers were investigated by Kroes et al. [11]. Run-
time overheads are 67% for SoftBound and 35% for Delta
Pointers [11]. This overhead is comparable to the overhead we
observed when using our approach. Memory overhead ranges
from 64% for SoftBound to 0% for Delta Pointers. Even
though our memory overhead is large for programs that use a
lot of pointers such as lists, it has a small memory overhead
for programs that are based on arrays.

The main difference between our approach and the ones
described above is that we insert bound checks at the source
code level instead of using a compiler pass. Repairing the
source code instead of relying on the compiler has several
advantages as discussed in Section II.

C. Source-code transformations

As mentioned earlier, Checked C [5] allows the program-
mer to use an extension of C with pointers that are memory
safe. Existing C code can be intermixed with Checked C, but
the plain-C parts do not benefit from the Checked C memory-
safety protections. In an attempt to ease the transition to pure
Checked C, an automatic porting from C to Checked C code
has been recently proposed [25]. However, only between 26%
and 45% of the pointers [25] were reported to be automatically
converted to their safe variants and the transformed source
code will have a mixture of safe and unsafe pointers.

Shaw et al. [26] identify some unsafe library functions
related to strings and memory and propose to replace them
with alternative safe functions. Additionally, they also use fat
pointers for strings to prevent memory violations for strings.
The code transformation is performed with the OpenRefac-
tory/C [27] refactoring tool. This approach is limited since
it can only prevent memory violations of a small fraction of
functions and types and has no memory safety guarantees with
respect to the entire program.

X. CONCLUSION

There has been much research on securing C programs
against memory violations, but most of it has focused on doing
repairs at compile-time, which has limitations that can make
it less desirable than a repair of the source code. We have
presented a technique for repairing the original source using fat
pointers, and we have validated it on SVCOMP and SPEC2006
programs. As might be expected, programs with extensive
traversals of large recursive data structures suffer the worst
performance overhead. On programs where arrays dominate,
the performance impact is more acceptable, particularly when
bounds checks are limited to flagged source-code locations.
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