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Constraint Programming in brief %@% Cornell University

A Constraint Satisfaction Problem, or CSP, consists of

* a set of variables X,
* variable domains D(x) (for all x[1X),
* and a set of constraints on subsets of the variables

A solution to a CSP is:
assign to each variable a single element from its domain

such that all constraints are satisfied

Example:
variables X[y X9y X3
domains D(x,) = {I,2}, D(x,) = {0,1,2,3}, D(x;) = {2,3}
constraints X| > X,
X|+ Xy = X3
solution X =2,%=0,%x3=2



Constraint Programming in brief %@% Cornell University

A Constraint Optimization Problem, or COP, consists of

* a set of variables X,
* variable domains D(x) (for all x[1X),
* a set of constraints on subsets of the variables,

 and an objective function f(X) —» Q to be optimized

A solution to a COP is:
assign to each variable a single element from its domain

such that all constraints are satisfied, and the objective function is optimal

Example:
variables/domains x, U {1,2}, x, 0 {0,1,2,3}, x5 I {2,3}
constraints X| > X,
X+ Xy = X3
objective function maximize X, + X3
solution X T2, %=1,x3=3



Constraint Programming in brief %@% Cornell University

A constraint programming solver must
« find a (optimal) solution to the CSP (COP)

e or prove that none exists

It does so by
* complete search
* domain filtering

* constraint propagation



Constraint Programming in brief

Example:
variables/domains x, O {1,2}, x, 0 {0,1,2,3}, x5 1J {2,3}
constraints X| > Xy

X+ Xy = X3

alldifferent(x,,x,,x3)

complete search (no filtering or propagation)
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Constraint Programming in brief %@% Cornell University
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Example:
variables/domains x, O {1,2}, x, 00 {0, ,/{,/}, x; U {2,3}
constraints X| > Xy

X+ Xy = X3

alldifferent(x,,x,,x3)

complete search + filtering and propagation

filter and é:'opagate



Constraint Programming in brief %@% Cornell University
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Example:
variables/domains x, O {I/{} X, [ {0/} X3 [ {/{/}
constraints 1> Xy

X|+X2‘ 3

alldifferent(x,,x,,x3)

complete search + filtering and propagation

<

filter and propagate
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Example:
variables/domains x, U {/2} X, [ ¢I} X5 [ #3}
constraints 1> Xy

X|+X2‘ 3

alldifferent(x,,x,,x3)

complete search + filtering and propagation

filter and propagate




Constraint Programming in brief %@% Cornell University

Messages:

In order to speed up constraint programming solver

* always try to filter the domains using the constraints!

* more filtering is always better (given same time complexity)

* try to find efficient filtering algorithms (e.g., linear in size of constraint)

* if possible, make filtering algorithm incremental

Global constraints capture special structure of problem

e try to exploit structure for better/more filtering
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Soft constraints

Over-constrained and preference-based problems:

* assign seats for over-booked airplane; no solution that carries all
passengers

* create roster for nurses with conflicting preferences (e,g., they all want the
same day off during soccer World Championship)

* factory wants to satisfy demands of all customers, but has limited resources

Estimate [anonymous]:

“At least 60% of all industrial problems are essentially over-constrained”

CP solver will report that no solution exists. How to find satisfying ‘solution’?
- soften (some of) the constraints of the problem

- compute solution that minimizes conflicts or maximizes satisfaction



Soft constraints %@E Cornell University

A hard constraint must always be satisfied.

A soft constraint does not need to be satisfied, but we would like it to be.

Example:

Over-constrained CSP with two soft constraints:
x,; 01,2}, x, 0{2,3}, x; 0 {2,3}
() x>x,

(i) x;+x; = %3

(X1X5,%3) = (1,2,2) both constraints violated
(x1%%3) = (1,2,3) constraint (i) violated «————Hinimum Violation or maximum satisfaction
(X1%5,%3) = (1,3,2) both constraints violated
(X1%5,%3) = (1,3,3) both constraints violated
(X[X9,X3) = (2,2,2) both constraints violated
(X|»X5,%3) = (2,2,3) both constraints violated
(X|»X5,%3) = (2,3,2) both constraints violated
(X[X9,%3) = (2,3,3) both constraints violated



Soft constraints %@E Cornell University

“Traditional” approaches to handle soft CSPs:
- Partial CSP [Freuder & Wallace, 1992]

maximize number of satisfied constraints (previous example)
- Weighted CSP [Larossa, 2002]
associate a weight to each constraint
maximize weighted sum of satisfied constraints
- Possibilistic CSP [Schiex, 1992]
associate weight to each constraint representing its importance

hierarchical satisfaction of most important constraints, i.e. maximize smallest
weight over all satisfied constraints

- Fuzzy CSP [Dubois et al., 1993] [Ruttkay, 1994]
associate weight to each tuple of every constraint

maximize smallest preference level (over all constraints)

These approaches can be modeled using valued CSPs [Schiex et al., 1995] or
semi-rings [Bistarelli et al., 1997]



Soft constraints %@E Cornell University

Drawbacks of traditional approaches:

* often coarse violation measure, especially for global/non-binary constraints

Example (cont’d):
x, U {1,2}, x, 00 {2,3}, x; U {2,3}
(i) x,>x, new violation = deficit (i.e. gap between x, and x,*1)

(i) x; + %, =x3 new violation = deficit (i.e. gap between x,+x, and x;)

evaluation using sum of violations:

(X[X9,%3) = (1,2,2) violation is 2+1=3

(Xx[X9,%3) = (1,2,3) violation is 2+0=2

(X[X9,%3) = (1,3,2) violation is 3+2=5

(X[X9,%3) = (1,3,3) violation is 3+1=4

(X[X9,X3) = (2,2,2) violation is 1+2=3

(X|,X5,%3) = (2,2,3) violation is |+1=2 the new violation measures allow better
(X[X9,%3) = (2,3,2) violation is 2+3=5 evaluation of different tuples!

(X[X9,%3) = (2,3,3) violation is 2+2=4



Soft constraints

Drawbacks of traditional approaches:
* often coarse violation measure, especially for global/non-binary constraints
* little domain filtering & propagation

Example (cont’d):
x, O {1,2}, x, 00 {2,3}, x; U {2,3}
(i) x;,>x, violation = deficit (i.e. gap between x, and x,*1)

(i) x; + %, =x3 violation = deficit (i.e. gap between x,*x, and x;)

(X[X9,%3) = (1,2,2) violation is 2+1=3
(X[X9,%3) = (1,2,3) violation is 2+0=2
(X[X9,%3) = (1,3,2) violation is 3+2=5
(X[X9,%3) = (1,3,3) violation is 3+|=4
(X[sX9,X3) = (2,2,2) violation is 1+2=3
(X[X9,X3) = (2,2,3) violation is |+[=2
(X[X9,X3) = (2,3,2) violation is 2+3=5
(X[X9,%3) = (2,3,3) violation is 2+2=4

suppose maximum violation is 3,
then value 3 in domain of x, has no support.

we want to remove this inconsistent value!



Soft constraints

Drawbacks of traditional approaches:

* often coarse violation measure, especially for global/non-binary constraints
* little domain filtering & propagation

* how can we apply this in traditional CP framework!?

— constraint programming solvers do not support soft constraints

Alternative approach [Baptiste et al., 1998], [Régin et al., 2000]:

* introduce a cost variable for each soft constraint

* this variable represents some violation measure of the constraint
* optimize aggregation of all cost variables (e.g., take their sum)

* use upper bound on cost variable to apply cost-based filtering

Note: In this way
— soft CSPs become COPs,
— soft global constraints become optimization constraints,

— we can apply classical constraint programming solvers.



Softening global constraints

Example:
soft CSP:
x, J{0,1,2,3}, x, 1 {0, 1}
X, < X, (soft constraint)

i) introduce cost variable z for the soft constraint x, < x,
ii) z represents the difference between x, and x, if it is violated (violation measure)

iii) minimize z

new COP:
x, 0{0,1,2,3}, x, J {0,1}, z J {0, 1,2,3}
(z=0) U(x;=xy)) U((z>0) U(z=x,-%,))

minimize z

cost-based domain filtering:

suppose z [J {0,1}, then x, <2

20



Softening global constraints %@% Cornell University

Notation: X = {x,X,,....X.}, D(X)= [, 1 D(X)

General recipe for global constraint C(X):
define violation measure p: D(x,) x D(x,) X - x D(x ) - Q.
and cost variable z

then soften the constraint C as:
soft C(X,z,l) := (U(X) < z)
where p=0 iff C is satisfied and >0 otherwise
Example (revisited):

x, 0 {0,1,2,3}, x, J {0, 1}

constraint ¢(X;,X,) = ( X; < X, ) to be softened

add cost variable z [ {0,1,2,...}
define violation measure [(x;,x;) = max{x, — x,, 0}

soften c as: soft_c(x;,X,,z,l) = ( L(X},Xy) £ Z)

21



Filtering soft global constraints gL %} Cornell University

Basic cost-based filtering algorithm for soft C(X,z,l) = (U(X) < z):

for all x[1X and d[ID(x) {
compute minimum of Y with x=d
if minimum > max(D(z)) remove d from D(x)
if D(x) empty return inconsistent

}

update min(D(z)) 2 min(all minima of )

if D(z) empty return inconsistent

else return consistent

Notes:
* similar to classical filtering for inequality constraint

« filtering establishes arc consistency' on soft_C, i.e., we remove all domain values that are not
part of a solution to the constraint (this is the best possible)

« different violation measures define different soft constraints, and thus different filtering
algorithms

* time complexity depends on computation of minimum of

I also referred to as hyper-arc consistency, generalized arc consistency, or domain consistency in the literature 22



Softening global constraints

Remark: soft constraint previously defined as
soft._ C(X,z,)) := (U(X) = z)

Why not
soft C(X,z,l) = (U(X)=2z) ?

Because then arc consistency becomes often NP-hard (for ‘reasonable’
violation measure 1), while inequality makes it often tractable

Alternative view:
* use equality in definition, but
* establish arc consistency w.r.t. X and ‘bound consistency’ w.r.t. z

* (effectively the same approach as with inequality)

23
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Softening global constraints %@% Cornell Universit
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Our goal is to design efficient filtering algorithms for soft global constraints,

that establish arc consistency, using cost-based approach

Outlook:
constraint violation measure consistency check arc consistency
hard alldifferent - O(m\n) O(m)
soft alldifferent variable-based O(m\n) O(m)
soft alldifferent decomposition-based O(mn) O(m)
gcc - O(mvn) O(m)
soft gcc variable-based O(m\n) O(m)
soft gcc value-based O(mn) O(m)
regular - O(m) O(m)
soft regular variable-based O(m) O(m)

Here n is the number of variables, m is proportional to the sum of the domain sizes.

24
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Exercise |: Consider the following over-constrained CSP
x, U {1,2}, x, 00 {2,3}, x; 0 {2,3}, x, U {1,2,3}
X 2 X,
22X+ Xy < X3+ X4
Xy # X3

X3 F Xy

a. compute a solution to the CSP using the Partial CSP approach
b. apply the cost-based approach to the CSP

- define a suitable violation measure for each constraint

- choose a suitable aggregation of cost variables

- compute a solution

25
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Filtering algorithms for the soft alldifferent constraint

26



Softening alldifferent %@E Cornell University

Example:
x, U {a,b}, x, I {a,b},
x; O {a,b}, x, U {b,c},
alldifferent(x;,x,,X3,X4)

Over-constrained CSP; we need to soften the alldifferent constraint:
introduce cost variable z
define some violation measure, say

minimize z

Result:
x, U {a,b}, x, I {a,b},
x5 O {a,b}, x, U {b,c},
z J{0,1,2,3,....}
soft_alldifferent(x,,x,,X3,X4,z,1)

minimize z

But what is a good violation measure?
27



Violation measures

General violation measures:
* variable-based y:

— minimum number of variables that need to change their value in order to
satisfy the constraint

* decomposition-based [,

— minimum number of violated constraints in Einary decomposition/
'

[Petit et al., 2001] alldifferent(x,,X,,X3,X,)

X F X0, X FX3,X, FX

28



Violation measures %@E Cornell University

variable-based violation measure | :

var®

“minimum number of variables that need to change value in order to satisfy the
constraint”

x, U {a,b}, x, U {a,b},
x; [ {a,b}, x, U {b,c},
alldifferent(x,x,,x3,X,)

Xp | X2 | X3 | X4 | Har
a a a b 2
a a b b 2 equally bad?
a a b C I
a a b 2
a a C I

29



Violation measures %@E Cornell University

decomposition-based violation measure |1,
113 . . . . .. ’
number of violated constraints in binary decomposition

x, 0 {a,b}, x, 0 {a,b},
x, 0 {a,b}, x, O {b,c},
alldifferent(x;,X,,X3,X,) ee———

X FXq, X F X3, X, FX g,

Xp | X2 | X3 | X4 | Har | Maec
a a a b 2 3
a a b b 2 2 distinction
a a b C I I
a a b 2 2
a a C I I

30



Filtering algorithm for soft alldifferent
using variable-based violation measure

31



Filtering for variable-based violation %@% Cornell University

Theorem [Régin, 1994]:

solution to hard alldifferent < maximum matching in value graph

Example: Q @ @ matching in graph:

x, O {a,b}, x, [ {a,b}, x; I {b,c} ’ ‘ subset of non-touching edges

alldifferent(x,x,,x;) ) & ©

Filtering for hard alldifferent: remove all edges (and corresponding domain values)
that are not in any maximum matching

But what can we do if there is no solution?

Example: Q @
x, 0 {a,b}, x, 0 {a,b}, \ ‘ 4
x5 U {a,b}, x, U {b,c},
alldifferent(x,,x,,X3,X4) e' ‘G °

32



Filtering for variable-based violation %@% Cornell University

Fortunately, we can re-use these techniques

Theorem [Petit et al., 2001]: for alldifferent

minimum value of [ (X,,X,,...,X,)

n - value of maximum matching in value graph

Example:

x, U {a,b}, x, U {a,b}, Q @ @ @

x5 0 {a,b}, x, 0 {b,c}, “(
alldifferent(x,x,,X3,X4) ' ‘G

n - value of maximum matching=4 -3 = |,

minimum value for 1, is | (see before)

33



Filtering for variable-based violation

Filtering rules for x,,x,,...,x_ in soft_alldifferent(x,,x,,....x ,z,l, ,.):

Let M be maximum matching in value graph

if (n - [M|) > max(D(z)) then constraint is inconsistent
if (n - [M|) < max(D(z)) then all domain values are consistent
(namely, if we change the value of one variable |, can increase at most one)

if (n - |M|) = max(D(z)) then domain value d [J D(x) is consistent iff
edge (x,d) belongs to some maximum matching in value graph

Example:

x, U {a,b}, x, U {a,b},
x; U {a,b}, x, U {b,c}, z I {0, I}
soft_alldifferent(x,,x,,X3,X4,Z,\,.,,)

minimize z

maximum matching has size 3, hence minimum p,,.=4-3=|
this is equal to max(D(z)), so we need to check some edges for consistency:

value b in D(xy) is inconsistent because (x4b) not in maximum matching,
(maximum maching using (x4,b) has size 2)

note that also value 0 in D(z) is inconsistent
34



Filtering for variable-based violation

To find consistent edges (similar to hard alldifferent):

Theorem [Petersen, 1891]:

given maximum matching M, any edge e is in some maximum matching iff
e einM,or
* e on even-length M-alternating path starting from M-free vertex, or

* e on even-length M-alternating circuit

Example:
x, U {a,b}, x, I {a,b},
x; U {a,b}, x, U {b,c}, z I {0, I}
soft_alldifferent(x,,x,,X3,X4,Z,\,.,,)

minimize z
even-length M-alternating path starting from M-free vertex: x; —b—x, —a—x,

even-length M-alternating circuit: x;, —a —x, —b—x,

again, edge (x4,b) not in maximum matching

35



Filtering for variable-based violation

Algorithm to make soft_alldifferent(x,,x,,....x ,z,1

var) Arc consistent [Petit et al., 2001]:
compute maximum matching M in value graph +——O(mvn) [Hopcroft & Karp, 1973]

if (n - |[M| > max(D(z)) return inconsistent

else if (n - |M| < max(D(z)) return consistent

else { Y
remove all edges (and corresponding domain values) not in any maximum size matching

O(m+n) [Tarjan, 1972]

if some domain is empty return inconsistent

}
update min(D(z)) = n - |M|
if D(z) is empty return inconsistent

else return consistent Notation: m denotes #edges in graph

Notes:

Checking consistency is done once (in O(mvVn) time) while the filtering is done separately
(in O(m) time).

The algorithm for computing the maximum matching is incremental. When k variables have
changed/lost their value (during search or propagation), we need at most O(km) steps to
re-compute a maximum matching.

36
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Exercise 2: Consider the following COP
x, U {c,d}, x, O {a,b,c}, x5 U {c,d}, x, U {a,b,d}, x5 U {c,d}, x, U {a,b,c}, z T {0, 1,2}
soft_alldifferent(x,,x»,X3,X4,X5,X¢,Z,},5,)

minimize z

a. compute W, (X,X5,X3,X,Xz,X,) for various tuples
b. make the soft_alldifferent constraint arc consistent

37



Intermezzo: Flow theory
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Flow theory @ Cornell University

Let G=(V,A) be a directed graph with vertex set V and arc set A. To each arc allA
we assign a capacity function [d(a),c(a)] and a weight function w(a).

Let s,tlIV. A function f: A Qs called an s-t flow (or a flow) if
 f(a) 2 0 forall alA

* D entersy F(@) = 22 eaves v f(@) for all vOIV (flow conservation)
* d(a) =f(a) < c(a) for all alJA

Define the cost of a flow as 2. -, w(2)f(a). A minimum-cost flow is a flow with
minimum cost.

flow (in blue) with cost 8

39




Alternative graph representation %@% Cornell University

Fact: matching in bipartite graph < integer flow in directed bipartite graph

Step |: direct edges from X to D(X)
Step 2: add a source s and sink t

Step 3: connect s to X, and D(X) to t
Step 4: add special arc (t,s)

all arcs have capacity [0,1] and weight O
except arc (t,s) with capacity [0, min{|X|,|D(X)|}]

Proof: apply above construction

“="" define flow on arc in M to be |, extend flow to s and t

“[J” capacities ensure that all x in X and d in D(X) have at most | unit in-flow or out-flow
hence edges between X and D(X) with flow | define a matching

40



Alternative graph representation

Example:
x, U {a,b}, x, I {a,b},
x; U {a,b}, x, U {b,c},
alldifferent(x;,x,,x3,X4)

maximum flow (in red) corresponds to
X|=a, X,=b, x,=c

but then x5 has no value

Goal: transform graph for soft alldifferent so that
—all variables can be assigned a value

—flow captures variable-based violation measure
Solution: insert additional weighted arcs and compute weighted flow

In Example, flow has cost | (it uses one weighted arc) and [
(minimum) solution

var 18 | in corresponding

41



Alternative graph representation %@% Cornell University

More formally [v.H. et al., 2006]:
e for all dLJD(X) with k incoming arcs: add arc (d,t) with capacity [0,k-1] and weight |
e for all x[IX: set capacity of arc (s,x) to [I,1], i.e. force x into solution

* minimum-cost flow < solution to soft_alldifferent minimizing |,

Example:
x, U {a,b}, x, I {a,b},
x; U {a,b}, x, U {b,c}, z 0 {0, 1}
soft_alldifferent(x,,x,,X3,X4,Z,\, ,,)

minimize z

Note: minimum-cost flow can be computed in O(nm) time in this case, so previous
approach is preferable (O(mVn) time to compute maximum matching)

42



Filtering algorithm for soft alldifferent
using decomposition-based violation measure

“number of violated constraints in binary decomposition”

43



Graph representation

Again, start from basic network:

Example:
x, U {a,b}, x, I {a,b},
x3 O {a,b}, x, O {b,c}, z 0 {0, 1}
soft_alldifferent(x,,%»,X3,X4Z,Hyec)

minimize z

e.g. X;=X,=X3=X,4=b should give violation cost 6

What can we do?
Options:
* manipulate capacities
* add/remove arcs

* add weights to some arcs

44



Graph representation

We can do the following [v.H., 2004]:

« for all dLJD(X) with k incoming arcs: add arcs (d,t), (d,t),,...,(d,t),_,, with
capacity [0,1], and weight i for arc (d,t), (i=1,...,k-1)

e for all x[IX: set capacity of arc (s,x) to [I,1], i.e. force x into solution

* minimum-cost flow < solution to soft_alldifferent minimizing H,.,

Example: (x1) Bl - [0
x, U {a,b}, x, U {a,b}, _ y
x; U {a,b}, x, U {b,c}, z 0 {0, 1}
soft_alldifferent(x,x,,X3,X4,Z, M gec)

minimize z

Proof: every unit of flow entering dLID(X) leaves d (via arc from d to t) with lowest weight.
k such units correspond to k variables having the same value. hence, the (k+1)-th unit violates

k not-equal constraints, and contributes a cost of k (the weight of the arc it uses).

45



Filtering for decomposition-based violation

Algorithm to make soft_alldifferent(x,x,,...,.x ,z,l,..) arc consistent:

for all arcs (x,,d) {
set capacity of (x,d) to [I,I] /I force flow to represent x.=d
compute min-cost flow f
if cost(f) > max(D(z)) remove d from D(x,)
if D(x;) is empty return inconsistent
}
update min(D(z)) 2 min(cost(f))
if D(z) is empty return inconsistent

else return consistent

Drawbacks:
* no separation between consistency check and filtering
« filtering relatively expensive: m flow computations each of O(mn) time complexity

e algorithm not incremental: start from scratch every time

Use flow theory to improve algorithm

46



Intermezzo: Flow theory (cont’d)
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Flow theory %;C r%j Cornell University

Given directed graph G=(V,A) and a flow f in G, the residual graph G, is defined as
(V,A)) where for all a LI A,

a [ A, if f(a) < c(a) with capacity [max{d(a) — f(a), 0}, c(a) — f(a)] and weight w(a)
a! O A if f(a) > d(a) with capacity [0, f(a) — d(a)] and weight —w(a)

New capacities express how much more flow we can put on arc a or subtract from it (via a’')

G and flow f G,

[0,2], w=1

48



Filtering for decomposition-based violation

Theorem [e.g., Ahuja et al., 1993]:

f minimum-cost flow in G
P shortest d—x; path in G,

g

minimum-cost flow f in G with f(x,,d) = | has
cost(f) = cost(f) + cost(P)

G and minimum-cost flow f G,

49



Filtering for decomposition-based violation

Apply shortest-path theorem to improve filtering algorithm [Régin, 1999 & 2002]:

compute minimum-cost flow f in G

if cost(f) > max(D(z)) return inconsistent

for all arcs (x;,d) {
compute minimum-cost d-x; path P in G,
if cost(f) + cost(P) > max(D(z)) remove d from D(x))
if D(x,) is empty return inconsistent

}

update min(D(z)) 2 cost(f)

else return consistent

- [0.1] -
() > ‘*Jo’/']

50

G and minimum-cost flow f (in red) G,



Filtering for decomposition-based violation @E Cornell University

Apply shortest-path theorem to improve filtering algorithm [Régin, 1999 & 2002]:

compute minimum-cost flow f in G
if cost(f) > max(D(z)) return inconsistent
for all arcs (x;,d) {
compute minimum-cost d-x; path P in G,
if cost(f) + cost(P) > max(D(z)) remove d from D(x))

if D(x,) is empty return inconsistent

}
update min(D(z)) = cost(f)

else return consistent

Improvements:
* consistency check and filtering are now separated
» filtering efficient: all shortest paths can be computed together in O(m) time [v.H.,2004]

* algorithm incremental: with k changes new flow can be computed in O(km) time

51



Exercises @E Cornell Universit

Exercise 3: Consider the following COP
x, U {c,d}, x, O {a,b,c}, x5 U {c,d}, x, U {a,b,d}, x5 U {c,d}, x, U {a,b,c}, z T {0, 1,2}
soft_alldifferent(x,,x»,X3,X4,X5,X¢,Z,H gec)

minimize z

a. compute My (X[,X,,X3,X,4,Xs,X,) for various tuples
b. make the soft_alldifferent constraint arc consistent
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Exercises gé =8 Cornell University

o

Exercise 4 (more challenging): Find a polynomial algorithm that finds all shortest paths
between values and variables in the residual graph (given minimum-cost flow)
associated to decomposition-based soft_alldifferent.

Hint |: For some pairs the shortest path does not visit t, for others it does.
Hint 2: Strongly Connected Components can be computed in O(m+n) time [Tarjan, 1972].

G and minimum-cost flow f (in red) G

oy L.
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Filtering algorithms for the soft global cardinality constraint
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Global cardinality constraint %@% Cornell University

A global cardinality constraint is defined as
gee(X, 1, u)
where
X is set of variables {x,,x,,...,x_}
| and u are arrays of (constant) integers, such that

domain value d is used between |, and u, times.

Example:
x, 0 {0,1}, x, 10 {0, 1,2}, x5 OJ {1,2}, x, J {1,2,3}
b=0, I,=1, L=0, =1,
up=lu =2, u;=2,u3=1, »rewrite gcc({x;,%5,X3,%4}, [0,1,0,1], [1,2,2,1])

gee({x,xpx3,%4}, I, U)
A solution: x,=0, x,=1, X3=2, x,=3

Efficient arc consistency filtering algorithm for gcc in O(mn) time [Régin, 1996], recently
improved to O(mVn) time [Quimper et al., 2004]

Special case: alldifferent = gcc with I=[0,0.,...,0] and u=[1,1,...,1]
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Softening global cardinality constraint %@% Cornell University

Example:
x, O {1,2}, x, O {1}, x3 O {I,2}, x, O {I}
gee({xxpx3x4} [1,3], [2,5])

Over-constrained CSP; we need to soften the gcc:
introduce cost variable z

define some violation measure, say

minimize z

Result:
x, O{1,2}, x, O {1}, x; O {I,2}, x, O {I}
z [1{0,1,2,3,....}
soft_gce({x,%5,X3,%4}, [1,3], [2,5],2,1)
minimize z

Again, what is a good violation measure?
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Violation measures %@E Cornell University

General violation measures:
* variable-based y:

— minimum number of variables that need to change their value in order to
satisfy the constraint

* decomposition-based [,

— minimum number of violated constraints in binary decomposition
We can apply U, but what is binary decomposition of gcc?
Example:

x, O {1,2}, x, O {I}, x3 O {1,2}, x, O {I}
gee({x X34} [1,31, [2,5])

Mo (1,1,1,1) = 3 (e.g. change x,, X, and x; to 2)
Myar(2,1,2,1) = | (e.g. change x, to 2)
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Violation measures

Rewrite |1, in terms of ‘shortage’ and ‘excess’ functions [v.H. et al., 2006].
Let X = {X|,Xy,....x.} and dLID(X). Then

s(X,d) = { ta — i | 2 =d}}| if {zi|2i=d} <lq shortage of value d
’ 0 otherwise
e(X,d) = i [ 2i = d}| - ua if [{2; | 2; = d}| 2 ua excess of value d
’ 0 otherwise
We have
Pvar (X) = max ( Z s(X,d), Z e(X, d))
d d
Example:

x, O {1,2}, x, O {I}, x3 O {1,2}, x, O {I}
gee({xXxpx3x4}, [1,3], [2,5])

for X=(1,1,1,1): s(X,1)=0, s(X,2)=3, e(X,1)=2, e(X,2)=0, hence p,(I,1,1,1) = max(3,2)=3

for X=(2,1,2,1): s(X,1)=0, s(X,2)=1, e(X,1)=0, e(X,2)=0, hence Y. (2,1,2,1) = max(1,0)=I
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Violation measures

Example:
x, O {1,2}, x, O {I}, x3 O {1,2}, x, O {I}
gee({x,xx3,%4}, [2,3], [3,5])

for X=(2,1,2,1): s(X,1)=0, s(X,2)=1, e(X1)=0, e(X,2)=0, hence Y. (2,1,2,1) = max(1,0)=I
but this is wrong! we can never assign 2+2=5 values to only 4 variables!

Problem: |, only applicable if 2. [, < |X| £ 2, u,

Remedy: Define new ‘value-based’ violation measure p.(X) = Z (s(X,d) +e(X,d))
d

( compare:  jiya (X) = max ( Y s(X,d), > e(X,d)) )

d d

Example:
x, O {1,2}, x, O {I}, x3 O {1,2}, x, O {I}
gee({x,x,x3,%4}, [2,3], [3,5])

for X=(1,1,1,1): s(X,1)=0, s(X,2)=3, e(X,1)=2, e(X,2)=0, hence Y, (I,I,I,1) = 0+3+2+0=5
for X=(2,1,2,1): s(X,1)=0, s(X,2)=1, e(X,1)=0, e(X,2)=0, hence W ,(2,1,2,1) = 0+1+0+0=]|
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Exercises gé =8 Cornell University

o

Exercise 5: Consider the following COP

x, U {3,4}, x, 00 {2,3}, x; U {3,4}, x, U {I,2,4}, x; I {3,4}, x, U {1,2,3}, z 0 {0,1,2}
soft_gcc(X(,X9,X3,X4Xs,Xe,[3,1,0,0],[5,3,1,1],z,)

minimize z

compute M, (X;,X5,X3,X4Xe,X,) and L (X [,X,,X3,X4,X5,X¢) for various tuples

fivar (X) = max ( D s(X,d), Y e(X, d)) ma(X) = > (s(X,d) +e(X,d))
d d d
Solution:
X| | X9 | X3 | X4 | X5 | Xg [SOK1)[5(X,2)[5(X,3)[s(X,4) [e(X,1)[e(X,2)|e(X,3)|e(X:4)| Hyar | Myal
312 (31 (3|1 I 0 0 0 0 0 2 0 2 |3
4 13[4 |4(4|3]| 3 I 0 0 0 0 I 3 4 | 8
3124 (1 |3]1 I 0 0 0 0 0 I 0 I 2
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Filtering algorithm for soft gcc
using variable-based violation measure
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Filtering for variable-based violation %@% Cornell University

Theorem [Régin, 1996]:

solution to hard gcc < flow in particular graph

Example:
x, O {1,2}, x, O {I}, x3 O {I,2}, x, O {I}
gec(fx g, [1.31, [2.5)

for each arc a, capacity
indicated as ( d(a), c(2) )

over-constrained gcc:

no flow exists

what can we do!?

insert weighted arcs!? 6



Filtering for variable-based violation %@% Cornell University

We can do the following [v.H. et al., 2006]:
e for all pairs u,v[ID(X): add arcs (u,v) with capacity [0,|X]|], and weight |
* minimum-cost flow < solution to soft_gcc minimizing [

var

Example:
x, O{1,2}, x, O {1}, x; O {I,2}, x, O {I}
soft_gcc({x,%5,X3,%4}, [1,3], [2,5], Z, H,,,)

flow with cost |
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Filtering for variable-based violation

Algorithm to make soft_gcc(X,l,u,z,\,. ) arc consistent:

var

for all arcs (x,,d) {
set capacity of (x,d) to [I,I] /I force flow to represent x.=d
compute min-cost flow f
if cost(f) > max(D(z)) remove d from D(x,)

if D(x;) is empty return inconsistent

}
update min(D(z)) 2 min(cost(f))
if D(z) is empty return inconsistent

else return consistent

Drawbacks (again):
* no separation between consistency check and filtering

» filtering relatively expensive: m flow computations each of O(n(m+n log n)) time
(each flow computes n shortest paths in O(m+n log n) time)

 algorithm not incremental: start from scratch every time
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Filtering for variable-based violation

Again, apply shortest-path theorem to improve filtering algorithm:

compute minimum-cost flow f in G
if cost(f) > max(D(z)) return inconsistent
for all arcs (x;,d) {
compute minimum-cost d-x; path P in G,
if cost(f) + cost(P) > max(D(z)) remove d from D(x))

if D(x,) is empty return inconsistent

}
update min(D(z)) = cost(f)
return consistent 72
\
O
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Filtering for variable-based violation

Again, apply shortest-path theorem to improve filtering algorithm:

compute minimum-cost flow f in G

if cost(f) > max(D(z)) return inconsistent

for all arcs (x;,d) {
compute minimum-cost d-x; path P in G;
if cost(f) + cost(P) > max(D(z)) remove d from D(x))
if D(x,) is empty return inconsistent

}

update min(D(z)) 2 cost(f)

return consistent

Improvements:
* consistency check and filtering are separated
 filtering more efficient: m-n shortest paths computations

* algorithm incremental: with k changes new flow can be computed with k shortest
paths computations

Note: algorithm literally the same as for soft_alldifferent with [, "



Exercises gé =8 Cornell University
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Exercise 6: Consider the following COP

x, U {3,4}, x, 00 {2,3}, x; U {3,4}, x, U {I,2,4}, x; U {3,4}, x, U {1,2,3}, z 0 {O, I}
soft_gcc(X,X9,X3,X4Xs,Xe,[3,1,0,0],[5,3,1,1],z,1,,,)

minimize z

make the soft_gcc arc consistent

Solution: tuple with minimum violation is (3,2,4,1,3,1), with . = |
(in that solution we can change value of x; from 3 to | to satisfy the constraint)

arc consistency (note that max(D(z)) = 1):
x, U {3,4}, x, O {2}, x; U {3,4}, x, U {I1,2}, x; [ {3,4}, x, U {1,2}, z O {1}
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Filtering algorithm for soft gcc
using value-based violation measure

68



Filtering for value-based violation %@% Cornell University

Again, start from basic network

Example:
x, O {1,2}, x, O {I}, x3 O {I,2}, x, O {I}
gee({xxpx3x4} [1,3], [2,5])

e.g. when all variables are assigned to |, l,,=2+3=5

where to insert weighted arcs?

shortage=3 uval(X) _ Z (S(X’ d) N e(X: d))
1
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Filtering for value-based violation %@% Cornell University

We can do the following [v.H. et al., 2006]:
» for all dLUD(X): add arcs (s,d) with capacity [0,/,], and weight |
 for all dLJD(X): add arcs (d,t) with capacity [0,max{|X]|-u,,0}], and weight |

minimum-cost flow < solution to soft_gcc minimizing U

val
Example: x, O{1,2}, x, O {1}, x; O{1,2}, x, O {I}
soft_gcc({x,%5,X3,%4}, [1,3], [2,5], Z, K,

flow with cost 5
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Filtering for value-based violation

Example: x, O {1,2}, x, O {1}, x; O {1,2}, x, O {I}
soft_gce({x,X5,X3,%4}, [1,3], [2,5], Z, K4

minimum-cost

flow with cost |
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Filtering for value-based violation gé! %} Cornell University

Algorithm to make soft_gcc(X,,u,z,4,,) arc consistent (improved version):

compute minimum-cost flow f in G

if cost(f) > max(D(z)) return inconsistent

for all arcs (x;,d) {
compute minimum-cost d-x; path P in G,
if cost(f) + cost(P) > max(D(z)) remove d from D(x))
if D(x,) is empty return inconsistent

}

update min(D(z)) = cost(f)

else return consistent 2

Note: Same algorithm as for soft_gcc with [,




Filtering for value-based violation gé r%} Cornell University

residual graph G;
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Exercise 7: Consider the following COP
x,; 0{3,4}, x, 0{2,3}, x; 0 {3,4}, x, 0 {1,2,4}, x; 0 {3,4}, x, 0 {1,2,3}, z 0 {0,1,2}
soft_gcc(X,X9,X3,X4Xs,Xe,[3,1,0,0],[5,3,1,1],z,1,5)

minimize z

make the soft_gcc arc consistent

Solution: tuple with minimum violation is (3,2,4,1,3,1), with |, =2
(in that solution we can change value of x; from 3 to | to satisfy the constraint)

arc consistency (note that max(D(z)) = 2):
x, U {3,4}, x, 00 {2}, x; U {3,4}, x, U {I1,2}, x; [ {3,4}, x, U {1,2}, z O {2}
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Final remarks

Previous algorithms establish arc consistency on soft_gcc in O(n(m + n log n)) time.

Recently, Zanarini et al. [2006] presented an alternative approach that improves the
running time to O(mVn). Their approach extends the algorithm of Petit et al. [2001]
for the variable-based soft alldifferent:

* apply result of Quimper et al. [2004] to compute two flows in the value graph:

— one flows w.r.t. lower bounds I: |
— one flow w.r.t. upper bounds u: f,
* minimum shortage is
— 0if 2414 =1, ie, all lower bounds are respected
— 244 —f otherwise
* minimum excess is
— 0if |X]| =f, i.e, all upper bounds are respected
— |X] —f, otherwise
 filtering:
— forcing x=d increases |, at most |

— forcing x=d increases [l at most 2 (hence bit more complex)

75



Filtering algorithm for the soft regular constraint
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Regular constraint

A regular constraint is called in full a

“regular-language-membership-constraint”  [Pesant, 2004]

A regular language can be represented by a deterministic finite automaton (DFA):

automaton accepts string < string belongs to regular language

a

Example: R
a

qo is start state, q; and q, are end states &/

arrow is transition from one state to another

each transition has a label DFA

automaton accepts string < string belongs to regular language

e.g. string aabbaa and ccc accepted, string caabbac not accepted

constraint regular(x;,x,,....x,,DFA): ‘string’ x,x,""x, is accepted by DFA
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Regular constraint

Why is the regular constraint useful?

Consider the problem to roster nurses in a hospital
* each nurse works at most one shift a day
» each shift contains 8 consecutive hours
— day shift: 8am-4pm
— evening shift: 4pm-12am
— night shift: 12am-8am
« after a night shift, nurse needs to take one day rest

« after an evening shift, nurse may not work a day shift

Feasible roster (7 days) for a nurse: day - day - evening - night - rest - day — day

DFA
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Regular constraint %ﬁs %ﬁ Cornell University

for each nurse, introduce variables X = {x,,x,,....X;} representing shift on day 1,2,...7
with domains D(x) = {r,d,e,n} for all x [J X

model the pattern using a regular constraint: DFA

regular(X, DFA)

solution to this constraint <

string X,X,"**X, (roster) is accepted by DFA

Remark: also other constraints involved, for example global cardinality constraints to
express minimum and maximum number of nurses during each shift

In short:
* regular constraint can be used to capture ‘patterns’ in a sequence of variables

« for example, we can represent stretch or period constraints with a regular constraint
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Regular constraint %ﬁs %ﬁ Cornell University

Theorem [Pesant, 2004]:

solution to regular < path from q, to ‘end vertex’ in unfolded graph

Example: x, O {a,)z(,c}, x, 0 {a,b,c}, x; 0 {a,b,c}, x, I {a%,c}
regular(x,x,,X3,X4,DFA)

unfolded graph

Filtering: remove all arcs whose label is not supported by domain value and vice versa
remove all arcs not on path from q, to ‘end vertex’ and update domains
(linear time in size of graph)
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Regular constraint %@E Cornell University

Example: over-constrained CSP
x, U {a,c}, x, U {a,b,c}, x; U {a,b,c}, x, UJ {b,d}
regular(x,X,,X3,X4,DFA)

Soften the regular constraint, as usual:
x, U {a,c}, x, U {a,b,c}, x; O {a,b,c}, x, LI {b,d}, z U {0,1,2,...}
soft_regular(x,,x,,%3,%4,DFA,z,|1)

minimize z

Again, what violation measure |l can we apply?

Exercise 8: compute | (2,3,a,b) and U (c,b,a,d) for the above regular constraint

var var

Solution:
W, (a,a,a,b) =2
H,..(c,bad) =2

8l



Filtering algorithm for soft regular constraint
using variable-based violation measure
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Filtering for variable-based violation %ﬁs “g}% C

Example:

x; 0 {abic}, x, 0 fab,ch, x; 0 {a,b,c}, x4 D

regular(x,x,,X3,%x4,DFA)

Can we add weighted arcs to the unfolded graph?
* e.g., we want to use value b or d for x,

* we must start from q,

* we must end in end vertex q; or q,

* we want to capture [, :

var®

— allowed path must have cost of |,

For clarity, remove clearly infeasible arcs
without touching the domains

Can we insert weighted arcs now?
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Filtering for variable-based violation

More formally [v.H. et al., 2006]:
« for every arc in the unfolded graph, add parallel arc with ‘void’ label and weight |

* minimum-cost path from q, to end vertex = solution to soft_regular minimizing .

Example:
x,UD(x,), x,0D(Xx5), X300D(x3), x40D(x,4), zLI{0, 1,2,...},
soft_regular(x,,X,,X3,%X4,DFA,Z,\L,,.)

minimize z

filtered
unfolded graph
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Filtering for variable-based violation gé! %} Cornell University

Algorithm to make soft_regular(X,DFA,z, ) arc consistent:

compute shortest path from q, to all other vertices
compute shortest path from end vertices to all other vertices (by reversing the arcs)
update min(D(z)) 2 cost(qy-end path)
if D(z) is empty return inconsistent
else for all x[IX {

for all arcs (u,v) in layer corresponding to x {

remove arc if cost(qy-u path) + cost(u-end path) + cost(u,v) > max(D(z))

}

update D(x)

if D(x) is empty return inconsistent X, X %, X

}

return consistent
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Filtering for variable-based violation

Algorithm to make soft_regular(X,DFA,z, ) arc consistent:

compute shortest path from q, to all other vertices
compute shortest path from end vertices to all other vertices (by reversing the arcs)
update min(D(z)) 2 cost(qy-end path)
if D(z) is empty return inconsistent
else for all x[IX {

for all arcs (u,v) in layer corresponding to x {

remove arc if cost(qy-u path) + cost(u-end path) + cost(u,v) > max(D(z))

}

update D(x)

if D(x) is empty return inconsistent

}

return consistent

Notes:
» shortest paths can be computed together in 2*O(m) time (unfolded graph is acyclic)
* total time complexity O(m), where m is number of arcs

* same time complexity as hard regular constraint
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Exercises %@ ) Cornell University

Exercise 8: Consider the following COP

x, U {a,b,c,d}, x, U {a,b,c,d}, x; U {a,b,c}, x, I {b,d}, z U {0, 1}
soft_regular(x,,X,,X3,%X4,DFA,Z,\L,,.)

minimize z

make the soft_regular constraint arc consistent

Solution: tuple with minimum violation is (a,b,a,b), with [, = |

(in that solution we can change value of x, from b to a to satisfy the constraint)

arc consistency (note that max(D(z)) = 1):
x, U {a,c}, x, U {a,b,c}, x; U {a,b,c}, x, I {b,d}, z LI {I}
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Conclusions and perspectives
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Conclusions %@% Cornell Universit
\&

We have presented efficient filtering algorithms for several soft global constraints:

constraint violation measure consistency check arc consistency
hard alldifferent - O(m\n) O(m)

soft alldifferent variable-based O(m\n) O(m)

soft alldifferent decomposition-based O(mn) O(m)

gcc - O(mvn) O(m)

soft gcc variable-based O(m\n) O(m)

soft gcc value-based O(mn) O(m)
regular - O(m) O(m)

soft regular variable-based O(m) O(m)
Messages:

» soft global constraints are very useful for filtering purposes!

» soft versions practically as efficient to compute as hard version!
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Perspectives

There are many more global constraints, often not flow-based. How to
make them soft?

Examples: circuit, sequence, element, cumulative,...

Clearly, some violation measures are more refined than others, for example
variable-based versus decomposition-based. Are there more suitable
violation measures?! Can we identify useful relationships between them?

How to aggregate several soft global constraints?

soft_alldifferent(X,,z|,l,,,)
soft_alldifferent(X,,z,,Myec)
soft_gcc(Xs3,lu,z3,1,,)
soft_regular(X,,DFAz,,\,.,)

minimize f(z,,z,,23,z,) sum? weighted sum?! bound some of the cost variables?
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