
Soft Global Constraints

Tutorial - CP 2009

Willem-Jan van Hoeve

Tepper School of Business

Carnegie Mellon University

2

Outline

• Constraint programming in brief

• Soft constraints
• Soft alldifferent constraint

• Soft global cardinality constraint

• Soft regular constraint

• Other soft global constraints
• Constraint-based local search

• Conclusions and perspectives

3

Main references for this tutorial

T. Petit, J.-C. Régin, and C. Bessière. Specific Filtering Algorithms for Over-
Constrained Problems. In Proceedings of the Seventh International Conference
on Principles and Practice of Constraint Programming (CP), volume 2239 of
Lecture Notes in Computer Science, pages 451–463. Springer, 2001.

W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming: Flow-
Based Soft Global Constraints. Journal of Heuristics, 12(4):347–373, 2006.

W.-J. van Hoeve. Over-Constrained Problems. In M. Milano and P. Van
Hentenryck (eds.), Hybrid Optimization: the 10 years of CPAIOR, chapter 6. To
appear.

(contains many more references)

4

Constraint Programming

5

Example:
variables/domains x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

CP Solving

6

x3

2 3

x3

2 3

2 3

x3

2 3

x3

2 3

2 3

CP Solving

x1

x2

x3

2 3

x3

2 3

x2

x3

2 3

x3

2 3

0 1 0 1

1 2

Example:
variables/domains x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

7

Example:
variables/domains x1 ∈ {1}, x2 ∈ {0,1}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

x3

2 3

x3

2 3

0 1

CP Solving

x1

x2 x2

x3

2 3

x3

2 3

0 1

1 2

8

Example:
variables/domains x1 ∈ {2}, x2 ∈ {0,1}, x3 ∈ {2,3}

constraints x1 > x2

 x1 + x2 = x3

alldifferent(x1,x2,x3)

3

1

x3

2 3 2

0

CP Solving

x1

x2

1 2

x3

3

1

x3

x2

9

Goal: Remove as many inconsistent values as efficiently possible
for each constraint individually

More filtering: Group constraints together?

Problem: Solving arbitrary conjunction of constraints is NP-hard

Solution:
• group constraints together that occur frequently in applications,

and capture tractable structure

• result is called a global constraint

• Examples: alldifferent, cumulative, global-cardinality, among,
sequence, circuit, element, regular, ...

Domain Filtering

10

Soft Constraints

11

Over-constrained problems

• Assign seats for overbooked airplane; no solution that carries
all passengers

• Create roster for employees with conflicting preferences

• Factory wants to satisfy demands of all customers, but has
limited resources

(Many industrial problems are essentially over-constrained)

A CP solver will report that no solution exists. How to find
acceptable ‘solution’?

• Soften (some of) the constraints of the problem

• Compute solution that minimizes conflicts or maximizes
satisfaction

12

Soft constraints

A hard constraint must always be satisfied.

A soft constraint does not need to be satisfied, but we would like it to be.

Example:
Over-constrained CSP with two soft constraints:

x1 ∈ {1,2}, x2 ∈ {2,3}, x3 ∈ {2,3}

(i) x1 > x2

(ii) x1 + x2 = x3

(x1,x2,x3) = (1,2,2) both constraints violated
(x1,x2,x3) = (1,2,3) constraint (i) violated

(x1,x2,x3) = (1,3,2) both constraints violated
(x1,x2,x3) = (1,3,3) both constraints violated
(x1,x2,x3) = (2,2,2) both constraints violated

(x1,x2,x3) = (2,2,3) both constraints violated
(x1,x2,x3) = (2,3,2) both constraints violated
(x1,x2,x3) = (2,3,3) both constraints violated

minimum violation or maximum satisfaction

13

‘Traditional’ approaches to soft CSPs

- Partial CSP [Freuder & Wallace, 1992]

maximize number of satisfied constraints (previous example)

- Weighted CSP [Larossa, 2002]

associate a weight to each constraint

maximize weighted sum of satisfied constraints

- Possibilistic CSP [Schiex, 1992]

associate weight to each constraint representing its importance

hierarchical satisfaction of most important constraints, i.e. maximize
smallest weight over all satisfied constraints

- Fuzzy CSP [Dubois et al., 1993] [Ruttkay, 1994]

associate weight to each tuple of every constraint

maximize smallest preference level (over all constraints)

These approaches can be modeled using valued CSPs [Schiex, Fargier, Verfaillie,

1995] or semi-rings [Bistarelli, Montanari, Rossi, 1997]

14

Previous approaches typically use a functional representation or an explicit
representation (tuples), and usually are limited to constraints of small arity
(unary, binary, sometimes ternary)

• If constraints are represented explicitly (as in e.g., Fuzzy CSPs), domain
filtering may become computationally very expensive, or not very effective

• Difficult to exploit domain structure using global constraints

• Standard CP solvers (ILOG, Comet, Eclipse, Gecode, Minion,...) are not
implemented to apply the previous methods

Ideally, we would like to apply soft constraints in a CP solver just as any other
constraint; using an implicit representation where possible (for example
using global constraints), with efficient and effective domain filtering
algorithms

Some drawbacks

15

From soft constraints to hard optimization constraints

Cost-based approach [Petit, Régin, and Bessiere, 2000] (see also [Baptiste et al., 1998]):

• Introduce a cost variable for each soft constraint
• This variable represents some violation measure of the constraint

• Optimize aggregation of all cost variables (e.g., take their sum, or max)

• Use upper bound on cost variable to apply cost-based filtering (with back-
propagation)

In this way

• soft global constraints become hard optimization constraints

• soft CSPs become hard COPs
• the cost variables can be used in other (meta-)constraints!

if (z1 > 0) then (z2 = 0)

• we can apply classical constraint programming solvers

Note: In this framework, we can also encode the previous approaches
[Petit et al., 2000]

16

From soft constraints to hard optimization constraints

Example: x ∈ [9000,10000] (x,y integer)
y ∈ [0,20000]

x ≤ y

Let’s make the constraint ‘x ≤ y’ soft by introducing a ‘cost’ variable z
representing the amount of violation, as the gap between x and y.

Suppose that we impose z ∈ [0,5]. By looking at the bounds of x and y, we can
immediately deduce that y ∈ [8995,20000].

Observations:

• We can exploit the semantics of this soft constraint for efficient domain
filtering algorithm (looking at the values one by one would have take at least
8995 steps)

• We can perform back-propagation of the cost variable to the other
variables

17

Softening global constraints

This approach also works for global constraints

General recipe for global constraint C(X), where X = {x1,x2,...,xn}:

1. define violation measure µ: D(x1) × D(x2) ×··· × D(xn) → R≥ such that
µ=0 iff C is satisfied and µ>0 otherwise

2. define cost variable z

3. then soften the constraint C as:
soft_C(X,z,µ) := (µ(X) ≤ z)

Previous example:

define violation measure µ≤(x,y) = max{x – y , 0}

soft≤(x,y,z,µ) := (µ(x,y) ≤ z), in other words, x - y ≤ z

Remark: All information is now embedded in µ

18

Filtering soft global constraints

Basic cost-based filtering algorithm for soft_C(X,z,µ) = (µ(X) ≤ z) :

for all x∈X and d∈D(x) {

compute minimum of µ with x=d

if minimum > max(D(z)) remove d from D(x)

if D(x) empty return inconsistent

}
update min(D(z)) ≥ min(all minima of µ)

if D(z) empty return inconsistent

else return consistent

Notes:
• Similar to classical filtering for ‘optimization constraints’

• Filtering establishes domain consistency on soft_C, i.e., we remove all domain values
That are not part of a solution to the constraint (this is the best possible)

• Different violation measures define different soft constraints, and thus different
filtering algorithms

• Time complexity depends on computation of minimum of µ

Always try to improve this:
Separate consistency check
from filtering

19

Softening global constraints

Remark: We define soft constraint as

soft_C(X,z,µ) := (µ(X) ≤ z)

Why not

soft_C(X,z,µ) := (µ(X) = z) ?

Because then domain consistency becomes often NP-hard (for
‘reasonable’ violation measure µ), while inequality makes it often
tractable

Alternative view:

• use equality in definition, but

• establish domain consistency w.r.t. X and ‘bound consistency’
w.r.t. z (effectively the same approach as with inequality)

20

Softening global constraints

Our goal is to design efficient filtering algorithms for soft global
constraints, that establish domain consistency, using cost-based
approach

Methodology:

1. Choose a global constraint

2. Define useful violation measure(s)
3. Design efficient filtering algorithm

Note: We will omit the objective ‘minimize z’ in our examples, and
let it depend on the problem at hand what to do with z

21

Violation measures

General violation measures [Petit et al., 2001]:
• variable-based µvar

– minimum number of variables that need to change their value in order
to satisfy the constraint (minimum Hamming distance to any solution)

– Example for alldifferent(x1,x2,x3,x4): µvar(1,2,2,2) = 2

• decomposition-based µdec

– number of violated constraints in binary decomposition

e.g., xi≠xj for all i<j is binary decomposition of alldifferent(x1,...,xn)
– Example for alldifferent (x1,x2,x3,x4): µdec(1,2,2,2) = 3

Other, more problem-specific violation measures [Beldiceanu and Petit, 2004]:

• object-based

– for example, number of late activities in scheduling problem
• graph-based

– for example, number of SCCs

22

Outlook

Here n is the number of variables, m is proportional to the sum of the domain sizes.

Time complexity of soft versions similar to hard versions!

23

Filtering algorithms for the soft alldifferent constraint

1. variable-based violation measure

2. decomposition-based violation measure

24

Softening alldifferent

Example: x1 ∈ {a,b}, x2 ∈ {a,b},
x3 ∈ {a,b}, x4 ∈ {b,c},

alldifferent(x1,x2,x3,x4)

Over-constrained CSP; we need to soften the alldifferent constraint:

introduce cost variable z
define some violation measure, say µ

Result: x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c},

z ∈ {0,1,2,3,....}
soft_alldifferent(x1,x2,x3,x4,z,µ)

We will consider the variable-based and graph-based violation measures

25

Violation measures

variable-based violation measure µvar:

“minimum number of variables that need to change value in order to satisfy
the constraint”

...

c

b

c

b

b

x4

............

1aba

2aba

1baa

2baa

2aaa

µvarx3x2x1

equally bad?

x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c},

alldifferent(x1,x2,x3,x4)

26

Violation measures

decomposition-based violation measure µdec:

“number of violated constraints in binary decomposition”

x1≠x2,x1≠x3,x1≠x4,

x2≠x3,x2≠x4,x3≠x4

distinction

x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c},

alldifferent(x1,x2,x3,x4)

...

1

2

1

2

2

µvar

...

c

b

c

b

b

x4

............

1aba

2aba

1baa

2baa

3aaa

µdecx3x2x1

27

Filtering algorithm for soft alldifferent
using variable-based violation measure

28

Filtering for variable-based violation

Theorem [Régin, 1994]:
solution to hard alldifferent ⇔ maximum matching in value graph

x1 ∈ {a,b}, x2 ∈ {a,b}, x3 ∈ {b,c}

alldifferent(x1,x2,x3)

Filtering for hard alldifferent: remove all edges (and corresponding domain
values) that are not in any maximum matching

But what can we do if there is no solution?

x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c},

alldifferent(x1,x2,x3,x4)

x1 x2 x3

a b c

x1 x2 x3

a b c

x4

matching in graph:

subset of non-touching
edges

29

Filtering for variable-based violation

Fortunately, we can re-use these techniques

Theorem [Petit et al., 2001]: for alldifferent

minimum value of µvar(x1,x2,...,xn)

=
n - value of maximum matching in value graph

Example:

x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c},

alldifferent(x1,x2,x3,x4)

n - value of maximum matching = 4 – 3 = 1,
minimum value for µvar is 1 (see before)

x1 x2 x3

a b c

x4

30

Filtering rules for x1,x2,...,xn in soft_alldifferent(x1,x2,...,xn,z,µvar):

Let M be maximum matching in value graph

• if (n - |M|) > max(D(z)) then constraint is inconsistent

• if (n - |M|) < max(D(z)) then all domain values are consistent
(namely, if we change the value of one variable µvar can increase at most one)

• if (n - |M|) = max(D(z)) then domain value d ∈ D(x) is consistent iff
edge (x,d) belongs to some maximum matching in value graph

Example:
x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c}, z ∈ {0,1}

soft_alldifferent(x1,x2,x3,x4,z,µvar)

|M| = 3, minimum µvar= 4 - 3 = 1, which is equal to max(D(z))
edge (x4,b) not in maximum matching

note that also value 0 in D(z) is inconsistent

Filtering for variable-based violation

x1 x2 x3

a b c

x4

31

Filtering for variable-based violation

To find consistent edges (same as hard alldifferent):

Theorem [Petersen, 1891]:

Given maximum matching M, any edge e is in some maximum matching iff

• e in M, or

• e on even-length M-alternating path starting from M-free vertex, or

• e on even-length M-alternating circuit

x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c}, z ∈ {0,1}

soft_alldifferent(x1,x2,x3,x4,z,µvar)

even-length M-alternating path starting from M-free vertex: x3 – b – x2 – a – x1

even-length M-alternating circuit: x1 – a – x2 – b – x1

again, edge (x4,b) not in maximum matching

x1 x2 x3

a b c

x4

32

Filtering for variable-based violation

Algorithm to make soft_alldifferent(x1,x2,...,xn,z,µvar) domain consistent

[Petit et al., 2001]:

compute maximum matching M in value graph

if (n - |M| > max(D(z)) return inconsistent

else if (n - |M| < max(D(z)) return consistent

else {

remove all edges (and corresponding domain values) not in any
maximum size matching

if some domain is empty return inconsistent
}

update min(D(z)) ≥ n - |M|

if D(z) is empty return inconsistent

else return consistent

Remarks: Separation between constraint check and filtering; incrementality

O(m√ n) [Hopcroft/Karp, 1973]

O(m+n) [Tarjan, 1972]

33

Intermezzo: Network Flows

34

Network Flows

Let G=(V,A) be a directed graph with vertex set V and arc set A. To each arc
a∈A we assign a capacity function [d(a),c(a)] and a weight function w(a).

Let s,t ∈ V. A function f: A→R is called an s-t flow (or a flow) if

• f(a) ≥ 0 for all a∈A

• ∑a enters v f(a) = ∑a leaves v f(a) for all v∈V (flow conservation)

• d(a) ≤ f(a) ≤ c(a) for all a∈A

Define the cost of flow f as ∑a∈A w(a)f(a). A minimum-cost flow is a flow with
minimum cost.

[0,3], w=0

d

s

a

b c

t

[2,4], w=2

[0,2], w
=0

[1,1], w=1 [0,1], w
=0

[1,6], w=1

[0
,2

],
w

=3

[0
,2

],
w

=1

1

1
1

2

1

1

1

0

special arc to ensure flow conservation

flow (in blue) with cost 10

2

[0,2], w=3

35

Alternative graph representation for alldifferent

Fact: matching in bipartite graph ⇔ integer flow in directed bipartite graph

Step 1: direct edges from X to D(X)

Step 2: add a source s and sink t

Step 3: connect s to X, and D(X) to t

Step 4: add special arc (t,s)

all arcs have capacity [0,1] and weight 0

except arc (t,s) with capacity [0, min{|X|,|D(X)|}]

x1 x2 x3

a b c

s

t

D(X)

X

[0,1]

[0,1]

[0,1]

[0,3] 1 1 1

11 1

1 1 1

3

36

Decomposition-based violation for alldifferent

Start from basic network:

Example:

x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c}, z ∈ {0,1}

soft_alldifferent(x1,x2,x3,x4,z,µdec)

e.g. x1=x2=x3=x4=b should give
violation cost 6

[1,1]

[0,1]

[0,1]

What can we do?

Options:
• manipulate capacities

• add/remove arcs

• add weights to some arcs

[4,4]

37

Graph representation

We can do the following [v.H., 2004]:
• for all d ∈ D(X) with k incoming arcs: add arcs (d,t)1, (d,t)2,...,(d,t)k-1, with

capacity [0,1], and weight i for arc (d,t)i (i=1,...,k-1)
• for all x ∈ X: set capacity of arc (s,x) to [1,1], i.e. force x into solution

• minimum-cost flow ⇔ solution to soft_alldifferent minimizing µdec

Example:
x1 ∈ {a,b}, x2 ∈ {a,b},

x3 ∈ {a,b}, x4 ∈ {b,c}, z ∈ {0,1}

soft_alldifferent(x1,x2,x3,x4,z,µdec)

[1,1]

[0,1] [0,1]

[4,4]

Note: minimum-cost flow in this graph can be computed in O(nm) time

38

Filtering for decomposition-based violation

Algorithm to make soft_alldifferent(x1,x2,...,xn,z,µdec) domain consistent:

for all arcs (xi,d) {

set capacity of (xi,d) to [1,1] // force flow to represent xi=d
compute min-cost flow f

if cost(f) > max(D(z)) remove d from D(xi)

if D(xi) is empty return inconsistent

}

update min(D(z)) ≥ min(cost(f))
if D(z) is empty return inconsistent

else return consistent

Improvements: Can use flow theory to make incremental, and to separate
consistency check (O(mn) time), and filtering (O(m) time)

39

Filtering algorithms for the
soft global cardinality constraint

1. variable-based violation measure

2. value-based violation measure

40

Global cardinality constraint

A global cardinality constraint is defined as gcc(X, l, u)

where X is set of variables {x1,x2,...,xn}
l and u are arrays of (constant) integers, such that

domain value d is used between ld and ud times.

x1 ∈ {0,1}, x2 ∈ {0,1,2}, x3 ∈ {1,2}, x4 ∈ {1,2,3}

gcc({x1,x2,x3,x4}, [0,1,0,1], [1,2,2,1])

a solution: x1=0, x2=1, x3=2, x4=3

Efficient domain consistency filtering algorithm for gcc in O(mn) time [Régin, 1996],
improved to O(m√n) time [Quimper et al., 2004]

Special case: alldifferent = gcc with l=[0,0,...,0] and u=[1,1,...,1]

41

Softening global cardinality constraint

Example:
x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

gcc({x1,x2,x3,x4}, [1,3], [2,5])

Over-constrained CSP; we need to soften the gcc:

introduce cost variable z
define some violation measure, say µ

Result:
x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

z ∈ {0,1,2,3,....}
soft_gcc({x1,x2,x3,x4}, [1,3], [2,5], z, µ)

What is a good violation measure?

42

Violation measures for gcc

General violation measures:
• variable-based µvar:

– minimum number of variables that need to change their value in order
to satisfy the constraint

• decomposition-based µdec:

– minimum number of violated constraints in binary decomposition

We can apply µvar, but what is binary decomposition of gcc?

Example:
x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

gcc({x1,x2,x3,x4}, [1,3], [2,5])

µvar(1,1,1,1) = 3 (e.g. change x1, x2 and x3 to 2)

µvar(2,1,2,1) = 1 (e.g. change x2 to 2)

43

Violation measures for gcc

Rewrite µvar in terms of ‘shortage’ and ‘excess’ functions [v.H. et al., 2006].
Let X = {x1,x2,...,xn} and d∈D(X). Then

Example: x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

gcc({x1,x2,x3,x4}, [1,3], [2,5])

for X=(1,1,1,1): s(X,1)=0, s(X,2)=3, e(X,1)=2, e(X,2)=0,
hence µvar(1,1,1,1) = max(3,2)=3

‘shortage’ of value d

‘excess’ of value d

We have

44

Example: x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

gcc({x1,x2,x3,x4}, [2,3], [3,5])

for X=(1,1,1,1): s(X,1)=0, s(X,2)=3, e(X,1)=1, e(X,2)=0,

hence µvar(1,1,1,1) = max(3,1)=3

but this is wrong! we can never assign 2+3=5 values to only 4 variables!

Problem: µvar only applicable if ∑d ld ≤ |X| ≤ ∑d ud

Remedy: Define new ‘value-based’ violation measure

Example (cont’d): µval(1,1,1,1) = 0+3+1+0=4

Violation measures for gcc

45

Filtering algorithm for soft gcc
using variable-based violation measure

46

Filtering for variable-based violation

Theorem [Régin, 1996]:
solution to hard gcc ⇔ flow in particular network

Example:
x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

gcc({x1,x2,x3,x4}, [1,3], [2,5])

for each arc a, capacity
indicated as (d(a), c(a))

(4,4)

over-constrained gcc:
no flow exists

what can we do?

insert weighted arcs?

47

Filtering for variable-based violation

We can do the following [v.H., Pesant, and Rousseau, 2006]:

• for all pairs u,v ∈ D(X): add arcs (u,v) with capacity [0,|X|], and weight 1

• minimum-cost flow ⇔ solution to soft_gcc minimizing µvar

Example:

x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

soft_gcc({x1,x2,x3,x4}, [1,3], [2,5], z, µvar)

(4,4)

(0,4), w
=1(0

,2
),

w
=1

1

1 1

1

1 1

1

1

1

3

1

4

flow with cost 1

48

Filtering for variable-based violation

Domain consistency filtering algorithm for soft_gcc(X,l,u,z,µvar) :

• Similar to network-based soft_alldifferent
• First compute minimum flow to check for consistency, in O(n(m+n log n))

time

• Filter all inconsistent arcs, in O(n(m+n log n)) time (using flow theory)

This can be improved to O(m√n) for consistency check and O(m) for filtering
(will show later)

49

Filtering algorithm for soft gcc
using value-based violation measure

50

Filtering for value-based violation (gcc)

Again, start from basic network

Example: x1 ∈ {1,2}, x2 ∈ {1}, x3 ∈ {1,2}, x4 ∈ {1}

gcc({x1,x2,x3,x4}, [1,3], [2,5])

e.g. when all variables are assigned to 1, µval=2+3=5

(4,4)

where to insert weighted arcs?
excess=2

shortage=3

1

1

1

1 1

1

1

1

51

Filtering for value-based violation (gcc)

We can do the following [v.H. et al., 2006]:
• for all d∈D(X): add arcs (s,d) with capacity [0,ld], and weight 1

• for all d∈D(X): add arcs (d,t) with capacity [0,max{|X|-ud,0}], and weight 1

• minimum-cost flow ⇔ solution to soft_gcc minimizing µval

(4,7)

(0,2) w=1

(0,0) w
=1

1

1

1

1 1

1

1

1

2

2

3 7

3

flow with cost 5

52

Filtering for value-based violation

Domain consistency filtering algorithm for soft_gcc(X,l,u,z,µval) :

• Again, similar to network-based soft_alldifferent and var-based soft_gcc
• First compute minimum flow to check for consistency,

in O((n+k)(m+n log n)) time, where k = |D(X)|

• Filter all inconsistent arcs, in O(n(m+n log n)) time (using flow theory)

Also this can be improved to O(m√n) for consistency check and O(m) for
filtering

53

Alternative approach

Zanarini, Milano and Pesant [2006] present an alternative approach that
improves the running time to O(m√n). Their approach extends the
algorithm of Petit et al. [2001] for the variable-based soft alldifferent:

• Apply result of Quimper et al. [2004] to compute two maximum flows in
the value graph (they correspond to ‘capacitated matchings’):
– one flow w.r.t. lower bounds l: fl (i.e., capacity of node i is li)

– one flow w.r.t. upper bounds u: fu (i.e., capacity of node i is ui)

• Minimum shortage is
– 0 if ∑d ld = fl i.e., all lower bounds are respected
– ∑d ld – fl otherwise

• Minimum excess is

– 0 if |X| = fu i.e., all upper bounds are respected

– |X| – fu otherwise

54

Alternative approach

• Theorem: minimum shortage and minimum excess can be combined to form
µval and µval

• Filtering does case analysis, and apply rules:
– forcing x=d increases µvar at most 1

– forcing x=d increases µval at most 2

55

Filtering algorithms for the soft regular constraint

1. variable-based violation measure

2. edit-based violation measure

56

Regular constraint

A regular language can be represented by a deterministic finite automaton (DFA):

automaton accepts string ⇔ string belongs to regular language

Example:

q0 is start state, q3 and q4 are end states
arrow is transition from one state to another

each transition has a label

e.g.string aabbaa and ccc accepted, string caabbac not accepted

Given a DFA, the constraint regular(x1,x2,...,xn,DFA) imposes that the
‘string’ x1x2∙∙∙xn is accepted by DFA [Pesant, 2004]

DFA

57

Regular constraint - application

Consider the problem to roster nurses in a hospital
• each nurse works at most one shift a day

• each shift contains 8 consecutive hours

– day shift: 8am-4pm

– evening shift: 4pm-12am

– night shift: 12am-8am

• after a night shift, nurse needs to take one day rest

• after an evening shift, nurse may not work a day shift

q0

q1

q2

q3

d

r
e

r
d

e

nr
n

r
e

For each nurse, introduce variables X = {x1,x2,...,x7} representing shift
 on day 1,2,...,7 with domains D(x) = {r,d,e,n} for all x ∈ X

Model the pattern with regular(X, DFA)

Feasible roster (7 days) for a nurse: day - day - evening - night - rest - day – day

58

Filtering hard regular constraint

DFA

Theorem [Pesant, 2004]:
solution to regular ⇔ path from q0 to ‘end vertex’ in layered graph

x1 ∈ {a,b,c}, x2 ∈ {a,b,c}, x3 ∈ {a,b,c}, x4 ∈ {a,b,c}

regular(x1,x2,x3,x4,DFA)

Filtering: remove all arcs whose label is not supported by domain value and
vice versa (linear time in size of graph)

59

Soft regular constraint

DFA

Example: over-constrained CSP
x1 ∈ {a,c}, x2 ∈ {a,b,c}, x3 ∈ {a,b,c}, x4 ∈ {b,d}

regular(x1,x2,x3,x4,DFA)

Soften the regular constraint, as usual:
x1 ∈ {a,c}, x2 ∈ {a,b,c}, x3 ∈ {a,b,c}, x4 ∈ {b,d}, z ∈ {0,1,2,...}

soft_regular(x1,x2,x3,x4,DFA,z,µ)

Again, what violation measure µ can we apply?

Variable-based violation measure? Yes, can work: This corresponds to the
smallest Hamming distance of the string to any string in the language

60

Violation measures for regular

Example: Consider the regular language of strings that consist of alternating
pairs of a and b, for example aabbaabb.

The string abbaabbaab does not belong to the regular language, and the
corresponding ‘variable-based violation’ would be 5 (the length of the
string divided by 2).

For such cases, the Hamming distance is a bad measure, as it depends on the
size of the string rather than its structure.

Alternative: Edit distance. Smallest number of insertions, deletions, and
substitutions to change one string in another.

Edit-based violation measure [v.H. et al. 2006]: Minimum edit distance of given
string to any string in the regular language

Example above: Edit-based violation is 2.

61

Filtering algorithm for soft regular constraint
using variable-based violation measure

62

Filtering for variable-based violation

x1 ∈ {a,b,c}, x2 ∈ {a,b,c}, x3 ∈ {a,b,c}, x4 ∈ {b,d}

regular(x1,x2,x3,x4,DFA)

Can we add weighted arcs to the unfolded
graph?

• e.g., we want to use value b or d for x4

• we must start from q0

• we must end in end vertex q3 or q4

• we want to capture µvar:

– allowed path must have cost of µvar

For clarity, remove clearly infeasible arcs
without touching the domains

Can we insert weighted arcs now?

DFA

b,d

b,d

b,d

63

Filtering for variable-based violation

More formally [v.H. et al., 2006]:

• for every arc in the unfolded graph, add parallel arc with ‘void’ label and
weight 1

• minimum-cost path from q0 to end vertex ⇔ solution to soft_regular
minimizing µvar

filtered

unfolded graph

Filtering (domain consistency) same time complexity as hard regular

64

Filtering algorithm for soft regular constraint
using edit-based violation measure

65

Filtering for edit-based violation

Add following arcs with unit weight [v.H. et al. 2006]

• substitution: parallel arcs to existing ones (as before)
• insertion: arcs connecting state with itself in next layer (if no substitution yet)

• deletion: for all arcs in DFA, add arc within layer
• minimum-cost path from q0 to end vertex ⇔ solution to soft_regular

minimizing µedit

Note: Directed circuits (with
positive weight) may have
been formed. However,
filtering (domain consistency)
again same time complexity as
hard regular.

66

Other soft global constraints

67

Soft Cumulative

Cumulative constraint can be used to model resource constraints in scheduling
and packing (see Petr Vilim’s talk yesterday)

Given set of activities, each with processing time, resource consumption,
earliest start time and latest end time, assign an execution time to each
activity so that a given resource does not exceed its capacity

time

capacity

Violation measures:
• Number of late activities [Baptiste, Le Pape, and Péridy, 1998]
 First soft global constraint, ‘heuristic’ filtering to enforce on time/late.
• Variable-based, on overcapacity of resource [Petit and Poder 2008]
 Provide implementation and compare against value-based approach.

68

Other scheduling-related soft global constraints

Soft precedence constraint [Lesaint, Mehta, O’Sullivan, Quesada, and Wilson, 2009]

• Groups together hard and soft precedence constraint for
telecommunications application

• Violation based on total weight of violated soft precedence constraints.

• NP-hard, but provide filtering rules for upper and lower bound

Soft constraints for timetabling application [Cambazard,Hebrard,O’Sullivan, and
Papadopoulos, 2008]

• Three problem-specific soft constraints
• Soft constraints are used to exploit good bounds for this problem class

69

More soft global constraints

Soft sequence constraint [Maher, Narodytska, Quimper, and Walsh, 2008]

• Given ordered set of variables, each subsequence of q consecutive variables
must take at least l and at must u values from a special set V

• Violation measure sums the deviation from l or u for each subsequence

• Domain consistency filtering using minimum-cost network flow

Soft slide constraint [Bessiere, Hebrard, Hnich,Kiziltan, Quimper, Walsh, 2007]

• Slide is extension of sequence, special case of ‘cardinality-path’ constraint
• Edit-based and variable-based violation measures

• Reformulated as hard slide constraints using additional variables

70

Still more soft global constraints

Soft context-free grammar constraint [Katsirelos, Narodytska, Walsh, 2008]

• Extension of regular constraint [Sellmann 2006], [Quimper & Walsh, 2006]

• Special case of weighted context free grammar constraint

• Variable-based (Hamming distance) and edit-based violation measures

Soft all-equal constraint [Hebrard, O’Sullivan, and Razgon, 2008]

• ‘Inverse’ of decomposition-based soft alldifferent
• Extended work presented this CP [Hebrard, Marx, O’Sullivan, Razgon, 2009]

Soft open global constraints

• Open constraints have a scope that will be defined the during search for a
solution

• Presented this CP [Maher, 2009]

71

Soft global constraint for weighted CSP

Sigma-alldifferent, Sigma-Gcc, Sigma-regular [Métivier, Boizumault, Loudni, 2007, 2009]

• Model preferences among variables and constraints
• Weight associated to each variable, and each constraint (for example, to

each not-equal constraint in the alldifferent)

• Domain consistency algorithm for variable-based sigma-alldifferent, using
network flow

• For decomposition-based sigma-alldifferent, domain consistency is NP-hard;
filtering based on relaxations is proposed

• Filtering for decomposition-based sigma-gcc and a distance-based sigma-
regular, similar to the network flow approach of [v.H. et al., 2006]

Weighted CSPs [Lee and Leung, 2009]

• Costs are associated to tuples of the constraint

• Apply flow-based filtering algorithms of [v.H. et al., 2006] in this context

72

Constraint-Based Local Search

Aim: Model the problem using variables and constraints (as in CP), and apply an
automatically-derived Local Search method to solve the model

[Van Hentenryck and Michel, 2005], [Galinier and Hao, 2000,2004], Bohlin [2004,
2005]

Essential to CBLS is that the solution method can be derived from the
constraints

• Local Search evaluates current assignment and then moves to an (improving)
assignment in its neighborhood

• Neighborhoods as well as evaluation functions can be based on
combinatorial properties of the constraints

• Global constraints can be particularly useful for this purpose
[Nareyek, 2001]

73

Constraint-Based Local Search

Soft global constraints for CBLS [Van Hentenryck and Michel 2005]

• Instead of domain filtering, the task is to measure the additional amount of
violation (gradient) if we were to assign a variable to a certain value

• Violation measures are given for alldifferent, atmost, atleast, multi-knapsack,
sequence, systems of not-equal constraints, and weighted constraint systems

74

Conclusions and perspectives

75

Conclusions

• Since the introduction of the first soft global constraint in 1998,
and the cost-based framework for soft global constraints, many
soft global constraints have been introduced

• For many of these constraints, domain filtering is as efficient for
the soft version as for its hard counterpart

• It has become an ‘established’ approach
– for many global constraints, a soft version is presented at the same time

as the hard version (e.g., sequence, slide, weighted-grammar, etc.)

– soft global constraints are being implemented and designed specifically
for applications

– it influences other approaches (weighted CSPs, Local Search)

76

Perspectives

Is the topic closed?

• No! It is as essential to CP as global constraints are in general
• Number of new soft global constraints and new applications

grows rapidly

Many (most) industrial problems are essentially over-constrained

• Soft global constraints allow to model and solve these problems
using CP

• Huge potential

Task for (industrial) CP solvers to adopt soft global constraints?

• Present in Comet 2.0, but what about IBM ILOG, Eclipse,
Gecode?

