
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0000-0000 | eissn 0000-0000 | 00 | 0000 | 0001

INFORMS
doi 10.1287/xxxx.0000.0000

© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Column Elimination: An Iterative Approach to Solving
Integer Programs

Anthony Karahalios
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, akarahal@andrew.cmu.edu

Willem-Jan van Hoeve
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, vanhoeve@andrew.cmu.edu

We present column elimination as a general framework for solving (large-scale) integer programming prob-

lems. In this framework, solutions are represented compactly as paths in a directed acyclic graph. Column

elimination starts with a relaxed representation, that may contain infeasible paths, and solves a constrained

network flow over the graph to find a solution. It then iteratively refines the graph by eliminating infeasible

paths until an optimal feasible solution is found. We introduce the notion of relaxed dynamic programs

to generalize and formalize prior works that were developed for specific applications. We also present a

subgradient method for solving the Lagrangian relaxation of the problem which provides additional graph

refinement opportunities. Lastly, we propose extensions to include cut generation and branch-and-bound.

Our experimental evaluation shows that column elimination can be competitive with or outperform state-of-

the-art methods on various problem domains. Specifically, we find that column elimination closes five open

instances of the graph multicoloring problem, one open instance with 1,000 locations of the vehicle routing

problem with time windows, and six open instances of the pickup-and-delivery problem with time windows.

Key words : integer programming, column elimination, column generation, dynamic programming, network

flows

History : Submitted October 2024

1

Karahalios and Van Hoeve: Column Elimination for Integer Programs
2 00(0), pp. 000–000, © 0000 INFORMS

1. Introduction

The computational revolution in integer programming solvers over the last decades has enabled

the ability to solve problems with hundreds of thousands of integer variables in reasonable time.

It has expanded the application of this powerful technology from strategic planning problems to

detailed operational decision making and even real-time use cases. For several important problem

domains, however, general integer programming does not scale to the requirements demanded by the

application. Examples include vehicle routing problems such as last-mile delivery, complex multi-

machine scheduling applications, and airline crew scheduling. In such cases alternative methods

including Benders decomposition, branch-and-price, or constraint programming can be more effective,

providing a different problem representation and associated solution methodology.

In this work, we present a framework called column elimination that integrates ideas from dynamic

programming, decision diagrams, network flows, and linear and integer programming. The starting

point of the framework is a problem representation that is similar to that of column generation, i.e.,

in which a variable (or a column) represents a specific combinatorial structure such as a route or

a schedule. A column formulation lists all possible variables and then selects an optimal subset of

columns that satisfies the constraints. Because column formulations are, in general, exponentially

large, we propose to represent a relaxation of the columns. While this may seem counter-intuitive,

the relaxation can be represented compactly as a directed acyclic graph which allows solving a

polynomial-sized problem that implicitly represents an exponential number of columns. In this rep-

resentation, a column corresponds to a path in the graph. Because we work with a relaxation, the

solution may contain infeasible columns, or paths, which are iteratively removed from the graph until

an optimal feasible solution is found.

This iterative method was first introduced by van Hoeve (2020, 2022) as an alternative to branch-

and-price to solve the graph coloring problem; Karahalios and van Hoeve (2022) present an improved

variant that uses a portfolio of variable orderings to construct the directed acyclic graph. The method

was subsequently applied to compute dual bounds for the traveling salesperson problem with a drone

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 3

(Tang 2021, Tang and van Hoeve 2024). That work also introduced a subgradient descent method to

solve the linear programs more efficiently. The term ‘column elimination’ was first mentioned in (van

Hoeve and Tang 2022) to describe the method and draw the parallel with column generation. Lastly,

Karahalios and van Hoeve (2023) apply column elimination to find dual bounds for the capacitated

vehicle routing problem, including the addition of cutting planes, reduced cost-based variable fixing,

and an improved subgradient descent method.

Contributions We present a generalized framework of column elimination for solving integer

programming problems, incorporating and formalizing the existing approaches. The formalization

includes the introduction of relaxed dynamic programs that are similar to state-space relaxations

but more general. We introduce a subgradient method that solves the Lagrangian relaxation of the

problem and offers additional refinement opportunities; this is key to solving large-scale instances.

We furthermore introduce a cut-and-refine algorithm that incorporates cutting planes into column

elimination and a branch-and-refine algorithm that incorporates branch-and-bound. Lastly, we pro-

vide a computational evaluation of our framework and find that column elimination is competitive

with or outperforms the state-of-the-art on various problem domains, as it closes closes five open

instances of the graph multicoloring problem, one open instance with 1,000 locations of the vehicle

routing problem with time windows, and six open instances of the pickup-and-delivery problem with

time windows, for the first time.

The paper is organized as follows. We start by discussing related work in Section 2. We then present

the general discrete optimization problem setting to which we apply column elimination in Section 3.

In Section 4, we describe the underlying model of column elimination, combining dynamic program-

ming and integer programming. Section 5 introduces the iterative column elimination algorithm,

including the extensions cut-and-refine and branch-and-refine. We present the subgradient method

for solving large-scale problems in Section 6. Section 7 presents the three combinatorial problems

that we use as a computational case study. The experimental results are presented in Section 8. We

provide a summary and conclusion in Section 9.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
4 00(0), pp. 000–000, © 0000 INFORMS

2. Related Work

Column elimination shares many similarities with column generation, which is a well-established com-

putational method for solving linear programming models. It was introduced by Ford and Fulkerson

(1958) to solve multi-commodity network flow problems and later generalized by Dantzig and Wolfe

(1960) for solving linear programs. The extension to integer programming is done through branch-

and-price, where column generation is embedded inside a branch-and-bound framework (Desrosiers

et al. 1984, Barnhart et al. 1998, Lübbecke and Desrosiers 2005). Branch-and-price provides state-

of-the-art results for many discrete optimization problems, including graph coloring (Mehrotra and

Trick 1996, Held et al. 2012), scheduling (van Den Akker et al. 1999, Chen and Powell 1999, Leus

and Kowalczyk 2016), and vehicle routing problems (Fukasawa et al. 2006, Baldacci et al. 2011b,

Pecin et al. 2017, Pessoa et al. 2018, Mandal et al. 2023).

Column generation solves a restricted master problem that contains a subset of the possible vari-

ables. It uses the associated dual variables to solve a pricing problem to generate a new primal

variable with a negative reduced cost that can improve the master problem. Potential implementa-

tion challenges of branch-and-price include stabilization strategies to handle dual degeneracy and the

representation of (branching) cuts in the pricing problem (Vanderbeck 2005). As we will see later in

more detail, column elimination does not solve a pricing problem, and avoids these issues as a result.

On the other hand, column elimination solves network flow problems that may contain more (arc)

variables than the analogous column generation model, which uses one variable per column. Column

elimination also depends on the number of refinement iterations, as column generation depends on

the number of pricing problems solved. The relative computational benefits are therefore problem

dependent, but we show in Section 8 that column elimination provides state-of-the-art results on

three problem domains that have also been tackled with column generation.

Many branch-and-price methods, especially in the context of vehicle routing, rely on dynamic

programming for solving the pricing problem. As the associated state space can grow exponentially

large, state-space relaxations of dynamic programs are often used in the pricing problem, which is

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 5

equivalent to relaxing the set of columns in the linear program being solved by column generation,

thus providing dual bounds. Our work is closely related to this approach, as we also define a relaxed

set of the variables with a dynamic program. While column generation uses the dynamic program

to generate new variables via the pricing problem, column elimination uses the dynamic program

to directly define a model over the relaxed set of columns. We will discuss more similarities and

differences in Section 4.

Another related approach is that of arc flow formulations for integer programming (de Lima et al.

2022). Arc flow formulations have been used successfully to model problems over directed networks

with solutions that are either a single path (Boland et al. 2017, Lozano et al. 2022, Tang and van

Hoeve 2024) or a collection of paths (Gouveia et al. 2019, van Hoeve 2022, Kowalczyk et al. 2024).

A specific recent application is the use of decision diagrams to solve optimization problems, which

involves arc flow formulations, restrictions, and relaxations (Bergman et al. 2016, Ciré and van Hoeve

2013, Bergman and Ciré 2018); we refer to Castro et al. (2022) and van Hoeve (2024) for recent

surveys. In the previous works on column elimination, arc flow formulations were described using

decision diagrams. This work instead uses state-transition graphs of dynamic programs to describe

its networks, which are closely related to weighted decision diagrams (Hooker 2013) but offer a more

generic modeling environment.

Column elimination works by solving iteratively strengthened discrete relaxations. Similar meth-

ods have been proposed for arc flow formulations, including iterative aggregation and disaggrega-

tion (Clautiaux et al. 2017), dynamic discretization discovery (Boland et al. 2017), and in the context

of column generation, decremental state-space relaxation or state-space augmentation (Righini and

Salani 2008, Boland et al. 2006). Column elimination differs from these methods by using a dynamic

program to define the network of its arc flow formulation, applying a generic algorithm to iteratively

refine relaxations of the dynamic program, and employing a Lagrangean method to simultaneously

refine and solve the arc flow formulation.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
6 00(0), pp. 000–000, © 0000 INFORMS

3. Problem Statement

Column elimination solves discrete optimization problems of a particular form. The form is a gen-

eralization of finding a minimum-cost sequence of elements from a finite set of feasible sequences,

which appears, e.g., in discrete dynamic programming (Bellman 1957), domain independent dynamic

programming (Kuroiwa and Beck 2024), and decision-diagram based optimization (Bergman et al.

2016). Here, the problem is to find a minimum cost subset of sequences of elements from a set of

feasible sequences, where the set of feasible subsets can also be constrained. For our purposes, we

allow the subset to contain multiple copies of the same sequence. We assume the cost of a subset of

sequences is equal to the sum of the costs of individual sequences.

Formally, let U be a universe of elements and let S be a set of ordered sequences of elements in U ,

each with arbitrary but finite length. The discrete optimization problem is:

(P) min
X⊆S

{∑
x∈X

f(x) :C(X) = 1
}

(1)

where X represents the decision variable ranging over subsets of S, function C : 2S → {0,1} defines

feasible subsets (also considering multisets), and f : S →R is a cost function over S. A main assump-

tion of our model is that the function C can be represented as a conjunction of constraints with the

following form. Each constraint is defined by a function γ : S →R that associates an additional ‘cost’

with each sequence, and has the form
∑
x∈X γ(x) ≤ b. Denote Γ = {(γj ,◦j , bj)}mj=1 as the set of these

constraints. We assume that the constraint function can be written as a conjunction of these new

constraints, i.e. C(X) = ∧mj=1(
∑
x∈X γj(x) ◦j bj).

Many discrete optimization problems can be naturally described in this form; as a running example,

we consider the capacitated vehicle routing problem (CVRP) (Toth and Vigo 2014).

Example 1. Let G = (V,A) be a complete directed graph with vertex set V = {0,1, . . . , n} and

arc set A = {(i, j) | i, j ∈ V, i ̸= j}. Vertex 0 represents the depot, and vertices {1, . . . , n} represent

the locations to be visited. We will interchangeably use vertices and locations. Each vertex i ∈ V

has a demand qi ≥ 0 and each arc a ∈ A has a length Ta ≥ 0 (typically representing time). Let K

be the number of (homogeneous) vehicles, each with capacity Q. A route is a sequence of vertices

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 7

[v1, v2, . . . , vk] starting and ending at the depot with total demand at most Q. The distance of a route

is the sum of its arc lengths, i.e.,
∑k−1
i=1 T(vi,vi+1). The CVRP consists in finding K routes such that

each vertex except for the depot belongs to exactly one route and the sum of the route distances is

minimized. We can describe the CVRP in the form of P . Let U = {0,1, . . . , n} and let S be the set of

all (feasible) routes. The function f is a mapping from routes to their distances. The constraints C

restrict the subset of routes to have cardinality K and to visit all locations, which can be translated

to the following constraints in Γ. To ensure that each location is visited, we define a constraint for

each i∈ {1, . . . , n} by (γi,=,1) where γi(x) = Ji∈ xK, and J·K denotes an indicator function. To ensure

that each subset has K routes, we define a constraint by (γn+1,=,K) where γn+1(x) = 1 for all x∈X.

As a special case, observe that any integer linear programming problem can be represented in the

form of P . Consider the integer program min
η∈Zn

{αTη : Aη ≥ β, ℓ ≤ η ≤ u}, where α ∈ Rn, A ∈ Rm×n,

β ∈Rm, ℓ∈Zn, and u∈Zn. We define the set of elements as the set of integers from the smallest lower

bound to the largest upper bound, i.e. U = {mini∈[n] ℓi,mini∈[n] ℓi+1, . . . ,maxi∈[n] ui}. We define S =

{[x1, . . . , xn] : ℓi ≤ xi ≤ ui, xi ∈Z,∀i∈ {1, . . . , n}} for a fixed but arbitrary ordering of the variables

x. In this case, each sequence in S is of the same length n. The cost function is f(x) =
∑n
i=1αixi.

The constraints C ensure that one sequence is chosen and that Aη ≥ β, which can be written in

the form of Γ. To ensure that Aη ≥ β, we define constraints for each j = 1, ...,m by (γj ,≥,βj) where

γj(x) =
∑n
i=1Ajixi. To ensure one sequence is chosen, we define a constraint by (γm+1,=,1) where

γm+1(x) = 1 for all x ∈ X. While this shows that column elimination can, in principle, be applied

to integer programs of this general form, we do not expect this to be efficient unless we can exploit

specific problem structures when defining problem P . This will be discussed in the next section.

4. Modeling

Column elimination solves P via a particular modeling framework that combines dynamic program-

ming and integer programming. We use a dynamic program to represent S, f , and the cost functions

in Γ. Then, an integer linear program is defined over the state-transition graph of the dynamic

program to find the minimum cost subset of feasible sequences. The model resembles a common

Karahalios and Van Hoeve: Column Elimination for Integer Programs
8 00(0), pp. 000–000, © 0000 INFORMS

decomposition of the problem into an integer linear programming master problem and a dynamic

programming pricing problem, used in column generation. In this section, we detail the model and

describe relaxations of the model that are used in column elimination.

4.1. Dynamic Program

The set of sequences of elements S, the cost function f , and the cost functions in Γ are modeled

with dynamic programming. It is always possible to construct a dynamic program that encodes S

with an arbitrary value function over the sequences (Hooker 2013). This can directly be extended

to multiple value functions, in our case f and the cost functions in Γ. An advantage of dynamic

programming is its ability to compactly represent the set of sequences (with the associated costs)

instead of enumerating each one individually. We describe the structure of the dynamic program and

explain how it models the set of sequences and costs.

We define a dynamic program by a set of states S, an initial state r ∈ S, a terminal state t∈ S, a

state transition function h : (S×U) → S, a cost function c : (S×U) →R. A solution is a sequence of

transitions [(s1, u1), . . . , (sk, uk)] where (si, ui) ∈ S×U for 1 ≤ i≤ k, such that s1 = r, h(si, ui) = si+1

for 1 ≤ i < k, and h(sk, uk) = t. Each solution uses a unique set of elements u= [u1, ..., uk]. The cost

of a solution is
∑k
i=1 c((si, ui)). We extend this standard definition by introducing a set of additional

cost functions G = {gj}mj=1 such that gj : (S × U) → R for all j = 1, ...,m. We denote the dynamic

program as P = (S,h, c,G), and assume that r and t are defined within S. We assume that a dynamic

program is acyclic, so solutions cannot visit a state more than once.

We model S, f , and the cost functions in Γ by constructing a dynamic program P = (S,h, c,G) with

the following properties. First, the set of solutions to P must be equal to S. Second, for each solution

x∈ S equivalent to a solution [(s1, u1), . . . , (sk, uk)] in P , we require that f(x) =
∑k
i=1 c((si, ui)) and

γj(x) =
∑k
i=1 gj((si, ui)) for each j = 1, ...,m. As mentioned above, it is always possible to construct

a dynamic program with these properties (Hooker 2013).

Example 2. We formulate a dynamic program P = (S,h, c,G) to represent S, f , and the function

costs in Γ for the problem P described for the CVRP in Example 1. Define each state in S by a

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 9

tuple (NG,w, v), where NG is a ‘no-good’ set of visited locations, w is the current load, and v is the

current location. The initial state r is (∅,0,0) and the terminal state t is a tuple of sentinel values.

The transition and cost functions are defined for two cases: visiting a location and returning to the

depot. For each state s = (NG,w, v) and element i ∈ U such that i /∈ NG, i > 0, and w + qi ≤ Q,

define h(s, i) = (NG∪{i},w+ qi, i) and c(s, i) = T(v,i). For each state s∈ S, define h(s,0) = t and cost

c(s,0) = T(v,0). For other combinations of states and decisions, we let the transition function and cost

function equal −1 as a sentinel value. To model the cost functions in Γ, we define gj(s, i) = Ji= jK

for each j = 1, ..., |V |, and g|V |+1(s, i) = Js= rK.

4.2. Integer Linear Program

The optimization model that column elimination solves is an integer linear program defined over

a network representation of P . The network representation is known as a state-transition graph,

which is a directed acyclic graph where each state is represented by a node and each transition is

represented by an arc. Given a dynamic program P = (S,h, c,G), we define its state-transition graph

as D = (N ,A) with node set N and arc set A. For each state s ∈ S we introduce a node in N . For

each transition h(si, u) = sj , we define an arc in A from the node for si to the node for sj . Parallel

arcs are distinguished by the transition element u. For ease of notation, especially for function inputs,

we use nodes and states interchangeably, and we use arcs and state/element pairs interchangeably.

This defines a one-to-one correspondence between sequences in S and directed r-t paths in D.

The model is a constrained network flow problem over D. For each arc a ∈ A, we introduce a

decision variable ya. The model is as follows.

F : min
∑
a∈A

c(a)ya (2)

s.t.
∑
a∈A

gj(a)ya ◦j bj ∀ j ∈ {1, . . . ,m} (3)

∑
a∈δ+(s)

ya −
∑

a∈δ−(s)

ya = 0 ∀ s∈ N \{r, t} (4)

ya ∈Z+ ∀ a∈ A (5)

Karahalios and Van Hoeve: Column Elimination for Integer Programs
10 00(0), pp. 000–000, © 0000 INFORMS

The objective (2) is to minimize the sum of the costs of the flows on arcs used in the solution.

Constraints (3) are linear constraints using the additional cost functions from G with the comparators

and right-hand side values from Γ. Constraints (4) are flow conservation constraints, where δ+(s)

and δ−(s) are the sets of outgoing and incoming arcs respectively for a node s∈ N . Constraints (5)

are nonnegativity and integrality constraints. We prove the correctness of the model in Theorem 1.

Theorem 1. The optimal solution value of F is equal to the optimal solution value of P.

Proof We start by showing that the set of solutions to F is equal to the set of solutions to P .

Consider an optimal solution to F . The solution adheres to the flow conservation constraints (4) and

integrality constraints (5), so by the flow decomposition theorem, the solution can be converted into

a set of r-t paths (Ahuja et al. 1993). Each r-t path uses a set of arcs, equivalent to a sequence x∈ S.

Let X be the set of these sequences (with multiplicity), and let A be the union of these sets of arcs

(with multiplicity). The solution is feasible, so
∑
a∈A gj(a) ◦j bj for each j = 1, ...,m. By construction

of the dynamic program, each x ∈ S corresponds to an arc set A′ such that γj(x) =
∑
a∈A′ gj(a) for

each j = 1, ...,m. So,
∑
x∈X γj(x) ◦j bj . Thus, C(X) = 1. The reverse of this argument shows that

X ⊆ S can be converted into a solution to F . To finish the proof, we show that each X ⊆ S has the

same cost in F and P . By construction of the dynamic program, each x ∈ S corresponds to an arc

set A′ such that f(x) =
∑
a∈A′ c(a). So, for a solution X ⊆ S corresponding to an arc set A′ (both

with multiplicity),
∑
x∈X f(x) =

∑
a∈A′ c(a). Q.E.D.

Example 3. We give the complete formulation for the CVRP, which was originally developed in

Karahalios and van Hoeve (2023) in online Appendix C.

4.3. Model Relaxations

Column elimination works by solving relaxations of F that are created by replacing P with relaxations

of P . The literature contains two types of relaxations of dynamic programs. First, a state-space

relaxation maps each state into a smaller state space such that predecessor states are conserved

and each transition cost is the minimum cost of all equivalent transitions in the preimage of the

mapping (Christofides et al. 1981). Second, in the decision diagram literature, relaxations are created

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 11

by merging non-equivalent states and reasoning about the transitions to retain for the resulting

state (Bergman et al. 2016). The key properties in both types of relaxations are that the relaxed

dynamic program represents a superset of the sequences in the original dynamic program, and has a

cost for each sequence that is less than or equal to the cost in the original dynamic program. We will

present a generalized notion of a dynamic program relaxation, which is based on these properties:

Definition 1. Let P1 and P2 be dynamic programs with solution sets S1 and S2, solution costs

that are defined by the functions f1 and f2, and additional costs defined by {γ1j}mj=1 and {γ2j}mj=1 with

constraint operators {◦j}mj=1 and right-hand side values {bj}mj=1. P2 is a dynamic program relaxation

w.r.t. P1 if S1 ⊆ S2, f1(x) ≥ f2(x) for all x ∈ S1, and γ2j(x) ◦j γ1j(x) for all j = 1, ..,m and for all

x∈ S1.

State-space relaxations and relaxed decision diagrams both yield relaxed dynamic programs. We

show in Appendix A how Definition 1 differs from the definition of a state-space relaxation.

We use a dynamic program relaxation to create a relaxation for the exact model F . Let P ′ =

(S′, h′, c′,G′) be a dynamic program relaxation w.r.t. P . Let S ′ be the set of solutions in P ′, let f ′

be the cost function represented by P ′, and let {γ′
j}mj=1 be the additional cost functions. We define

F ′ as the model (2)-(5) based on P ′. Theorem 2 shows that F ′ is a relaxation of F .

Theorem 2. F ′ is a relaxation of F .

Proof Because P ′ is a dynamic program relaxation w.r.t. P , the set of solutions (sequences) to P ′

is a superset of the set of solutions to P , i.e. S ⊆ S ′. Recall from the previous proof that a solution to

F (or F ′) can be mapped to a set of sequences X ⊆ S (or X ⊆ S ′). So, for each X ⊆ S that is feasible

to F , X is feasible to F ′ because X ⊆ S ⊆ S ′ and
∑
x∈X γ

′
j(x) ◦j

∑
x∈X γj(x) ◦j bj for all j = 1, ...,m,

and the objective function value is relaxed, i.e.
∑
x∈X f(x) ≥

∑
x∈X f

′(x). Q.E.D.

In practice, it is convenient when the functions in G only rely on the transition element from the

input, and not the state, except the root state r. Then, we can use G′ =G in a dynamic program

relaxation. This is the case for the covering constraints in our running example.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
12 00(0), pp. 000–000, © 0000 INFORMS

Example 4. Continuing our example on the CVRP, we describe a relaxation of the exact model

F that is based on P . To do this, we formulate a dynamic program relaxation P ′ = (S′, h′, c′,G′)

w.r.t. P , using the well-known ng-route state-space relaxation (Baldacci et al. 2011b). An ng-route

relaxation is defined by a parameter χ∈Z and a set Ni ⊆ V of size χ for each i∈ V . It has the same

state definition and cost function as P , but a different transition function h′ which is again defined

for two cases: visiting a location and returning to the depot. Given a state s= (NG,w, v) and element

i∈U such that i > 0, i /∈ NG, and w+ qi ≤Q, let h′(s, i) = ((NG ∪ {i}) ∩Ni,w+ qi, i). For each state

s ∈ S, let h′(s,0) = t. For other combinations of states and decisions, we let the transition function

equal −1 as a sentinel value. Because the constraints in the set G are defined only by the transition

elements and r in P , we can keep the same constraints in G′.

5. Column Elimination

In this section, we describe column elimination for solving F . The main idea of column elimination

is to start with an initial relaxation of F , and to iteratively strengthen the relaxation by updating

the underlying dynamic program relaxation. The algorithm works by first solving the linear program

relaxation of F , which we denote LP(F), and then solving F . The purpose of solving LP(F) is to

efficiently strengthen the model relaxation and to achieve useful bounds, before trying to solve integer

programs. At iteration i, we denote the model relaxation as Fi, which is created by Pi that represents

the set of sequences Si. Below, we describe each step in more detail.

5.1. Solving the linear programming relaxation LP(F)

Column elimination solves LP(F) by solving the linear programming relaxations of a series of improv-

ing relaxations, as shown in Figure 1. We next detail each of the steps of the algorithm.

Initializing a Relaxation: Given a model F , the first step is to create an initial relaxation F1.

This is done by defining a dynamic program relaxation w.r.t. P , denoted as P1. The choice of initial

relaxation can affect the performance of the algorithm, as there is often a tradeoff between the

strength of a dual bound generated by F1 and the number of variables in F1, which affects the time

required to achieve the dual bound.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 13

Solving LP(Fi): After setting up an initial relaxation, column elimination enters a loop of solving

LP(Fi) at each iteration i, decomposing the solution into a set of paths, and refining conflicts. To

solve LP(Fi), column elimination can use an off-the-shelf linear programming solver or a subgradient

method to solve an equivalent Lagrangean reformulation, which we describe in Section 6.

Path Decomposition: The solution to LP(Fi) is decomposed into a set of sequences Xi ⊆ Si.

Because Fi is a (constrained) network flow on a directed acyclic graph, such a path decomposition

is known to exist (Ahuja et al. 1993), although it may not be unique for a given solution. If there

exists a sequence x∈Xi such that x /∈ S, then x has a ‘conflict’. Otherwise Xi is an optimal solution

for LP(F). A conflict can also be due to a sequence having a relaxed cost in Fi, but for simplicity

we will only consider a conflict as an infeasible sequence.

Conflict Refinement: The conflict refinement algorithm removes a conflict from Pi to create a new

dynamic program relaxation w.r.t. P . Because the path decomposition may return multiple paths

with conflicts, all of these can be used to refine the dynamic program relaxation. In our experimental

results, however, we only remove one conflict at each iteration. We introduce Algorithm 1 as a general

conflict refinement algorithm and prove its correctness. Similar refinement algorithms exist in the

literature on decision diagrams (Hadzic et al. 2008, Ciré and Hooker 2014). There are more efficient

problem-specific conflict refinement algorithms, such as the one for graph coloring in van Hoeve

(2022), which uses terminology from decision diagrams. The description of the general algorithm is

written in terms of updating the dynamic program (relaxation).

We describe Algorithm 1 as follows. Line 1 creates Pi+1 as a copy of Pi. Line 2 sets a ‘current

state’ scurr as the root state r ∈ Si+1. Line 3 begins a loop that iterates over the indices of elements

in the conflict x. Lines 4 to 8 check the set of subsequences from r to scurr in P ′ to see if any of

these subsequences are feasible in P when appended with the next element xj in the conflict. If none

are feasible, then the transition from scurr with xj can be removed without removing any feasible

sequences in S, but it does remove the conflict x. In detail, Line 4 creates a set of states in P that are

found by taking any possible transition from r to scurr in P ′, where S−scurr
i+1 represents the set of these

Karahalios and Van Hoeve: Column Elimination for Integer Programs
14 00(0), pp. 000–000, © 0000 INFORMS

transitions and P [y] represents the state in P found by starting from r and taking the transitions

in y. Line 5 finds the set of feasible decisions from any of those states. Line 6 checks if the next

element in the sequence xj is not in the set of feasible decisions. Line 7 filters out the transition

and Line 8 returns the updated dynamic program relaxation. Otherwise, Lines 10 to 18 create a new

state which copies all of the information from the next state (found by the transition of scurr with

element xj), which maintains all of the postsequences from the next state to t, but only [x1, ..., xj]

as a presequence from r to the new state. The uniqueness of the solution in Si ensures that by the

end of the algorithm the conflict x is removed. In detail, Line 10 finds the next state by taking the

transition using scurr and xj . Line 11 creates a new state. Lines 12 to 16 copy the transitions and

costs from the next state to this new state. Line 17 changes the transition from scurr to the next

state, to the newly created state. Line 18 updates scurr to the new state.

Each step of the algorithm is straightforward to perform, and the step requiring the most compu-

tation is in Line 4 which requires considering all paths in a directed acyclic graph from the root to

a node. In practice, this computation can be avoided by using information stored in each state to

directly check the condition in Line 6. In our experiments, we use problem-specific conflict refinement

algorithms that avoid creating a new node and new transitions in Lines 10 to 16 by instead using an

existing node and transitions. This is done by relying on the structure of the relaxation in terms of

its states, transitions, and costs to ensure that a dynamic program relaxation is maintained. We note

two possible disadvantages of using existing nodes. First, updating a transition to equal an existing

node may introduce infeasible sequences in Pi+1 that were not solutions to Pi, because it combines

presequences from the root that use the new transition to reach the existing node with the set of

postsequences from the existing node to the terminal. Second, updating a transition to equal an

existing node may introduce a cycle into the dynamic program for a similar. In our experiments, we

find that the advantages of maintaining a smaller network flow formulation outweigh the potential

disadvantages. We prove the correctness of Algorithm 1 as Theorem 3.

Theorem 3. Algorithm 1 outputs a dynamic program relaxation w.r.t. P , called Pi+1, such that

Pi is a dynamic program relaxation w.r.t. Pi+1 and x /∈ Si+1.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 15

Algorithm 1 Conflict Refinement Algorithm
Input: A dynamic program P = (S,h, c,G), a dynamic program relaxation Pi = (Si, hi, ci,Gi) with
initial state r, and a conflict x= [x1, . . . , xk] ∈ Si.
Output: Pi+1

1: Pi+1 := (Si+1, hi+1, ci+1,Gi+1) = (Si, hi, ci,Gi)
2: scurr = r

3: for j = 1, . . . , k do

4: S− =
⋃
y∈S−scurr

i+1
{P [y]}

5: US− =
⋃
s∈S−{u : h(s, u) ̸= −1}

6: if xj /∈US− then

7: hi+1(scurr, xj) = −1
8: return Pi+1

9: else

10: snext = hi+1(scurr, xj)
11: snew = createState()
12: for all u∈U do

13: hi+1(snew, u) = hi+1(snext, u)
14: ci+1(snew, u) = ci+1(snext, u)
15: for all gj ∈Gi+1 do

16: gj(snew, u) = gj(snext, u)
17: hi+1(scurr, xj) = snew

18: scurr = snew

Proof First, we show that Pi+1 is a dynamic program relaxation w.r.t. P and that Pi is a dynamic

program relaxation w.r.t. Pi+1. To start, Pi+1 begins as a copy of Pi. The algorithm only updates

Pi+1 in Line 7 and Lines 10 to 17. In Line 7, a transition is made infeasible, which can only remove

solutions from Pi+1, and only does so if the condition on Line 6 is met, which is equivalent to checking

that no feasible solutions in P are removed. In Lines 10 to 16, a new state is created that is a copy

of the next state found by starting at scurr and transitioning with element xj . Because the transition

function outputs, costs, and additional costs are all copied, when Line 17 updates the transition from

scurr with xj to be this new node, no solutions or solution costs change in Pi+1. So, the only changes

from the solutions to Pi are that sequences not in S can be removed from Pi+1, which proves that

Karahalios and Van Hoeve: Column Elimination for Integer Programs
16 00(0), pp. 000–000, © 0000 INFORMS

Pi+1 is a dynamic program relaxation w.r.t. P and that Pi is a dynamic program relaxation w.r.t.

Pi+1. Next, we prove that x /∈ Si+1. The key observation is that at each step of the algorithm, Pi+1

has exactly one presequence starting from r and transitioning to scurr. In the first iteration this is

trivially true. After that, scurr is always updated to snew, which is a new state that is only reachable

by the previous scurr. Thus, in the worst case, by the final iteration the only presequence to scurr

is [x1, ..., xk−1] and then the transition with element xk is infeasible in S, so it will be removed in

Line 7. Q.E.D.

To conclude this subsection, we prove the correctness of the column elimination algorithm for

solving the linear programming relaxation of model F . Assume that the initial dynamic program

relaxation has a cost function f ′ and additional cost functions {γ′
j}mj=1 such that for each x ∈ S,

f ′(x) = f(x) and γ′
j(x) = γj(x) for each j = 1, ...,m.

Theorem 4. Column elimination solves LP(F) in a finite number of steps.

Proof Column elimination begins with a valid relaxation F1. At each iteration i, column elim-

ination solves LP(Fi), and if there is a conflict, it is removed with Algorithm 1. By Theorem 3,

removing a conflict from Pi creates a new dynamic program relaxation w.r.t P , denoted Pi+1, such

that S ⊆ Si+1 ⊆ Si. There can only be a finite number of conflict refinements before Si = S, because

S1 and S are both finite and at least one solution is removed from Si by Algorithm 1. Also, at each

iteration of column elimination, each sequence x∈ S will have costs f(x) and gj(x) for all j = 1, ...,m,

because Algorithm 1 does not update the costs of these sequences and the assumption that this holds

for the initial dynamic program relaxation. So, if a solution to LP(Fi) has no conflicts, then is also

an optimal solution to LP(F). Q.E.D.

5.2. Solving the integer programming model F

We describe three ways of solving the integer programming model F using column elimination. The

first is a pure column elimination approach that extends column elimination for solving LP(F) by

iteratively solving integer programs Fi (at iteration i) with an off-the-shelf integer programming

solver. The second approach, cut-and-refine, augments the approach for solving LP(F) with cutting

planes. The third approach, branch-and-refine, embeds the linear programming relaxation LP(F)

within a branch-and-bound search.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 17

5.2.1. Pure column elimination The pure column elimination approach extends column elim-

ination for solving LP(F) by continuing the iterative procedure, but at each iteration i solving Fi

instead of LP(Fi). The first step is to solve LP(F), which strengthens the initial relaxation. Then,

the algorithm iteratively solves strengthened relaxations of F as integer programs. The framework is

shown in Figure 2.

To solve Fi, column elimination uses an off-the-shelf integer programming solver. This foregoes the

need to develop problem-specific cuts or branching rules, although we show how to incorporate these

in the next section. Conflicts are identified and refined in the same way as for solving LP(F).

There are two advantages to solving LP(F) before solving F . First, a solution to LP(Fi) may

contain conflicts that also appear in an optimal solution to Fi, but LP(Fi) is easier to solve. Second,

a solution to LP(Fi) provides a lower bound, which is likely weaker than the optimal solution value

to the integer relaxation Fi, but again it is easier to obtain. Linear programming lower bounds are

useful to reduce the size of the problem by a method called variable fixing, which we describe in

Appendix D. We show that column elimination solves F in Theorem 5.

Theorem 5. Column elimination solves F in a finite number of steps.

Proof Column elimination solves LP(F) in a finite number of steps by Theorem 4. Then, by the

same logic as the proof of Theorem 4, only a finite number of conflicts can be refined before Si = S.

So, when there are no conflicts, an optimal solution to Fi is also an optimal solution to F . Q.E.D.

5.2.2. Cut-and-refine Cut-and-refine introduces cutting planes to the column elimination algo-

rithm by not only refining conflicts in solutions to LP(Fi) but also adding valid inequalities to remove

conflict-free solutions. The framework is depicted in Figure 3. When an optimal solution to LP(Fi)

is fractional, cut-and-refine adds one or more valid cuts to remove that solution. Each cut should

have a form that can be represented even if the underlying dynamic program relaxation is changed

in a future iteration. Cut-and-refine was shown to improve the performance of column elimination on

some instances of the CVRP in (Karahalios and van Hoeve 2023), which used problem-specific cuts.

We prove the correctness and finite termination of cut-and-refine in Corollary 1, with the assumption

that cuts are added from a finite cutting plane procedure.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
18 00(0), pp. 000–000, © 0000 INFORMS

Corollary 1. Cut-and-refine solves F in a finite number of steps.

Proof A finite number of refinements are needed to obtain F from F1. When a solution to LP(Fi)

does not contain a conflict, only a finite number of cuts need to be added before the solution either

contains a conflict or is integer-valued, because of the finite cutting plane procedure. Q.E.D.

5.2.3. Branch-and-refine Branch-and-refine embeds column elimination in a branch-and-

bound framework. The algorithm begins by solving LP(F) with column elimination at the root node,

and then proceeds with branch-and-bound. The branching rule must partition the set of solutions in

a way that maintains the form of the problem as P , so column elimination can solve the subproblems.

It may not be straightforward to create such a branching rule. For example, branching on a single

variable ya in a formulation Fi may be complicated after a conflict refinement, because the arc a

needs to be mapped from Pi to Pi+1. Similar considerations apply to branch-and-price algorithms,

in which branching decisions often depend on problem-specific features. For example, for the CVRP

a constraint can be imposed on the number of times that a set of routes enters and exits a set of

locations, which can either be at most twice or at least four times, and can be expressed in the

underlying dynamic program formulation. In the online Appendix K we provide an experimental

study of solving the vertex coloring problem using branch-and-refine. We prove both the correctness

and finite termination of branch-and-refine in Corollary 2.

Corollary 2. Branch-and-refine solves F in a finite number of steps.

Proof Because the set of feasible subsets in P is a finite set, any branch-and-bound tree will have

a finite number of nodes. Column elimination can solve each subproblem in a finite number of steps.

Q.E.D.

A natural extension is to embed a cutting plane procedure from Section 5.2.2 into the branch-and-

bound search to strengthen the linear programming relaxations. This would yield a branch-cut-and-

refine algorithm.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 19

6. Column Elimination with Subgradient Descent

In this section, we propose solving the linear programming relaxation LP(F) via a Lagrangian refor-

mulation with subgradient descent. A key benefit of this approach is the ability to refine conflicts

while solving the linear programming relaxation, instead of requiring an optimal solution before

refinement. This can be particularly helpful for large-scale instances for which solving the linear

program relaxations can be a computational bottleneck. We present a generalization of the single-

path Lagrangian approach by Tang and van Hoeve (2024) and the application-specific approach by

Karahalios and van Hoeve (2023).

6.1. Lagrangian Model

Recall that the linear programming relaxation LP(F) contains constraints (3). Without loss of gen-

erality, we assume in this section that these constraints are of the following standard form:

∑
a∈A

gj(a)ya ≥ bj ∀j ∈ {1, . . . ,m}.

We create a Lagrangian formulation for LP(F) by introducing a Lagrangian dual multiplier λj ≥ 0

for each j ∈ {1, . . . ,m} and defining the Lagrangian relaxation as follows:

L(λ) : min
∑
a∈A

caya +
m∑
j=1

λj(bj −
∑
a∈A

gj(a)ya) (6)

s.t.
∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u∈ N \ {r, t} (7)

ya ≥ 0, ya ∈Z ∀a∈ A (8)

The objective function (6) can be rewritten as

min
∑
a∈A

caya −
m∑
j=1

λj
∑
a∈A

gj(a)ya +
m∑
j=1

λjbj =

min
∑
a∈A

(ca −
m∑
j=1

gj(a)λj)ya +
m∑
j=1

λjbj .

Each relaxation L(λ) corresponds to solving a (continuous) minimum-cost network flow problem

on a directed acyclic graph. The Lagrangian formulation is maxλ≥0L(λ), which has an optimal

solution value equal to the optimal solution value of LP(F) (Geoffrion 1974). It can be solved by a

Karahalios and Van Hoeve: Column Elimination for Integer Programs
20 00(0), pp. 000–000, © 0000 INFORMS

subgradient descent method (Nemhauser and Wolsey 1988). For fixed λ, the Lagrangian relaxation

L(λ) can be solved efficiently using a successive shortest paths algorithm (Ahuja et al. 1993). As a

special case, when the problem has at most unit flow on the arcs, a ‘minimum update’ successive

shortest paths algorithm can solve this problem more efficiently in practice (Wang et al. 2019). We

discuss the computational benefits of using the Lagrangian relaxation in comparison to the standard

linear programming relaxation, and the minimum update algorithm in comparison with a standard

successive shortest paths algorithm in the online Appendix F.

Given an upper bound K on the number of r-t paths in an optimal solution to the Lagrangian

relaxation for a fixed λ, the following proposition gives an upper bound on the runtime. A proof is

given in Karahalios and van Hoeve (2023) for the CVRP, which also applies to the general case.

Proposition 1. For a fixed λ, L(λ) can be solved in O(K(|N | log(|N |) + |A|)) time.

6.2. Subgradient Descent

We next modify column elimination to incorporate solving LP(F) with subgradient descent. At

iteration i, we denote the Lagrangian relaxation as Li(λ) where λ are the dual variables. The updated

algorithm is given in Figure 4. While the column elimination framework presented in Figure 1 solves

LP(Fi) at each iteration i, and then refines conflicts based on the optimal solution, the framework in

Figure 4 instead solves Li(λi) at each iteration, where λi is the value of λ at iteration i. This allows

the algorithm to use the resulting solution to the Lagrangean relaxation to both update the dynamic

program relaxation and take a step to update the dual values. We discuss the convergence of the

algorithm in Appendix E.

There are two possible advantages to using column elimination with subgradient descent. First, the

dynamic program Pi can be refined more quickly by not needing the optimal solution to LP(Fi) before

refining conflicts. The refinements can still be effective in removing the optimal solution to LP(Fi),

because an average of the subproblem solutions converges to an optimal solution (Anstreicher and

Wolsey 2009). Second, column elimination can apply variable fixing at each iteration of subgradient

descent, which can accelerate the method. It is useful that subgradient descent can try variable fixing

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 21

at each step, because the result of variable fixing can vary depending on the feasible dual solution

used. Subgradient descent does not require the dual values at each step to be feasible, so in these

cases the dual values can be ‘repaired’ to a nearby feasible solution. In our experiments, we use a

repair algorithm that finds the most violated constraint and updates one dual value at a time until

the constraint is satisfied.

Two variations of column elimination with subgradient descent are given by Tang and van Hoeve

(2024): ‘LagAdapt’ and ‘LagRestart’. LagAdapt stops updating the duals after some stopping criteria,

but continues solving the Lagrangian relaxation and refining conflicts. LagRestart updates the duals

until some number of conflicts are found, then refines all of the conflicts, and resets the subgradient

descent algorithm, including the duals and iteration count, which affects the step size. We considered

these variants in our experiments, but did not see improvements.

6.3. Cut-and-refine with Subgradient Descent

Modifying cut-and-refine to incorporate solving LP(F) with subgradient descent is not straightfor-

ward. Indeed, in a previous work Lucena (2005) discusses the difficulty of effectively adding cuts

during subgradient descent, within their framework called relax and cut. A relax and cut procedure

can either be ‘delayed’, meaning cuts are only identified when subgradient descent terminates, or

‘non-delayed’, meaning cuts are added during subgradient descent. Once cuts are identified, they

are added by ‘dualizing’ the cut and starting subgradient descent with the new variables. Using the

delayed approach, Karahalios and van Hoeve (2023) added a limited number of cuts to column elimi-

nation with subgradient descent. The experiments from their work show a performance improvement

for solving capacitated vehicle routing problems.

7. Applications

In addition to the CVRP, we will evaluate the computational performance of column elimination

on four other fundamental combinatorial optimization problems: the vehicle routing problem with

time windows, the graph multicoloring problem, the pickup and delivery problem with time windows,

and the sequential ordering problem. We present here the problem definitions, while the associated

dynamic programming models and initial dynamic program relaxations can be found in Appendix B.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
22 00(0), pp. 000–000, © 0000 INFORMS

VRPTW The vehicle routing problem with time windows (VRPTW) is a generalization of the

CVRP that introduces constraints that each location must be visited in a given time window (Toth

and Vigo 2014). We modify the definition of the CVRP from Example 1 and introduce for each

location i∈ V a time window [ei, li]. The definition of a route is updated to be a sequence of vertices

[v1, v2, . . . , vk] starting and ending at the depot with total demand at most Q, such that each location

is visited during its time window. The requirement to use exactly K vehicles is relaxed. A vehicle is

allowed to wait at a location until the start of the location’s time window.

Graph Multicoloring We define the graph multicoloring problem as follows (Gualandi and Malu-

celli 2012). Given an undirected graph G = (V,E) and weights bv ∈Z for each v ∈ V , use the minimum

number of colors possible to color each vertex v with bv colors such that adjacent vertices are not

assigned any of the same colors. Define a subset of vertices that are pairwise non-adjacent as an

independent set. So, for each color, the set of vertices assigned that color must be an independent

set. The vertex coloring problem is the graph multicoloring problem with bv = 1 for all v ∈ V .

PDPTW The pickup and delivery problem with time windows (PDPTW) is a generalization of

the VRPTW, with the addition of precedence constraints (Ropke et al. 2007). The notation is the

same as for the VRPTW, but now the locations are partitioned into origin-destination pairs. The

locations are labeled V = {0,1, . . . ,2n} and partitioned into the depot node 0, and sets Φ = {1, . . . , n}

and Ω = {n + 1, . . . ,2n} which represent pickup and delivery nodes respectively. For each origin-

destination pair, the demand of the destination is negative the demand of the origin. So, for each

i ∈ Φ, qi = −qi+n. A route has the same requirements as for the VRPTW, but now also includes

precedence constraints that an origin node i ∈ Φ must be visited before its corresponding delivery

node i+n∈ Ω by the same vehicle. The problem is to minimize the total distance traveled by a set

of feasible routes that visit all of the locations.

SOP The sequential ordering problem corresponds to the precedence-constrained (asymmetric)

traveling salesman problem. It is a special case of the PDPTW on a single vehicle, without time

windows or vehicle capacity and for which precedences are defined for a subset of pairs of locations.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 23

8. Experimental Results

In this section, we provide an experimental evaluation of the computational performance of col-

umn elimination. We first consider the impact of the various components of the column elimination

algorithm, and then give a comparison with the state-of-the-art.

8.1. Experimental Setup

All experiments are run on an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. We use CPLEX

version 22.1 with one thread and default parameters. The best-known primal solution value is input

to all solvers. For each experiment, we give each algorithm a timeout of 3,600 seconds. The Github

repositories of the code will be made available upon acceptance of the paper.

Initial Relaxation: We use the following initial relaxations as defaults for each application, unless

otherwise specified. For VRPTW, CVRP, PDPTW, we follow the description in Appendix B, starting

with an initial ng-route relaxation with ρ= 2. For the VRPTW and PDPTW, we relax the capacity

constraints for instances in the classes R2, C2, RC2 and we keep the capacity constraints for all

others (Gehring and Homberger 2002). For VRPTW and PDPTW instances, we also set bucketing

parameter ∆ equal to the minimum non-zero service time. For graph multicoloring and vertex coloring

instances, we start with the initial relaxation that is described in Appendix B.

Subgradient Descent: We make the following implementation decisions for column elimination

with subgradient descent. At each iteration k of the subgradient method, we use a subgradient γk

such that for each j = 1, ...,m, γkj = (bj−
∑
a∈A gj(a)yka) where yka is the solution to Lk(λk). We use an

estimated Polyak step size αk = ψ∗−v(λk)
||γk||22

where ψ∗ =LB ∗ (1 + 5
100+k) is an estimate of the optimal

value, k is the iteration, LB is the best lower bound so far, and v(λ) is the optimal value of Lk(λk). To

update the multipliers, we set λk+1 = λk +αkγk (Bertsekas 2009). For the VRPTW/CVRP, we use

initial dual values λ1
i = 2l(0,i)

qi
Q

for each j = 1, ...,m. For the SOP, we initialize λ1
j for each j = 1, ...,m

to the best known primal bound divided by the number of locations. For vertex coloring, we initialize

λ1
j = 0 for each j = 1, ...,m. We do not ‘dualize’ constraints on the size of the subset of feasible

sequences, like for the CVRP. We repair infeasible λ values using a greedy algorithm. We store the

Karahalios and Van Hoeve: Column Elimination for Integer Programs
24 00(0), pp. 000–000, © 0000 INFORMS

dual values that give the largest percent of fixed arcs, and we use these dual values for arc fixing at

each iteration. We switch to using column elimination with CPLEX when variable fixing has reduced

the number of arc variables to below 100,000 or by at least 97.5% of the total arcs.

Cutting Planes: For the VRPTW and CVRP, we give cut-and-refine the following defaults. We use

the package CVRPSEP (Lysgaard 2003) to add at most 100 rounded capacity cuts at each iteration

of column elimination. We do not add cuts during column elimination with subgradient descent.

8.2. Impact of Column Elimination Components

We performed an extensive evaluation of the various components of column elimination, using the

different applications listed above for different purposes. We give details on the respective problem

domains and the computational results in the online Appendices F-K. As a summary of these results,

we report the following insights:

Subgradient Descent: Column elimination with subgradient descent performs well on VRPTW

instances, but not on vertex coloring instances. This is likely due to the (non-)stability of the primal

and dual solutions for successive iterations. (See Appendix F.)

Initial Relaxation: Larger initial relaxations are not always better. Our experimental study on

the SOP shows that an initial relaxation that includes important constraints can perform well when

the size of the state-transition graph is not too large. Otherwise, a weaker initial relaxation that

corresponds to a smaller state-transition graph performs better. (See Appendix G.)

Minimum-Update SSP: The specialized minimum-update successive shortest paths algorithm is

very effective, as it can solve the Lagrangean subproblems on average 3.7 times faster than a standard

successive shortest paths algorithm for the CVRP. (See Appendix H.)

Variable Fixing: Variable fixing is critical to solving large-scale instances. Using variable fixing

allows column elimination to solve CVRP instances on average 53% more quickly than without

variable fixing. (See Appendix I.)

Cut-and-Refine: We show for the CVRP that cut-and-refine can be effective for column elimination

using a linear programming solver, but is not as effective for column elimination with subgradient

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 25

descent. This is due to the challenges related to integrating cutting planes into the Lagrangian

reformulation and subgradient descent. (See Appendix J.)

Branch-and-Refine: Branch-and-refine can help when conflict refinement alone ‘plateaus’ at a

sub-optimal bound. We find that it solves instances of the vertex coloring problem on average 2.3

times faster than without branching. (See Appendix K.)

8.3. Comparison with State-of-the-Art

We next compare column elimination to state-of-the-art algorithms for solving the VRPTW, the

graph multicoloring problem, and the PDPTW. For each instance, we list the current best-known

upper bound (UB) that each algorithm takes as input. For each method, we report the lower bound

(LB) and time taken (Time (s)). For branch-and-cut-and-price methods, we give the number of

explored nodes (Nodes). For column elimination, we also report the number of column elimination

iterations (CEIt) and column elimination with subgradient descent iterations (CESIt), the number

of cuts (Cuts), and the number of refinements (CR). For multicoloring instances, we also report the

number of nodes n and edges m in the graph, an initial lower bound ω used for preprocessing, and

the best upper bound found by each method.

8.3.1. VRPTW We use column elimination to solve the VRPTW instances from Gehring and

Homberger (2002). We compare the performances of column elimination and the state-of-the-art

solver called VRPSolver (Pessoa et al. 2020), which is based on branch-and-cut-and-price. We use

VRPSolver with the default settings on the same server as the one we use for column elimination.

Before discussing the results, we consider the characteristics of the six classes of instances in the

benchmark set: C1,C2,R1,R2,RC1,RC2. For C1 and C2, the locations are generated in clusters. For

R1 and R2, the locations are randomly generated. For RC1 and RC2, some locations are clustered

and some are randomly generated. For R1, C1, and RC1, each feasible route has few customers due

to a short time horizon, which effectively removes the capacity constraint. For R2, C2, and RC2,

feasible routes can have many customers and the capacity Q is large. In fact, VRPSolver relaxes the

capacity constraint for problems in instances R2, C2, and RC2. So, we do the same in our initial

Karahalios and Van Hoeve: Column Elimination for Integer Programs
26 00(0), pp. 000–000, © 0000 INFORMS

relaxations. We hypothesize that column elimination will perform better when two characteristics of

an instance hold. First, a strong relaxation of the set of feasible routes can be compactly represented.

Second, conflict refinement can quickly close the gap between the initial relaxation and the full model.

Instances with clustered locations are likely to require eliminating routes that have cycles within

the clusters, but can leave many routes relaxed that have cycles across more than one cluster. This

may allow a strong relaxation to be obtained quickly and remain over a compact network. Similarly,

instances for which we use an initial dynamic program relaxation that does not maintain capacity

in its states allows for a more compact network, so capacity values are only needed when they are

the reason a useful route in the solution to a relaxation is infeasible. These characteristics allow the

conflict refinements to strengthen relaxations. Thus, we hypothesize that column elimination may

work well on C2 instances.

The results in Table 1 compare the performance of column elimination and VRPSolver for C2

instances with 400 and 600 locations. The table shows that column elimination can outperform

VRPSolver on six instances. Table 2 shows the same comparison for three instances that column

elimination solves. Based on CVRPLib (http://vrp.atd-lab.inf.puc-rio.br/index.php/en/),

column elimination is able to close one instance and solve two others that were only recently closed

by VRPSolver in work that is not yet published. We show the full table of results for all instance

classes in Appendix L.

8.3.2. Graph Multicoloring We compare column elimination to the branch-and-price method

from Gualandi and Malucelli (2012) (GM) for solving the COG graph multicoloring instances intro-

duced in the same paper. We directly use the results from Gualandi and Malucelli (2012) from their

paper, as their code is not available. The full table of results are presented in Appendix M.

The results in Table 3 show that column elimination closes five instances by obtaining an optimal

solution at termination: COG-gesa2-o, COG-misc07, COG-nsrand-ipx, COG-opt1217, and COG-

rout. Column elimination solves four of these instances without making any conflict refinements.

We attribute this to the initial relaxation that column elimination uses, which is not used in the

branch-and-price method by Gualandi and Malucelli (2012).

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 27

8.3.3. PDPTW We compare column elimination to a dual ascent method from Baldacci et al.

(2011a) (BBM) and VRPSolver for solving instances from Li and Lim (2001). We directly take the

results from Baldacci et al. (2011a) from their paper as their code is not available. We use VRPSolver

with the default settings and use the same server as the one we use for column elimination. The full

table of results are presented in Appendix N.

The results show that BBM outperforms column elimination on all instances, although column

elimination finds competitive bounds for many instances. In contrast, the general VRPSolver does

not find a lower bound for any instance. Because no exact method including BBM and VRPSolver

have reported results on many of the larger instances from Li and Lim (2001), we show in Table 4

six of these instances that column elimination closes.

9. Conclusion

We introduced column elimination as an iterative framework for solving a general class of discrete

optimization problems. The framework models these problems by a minimum-cost constrained net-

work flow problem over the state-transition graph of a dynamic program that stores the feasible

sequences, their costs, and additional costs. We generalized earlier work by introducing the concept

of dynamic programming relaxations, and described the column elimination algorithm as an itera-

tive procedure that solves increasingly stronger dynamic programming relaxations of the problem

by removing infeasible solutions. This iterative method converges in a finite number of steps to the

optimal solution. As a variant, we presented a subgradient method that uses a minimum update suc-

cessive shortest paths algorithm to solve the Lagrangian relaxation of the network flow problem. We

showed that this method can solve the Lagrangian method more efficiently, but also allows refining

the dynamic program relaxations more quickly. We also introduced cut-and-refine and branch-and-

refine as extensions of the algorithm. Lastly, we showed experimentally that column elimination can

be especially effective for large-scale instances, closing five open instances of the graph multicoloring

problem, one open instance with 1,000 locations of the vehicle routing problem with time windows,

and six open instances of the pickup-and-delivery problem with time windows.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
28 00(0), pp. 000–000, © 0000 INFORMS

Appendix A: Dynamic Program Relaxation Example

We give an example of a dynamic program relaxation that is not a state-space relaxation. First, we give the

formal definition of a state-space relaxation. We will use a formal definition similar to the one in Christofides

et al. (1981). Given (S1, h1, c1,G1), define a state-space relaxation to be (S2, h2, c2,G2) that meets the fol-

lowing requirements. First, |S2| < |S1|. Second, there exists a mapping function µ : S1 → S2 such that for

each s2 ∈ S1, for all (s1, u) ∈ h−1
1 ({s2}), (µ(s1), u) ∈ h−1

2 ({µ(s2)}), where we define h−1({s2}) = {(s1, d) :

h((s1, d)) = s2} as the preimage of s2 ∈ S, not to be confused with an inverse function. Third, for every

s1 ∈ S2, c2(s1, u) = min{s3∈S1|µ(s3)=u,µ(h1(s3,u))=h2(s1,u)}{c1(s3, u)}.

We give an example of when a dynamic program relaxation is not a state-space relaxation in Proposition 2,

using data for an example CVRP instance in Figure 6. The costs are not relaxed in either dynamic program,

so we only argue about the solution sets complying with the definitions.

Proposition 2. The dynamic program relaxation represented by the state-transition graph in Figure 5(b)

is not a state-space relaxation.

Proof For sake of contradiction assume the dynamic program relaxation is a state-space relaxation

defined by a mapping µ. It must be the case that µ(r) = r, which implies µ(({1},1,1)) = ({1},1,1) and

µ(({2},1,2)) = ({2},1,2). This implies µ(({1,2},2,2)) = ({1,2},2,2) and µ(({2,1},2,1)) = ({1},2,1). Finally,

this implies µ(({1,2,3},3,3)) = ({1,2,3},3,3), which would require h(({2,1},2,1),3) = ({1,2,3},3,3), but in

the dynamic program relaxation shown h(({2,1},2,1),3) = ({2,1,3},3,3) (the states labelled ({1,2,3},3,3)

and ({2,1,3},3,3) are distinct even though they represent the same information), which is a contradiction.

Q.E.D.

Appendix B: Application Models

B.1. VRPTW

The problem P has the same form as the CVRP, but the set S is further restricted to routes that respect the

time window constraints. To create P , we extend the model for the CVRP as follows. We augment the states

of the dynamic program to consider time. The states become tuples (NG,w, v, τ) where τ is the current time.

The initial state is r = (∅,0,0,0). Given a state s = (NG,w, v, τ) and element u ∈ U such that u ̸= 0, u /∈ NG,

w+qu ≤ Q, and τ +ℓv,u ≤ lu, the transition function becomes h(s,u) = (NG∪{u},w+qu, u,max(τ +ℓv,u, eu)).

Otherwise if u = 0 and τ + ℓv,0 ≤ l0, define h(s,0) = t. Otherwise h(s,u) = −1. The cost function is the same

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 29

as for the CVRP. The constraints G are the same as for the CVRP, but without the constraint requiring K

vehicles.

We relax the model by creating a dynamic programming relaxation w.r.t. P . We use an ng-route relaxation

and also consider relaxing the time windows and/or vehicle capacity. To relax the time windows, we use a

‘bucketing’ idea from the column generation literature (Sadykov et al. 2021). When a transition would create

a state with time value τ , round down τ to the nearest multiple of ∆ ∈Z. To relax the load values, for certain

instances we set all states to have load 0. This way, we only create states that remember load when conflicts

are refined. We use a binary value κ to indicate if capacity should be relaxed or not. We add a counter c

to all states to maintain an acyclic state-transition graph (Horn 2021). We use an upper bound denoted U

on the number of locations in a route, because the relaxation can create many long infeasible routes. We

calculate U by using two greedy methods based on summing the smallest loads up to Q and summing the

shortest distances with service times compared to l0.

Formally, we construct an initial dynamic programming relaxation P ′ = (S′, h′, c′,G′) w.r.t. P . Each state

is a tuple (NG,w, v, τ, c) with the initial state being r1 = (∅,0,0,0,0). The set of states S′ is implicitly in

defining a transition function h′. Given a state s = (NG,w, v, τ, c) and label u ∈ U such that u ̸= 0, u /∈ NG,

w + qu ≤ Q, τ + ℓv,u ≤ lu, and c < U , let the transition function be h′(s,u) = ((NG ∪ {u}) ∩ Nu, (w + qu) ∗

(1 − κ), u,max(⌊ τ+ℓv,u

∆ ⌋ ∗ ∆, ev), c + 1). Otherwise, when u = 0 and τ + ℓv,0 ≤ l0, define h′(s,0) = t. Otherwise

h′(s,u) = −1. Then, we keep the same cost function c′ = c and the same additional cost function G′ = G.

B.2. Graph Multicoloring

The problem P is formed by an element set U = {1, ..., |V |}, a set S containing all independent sets in G

as sequences with strictly increasing values, a constant cost function f = 1, and for a subset of sequences

X, C(X) = 1 if and only if all vertices are contained in at least one sequence. We represent the constraint

function as a tuple (γj ,=, bj) for each j = 1, ..., |V | such that γj(x) = Jj ∈ xK.

We model the problem with a dynamic program P = (S,h, c,G). The dynamic program will depend on

an ordering of the vertices {1, . . . , |V |}, similar to the one in van Hoeve (2022). In our experiments, we

use a variable ordering called ‘min width’ from Karahalios and van Hoeve (2022). Let each state s = (NG)

contain a ‘no-good’ subset of vertices NG that can no longer be included in an independent set. The initial

state is r = (∅). The transition function given a state s = (NG) and decision i such that i /∈ NG is h(s, i) =

Karahalios and Van Hoeve: Column Elimination for Integer Programs
30 00(0), pp. 000–000, © 0000 INFORMS

(NG ∪ Ni ∪ {1, . . . , i}), where Ni is the set of neighbors of vertex i, and all vertices with smaller index are

included in the updated NG to break symmetries. The dynamic program differs from the one in van Hoeve

(2022), because in that work the set of decisions was binary and each transition corresponded to selecting

a vertex to be in the independent set or not. The cost function is c(r, i) = 1 for all i ∈ U , and c(s, i) = 0

when s ̸= r for all i ∈ U . Second, we construct G. For each j = 1, ...,m, we create an additional cost function

gj((s,u)) = Jj = uK.

We relax the model by creating a dynamic programming relaxation P ′ = (S′, h′, c′,G′) w.r.t. P . Each state

maintains a ‘no-good’ subset of vertices s = (NG) and the initial state is r = (∅). The dynamic program only

‘remembers’ the latest decision. Formally, given a state s = (NG) and feasible transition u ∈ U such that

u /∈ NG, define h′(s,u) = ({1, . . . , u} ∪ Nu). Otherwise, h′(s,u) = −1. We keep the same cost function c′ = c

and additional cost functions G′ = G.

In our experiments, we use a common preprocessing rule to simplify the graph G before setting up the

model. We remove a vertex if the sum of the weights of its neighbors plus its own weight is smaller than a

lower bound on the optimal solution value. For multicoloring, we use an initial maximum (weighted) clique

from Gualandi and Malucelli (2012) as an initial lower bound for this preprocessing.

B.3. PDPTW / SOP

The problem P has the same form as the VRPTW, but the sequences in S must also follow the precedence

constraints. We define the set of precedence locations for each location u ∈ V as Πu. So, for u ∈ D, Πu = {u−

n}, and Πu = ∅ otherwise. We define the transition function as follows. Each state is a tuple s = (NG,w, v, τ)

and the initial state is r = (NG,w, v, τ). Given a state s = (NG,w, v, τ) and element u ∈ U such that u ̸= 0,

u /∈ NG, Πu ⊆ NG, w + qu ≤ Q, and τ + ℓv,u ≤ lu, let h(s,u) = (NG∪{u}, (w + qu)∗ (1−κ), u, ⌊ max(τ+ℓv,u,eu)
∆ ⌋∗

∆, c+1). Otherwise, when u = 0 and τ +ℓv,0 ≤ l0, define h(s,0) = t. Otherwise h(s,u) = −1. The cost function

and the additional costs are the same as for the VRPTW.

We relax the model in a similar way to the VRPTW, while also relaxing precedence constraints. To relax

the model, we create a dynamic programming relaxation P ′ = (S′, h′, c′,G′) w.r.t. P . Again, we add a counter

c to each state, so each state has the form s = (NG,w, v, τ, c). The initial state is r = (∅,0,0,0,0). Then, for

a state s = (NG,w, v, τ, c) and transition u such that u ̸= 0, u /∈ NG, w + qu ≤ Q, τ + ℓv,u ≤ lu, and c < |V |,

let h′(s,u) = ((NG ∪ {u}) ∩ Nu, (w + qu) ∗ (1 − κ), u,max(⌊ τ+ℓv,u

∆ ⌋ ∗ ∆, eu), c + 1). When u = 0, let h′(s,u) = t.

Otherwise h′(s,u) = −1. We use the same cost function c1 = c and additional cost functions G′ = G.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 31

Similar to other works in the vehicle routing literature, we aim to solve instances based on distances

that are rounded to the thousandths place. To do this, we start by rounding distances to the hundredths

place and solving the instance. Then, we keep the Pi at termination, update the distances to be rounded

to the thousandths place, and solve the instance again. We model the SOP in this way, with the additional

constraint that a solution has one sequence.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows (Prentice Hall).

Anstreicher KM, Wolsey LA (2009) Two “well-known” properties of subgradient optimization. Mathematical

Programming 120(1):213–220.

Ascheuer N, Jünger M, Reinelt G (2000) A branch & cut algorithm for the asymmetric traveling salesman

problem with precedence constraints. Computational Optimization and Applications 17:61–84.

Baldacci R, Bartolini E, Mingozzi A (2011a) An exact algorithm for the pickup and delivery problem with

time windows. Operations research 59(2):414–426.

Baldacci R, Mingozzi A, Roberti R (2011b) New route relaxation and pricing strategies for the vehicle routing

problem. Operations research 59(5):1269–1283.

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-Price: Column

Generation for Solving Huge Integer Programs. Operations Research 46(3):316–329.

Bellman R (1957) Dynamic Programming (Princeton University Press).

Bergman D, Ciré AA (2018) Discrete Nonlinear Optimization by State-Space Decompositions. Management

Science 64(10):4700–4720.

Bergman D, Cire AA, Van Hoeve WJ, Hooker JN (2016) Decision diagrams for optimization (Springer).

Bertsekas D (2009) Convex optimization theory, volume 1 (Athena Scientific).

Boland N, Dethridge J, Dumitrescu I (2006) Accelerated label setting algorithms for the elementary resource

constrained shortest path problem. Operations Research Letters 34(1):58–68.

Boland N, Hewitt M, Marshall L, Savelsbergh M (2017) The continuous-time service network design problem.

Operations research 65(5):1303–1321.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
32 00(0), pp. 000–000, © 0000 INFORMS

Castro MP, Ciré AA, Beck JC (2022) Decision Diagrams for Discrete Optimization: A Survey of Recent

Advances. INFORMS Journal on Computing 34(4):2271–2295.

Chen ZL, Powell WB (1999) Solving parallel machine scheduling problems by column generation. INFORMS

Journal on Computing 11(1):78–94.

Christofides N, Mingozzi A, Toth P (1981) State-space relaxation procedures for the computation of bounds

to routing problems. Networks 11(2):145–164.

Ciré AA, Hooker JN (2014) The Separation Problem for Binary Decision Diagrams. Proceedings of ISAIM.

Ciré AA, van Hoeve WJ (2013) Multivalued Decision Diagrams for Sequencing Problems. Operations

Research 61(6):1411–1428.

Clautiaux F, Hanafi S, Macedo R, Voge ME, Alves C (2017) Iterative aggregation and disaggregation algo-

rithm for pseudo-polynomial network flow models with side constraints. European Journal of Opera-

tional Research 258(2):467–477.

Corneil DG, Graham B (1973) An algorithm for determining the chromatic number of a graph. SIAM Journal

on Computing 2(4):311–318.

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Operations research 8(1):101–111.

de Lima VL, Alves C, Clautiaux F, Iori M, de Carvalho JMV (2022) Arc flow formulations based on dynamic

programming: Theoretical foundations and applications. European Journal of Operational Research

296(1):3–21.

Desrosiers J, Soumis F, Desrochers M (1984) Routing with time windows by column generation. Networks

14(4):545–565.

Focacci F, Lodi A, Milano M (1999) Cost-based domain filtering. Principles and Practice of Constraint

Programming–CP’99: 5th International Conference, CP’99, Alexandria, VA, USA, October 11-14,

1999. Proceedings 5, 189–203 (Springer).

Ford LR, Fulkerson DR (1958) A Suggested Computation for Maximal Multi-Commodity Network Flows.

Management Science 5(1):97–101.

Fukasawa R, Longo H, Lysgaard J, Aragão MPd, Reis M, Uchoa E, Werneck RF (2006) Robust branch-and-

cut-and-price for the capacitated vehicle routing problem. Mathematical programming 106(3):491–511.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 33

Gehring H, Homberger J (2002) Parallelization of a Two-Phase Metaheuristic for Routing Problems with

Time Windows. Journal of Heuristics 8:251–276.

Geoffrion AM (1974) Lagrangian Relaxation for Integer Programming. Mathematical Programming Study 2

82–114.

Gouveia L, Leitner M, Ruthmair M (2019) Layered graph approaches for combinatorial optimization prob-

lems. Computers & Operations Research 102:22–38.

Gualandi S, Malucelli F (2012) Exact solution of graph coloring problems via constraint programming and

column generation. INFORMS Journal on Computing 24(1):81–100.

Hadzic T, Hooker JN, O’Sullivan B, Tiedemann P (2008) Approximate compilation of constraints into

multivalued decision diagrams. International Conference on Principles and Practice of Constraint Pro-

gramming, 448–462 (Springer).

Held S, Cook W, Sewell EC (2012) Maximum-weight stable sets and safe lower bounds for graph coloring.

Mathematical Programming Computation 4(4):363–381.

Hooker JN (2013) Decision diagrams and dynamic programming. International Conference on Integration of

Constraint Programming, Artificial Intelligence, and Operations Research, 94–110 (Springer).

Horn DIM (2021) Advances in Search Techniques for Combinatorial Optimization: New Anytime A Search

and Decision Diagram Based Approaches. Ph.D. thesis, Technische Universität Wien.

Irnich S, Desaulniers G, Desrosiers J, Hadjar A (2010) Path-reduced costs for eliminating arcs in routing

and scheduling. INFORMS Journal on Computing 22(2):297–313.

Johnson DS, Trick MA (1996) Cliques, coloring, and satisfiability: second DIMACS implementation challenge,

October 11-13, 1993, volume 26 (American Mathematical Soc.).

Karahalios A, van Hoeve WJ (2022) Variable ordering for decision diagrams: A portfolio approach. Con-

straints 27(1):116–133.

Karahalios A, van Hoeve WJ (2023) Column elimination for capacitated vehicle routing problems. Inter-

national Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations

Research, 35–51 (Springer).

Karahalios and Van Hoeve: Column Elimination for Integer Programs
34 00(0), pp. 000–000, © 0000 INFORMS

Kowalczyk D, Leus R, Hojny C, Røpke S (2024) A Flow-Based Formulation for Parallel Machine Schedul-

ing Using Decision Diagrams A flow-based formulation for parallel machine scheduling using decision

diagrams. INFORMS Journal on Computing (Published Online).

Kuroiwa R, Beck JC (2024) Domain-Independent Dynamic Programming. ArXiv preprint arXiv:2401.13883.

Leus R, Kowalczyk D (2016) Improving column generation methods or sheduling problems using zdd and

stabilization. 2016 IEEE International Conference on Industrial Engineering and Engineering Man-

agement (IEEM), 99–103 (IEEE).

Li H, Lim A (2001) A metaheuristic for the pickup and delivery problem with time windows. Proceedings 13th

IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001, 160–167 (IEEE).

Lozano L, Bergman D, Cire AA (2022) Constrained shortest-path reformulations for discrete bilevel and

robust optimization. ArXiv preprint arXiv:2206.12962.

Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations research 53(6):1007–

1023.

Lucena A (2005) Non delayed relax-and-cut algorithms. Annals of Operations Research 140(1):375–410.

Lysgaard J (2003) CVRPSEP: A package of separation routines for the capacitated vehicle routing problem.

URL https://github.com/sassoftware/cvrpsep.

Mandal U, Regan A, Rousseau LM, Yarkony J (2023) Graph Master and Local Area Routes for Efficient

Column Generation for the Capacitated Vehicle Routing Problem with Time Windows. ArXiv preprint

arXiv:2304.11723.

Mehrotra A, Trick MA (1996) A column generation approach for graph coloring. INFORMS Journal on

Computing 8(4):344–354.

Nemhauser G, Wolsey L (1988) Integer and Combinatorial Optimization (Wiley).

Pecin D, Pessoa A, Poggi M, Uchoa E (2017) Improved branch-cut-and-price for capacitated vehicle routing.

Mathematical Programming Computation 9(1):61–100.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F (2018) Automation and combination of linear-programming

based stabilization techniques in column generation. INFORMS Journal on Computing 30(2):339–360.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 35

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F (2020) A generic exact solver for vehicle routing and related

problems. Mathematical Programming 183(1):483–523.

Righini G, Salani M (2008) New dynamic programming algorithms for the resource constrained elementary

shortest path problem. Networks: An International Journal 51(3):155–170.

Ropke S, Cordeau JF, Laporte G (2007) Models and branch-and-cut algorithms for pickup and delivery

problems with time windows. Networks: An International Journal 49(4):258–272.

Sadykov R, Uchoa E, Pessoa A (2021) A bucket graph–based labeling algorithm with application to vehicle

routing. Transportation Science 55(1):4–28.

Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window con-

straints. Operations Research 35(2):254–265.

Tang Z (2021) Theoretical and Computational Methods for Network Design and Routing. Ph.D. thesis,

Carnegie Mellon University.

Tang Z, van Hoeve WJ (2024) Dual Bounds from Decision Diagram-Based Route Relaxations: An Application

to Truck-Drone Routing. Transportation Science 58(1):257–278.

Toth P, Vigo D (2014) Vehicle Routing: Problems, Methods, and Applications (SIAM), second edition.

Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A (2017) New benchmark instances for the

capacitated vehicle routing problem. European Journal of Operational Research 257(3):845–858.

van Den Akker JM, Hoogeveen JA, van de Velde SL (1999) Parallel machine scheduling by column generation.

Operations research 47(6):862–872.

van Hoeve W (2020) Graph coloring lower bounds from decision diagrams. Bienstock D, Zambelli G, eds.,

Integer Programming and Combinatorial Optimization - 21st International Conference, IPCO 2020,

London, UK, June 8-10, 2020, Proceedings, volume 12125 of Lecture Notes in Computer Science, 405–

418 (Springer).

van Hoeve WJ (2022) Graph coloring with decision diagrams. Mathematical Programming 192(1):631–674.

van Hoeve WJ (2024) An Introduction to Decision Diagrams for Optimization. INFORMS TutORials in

Operations Research (INFORMS).

Karahalios and Van Hoeve: Column Elimination for Integer Programs
36 00(0), pp. 000–000, © 0000 INFORMS

van Hoeve WJ, Tang Z (2022) Column ”Elimination”: Dual Bounds From Decision Diagram-based Route

Relaxations. INFORMS Computing Society Conference.

Vanderbeck F (2005) Implementing Mixed Integer Column Generation. Desaulniers G, Desrosiers J, Solomon

M, eds., Column Generation, 331–358 (Springer).

Wang C, Wang Y, Wang Y, Wu CT, Yu G (2019) muSSP: Efficient Min-cost Flow Algorithm for Multi-object

Tracking. Advances in Neural Information Processing Systems, 425–434.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 37

Table 1 The performance of column elimination on VRPTW instances from Gehring and Homberger (2002)

with 400 and 600 locations. We bold the instances where column elimination outperforms VRPSolver.

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

C2 4 1 4100.3 4100.3 1 852 4085.95 29 150 992 0 3600

C2 4 10 3665.1 3647.88 1 3600 3397.41 1 175 2128 0 3600

C2 4 2 3914.1 3900.22 1 3600 3815.14 1 152 2153 0 3600

C2 4 3 3755.2 3723.96 1 3600 3348.42 1 79 1021 0 3600

C2 4 4 3523.7 3486.12 1 3600 2725.34 1 51 474 0 3600

C2 4 5 3923.2 3923.2 1 971 3831.85 1 376 5034 0 3600

C2 4 6 3860.1 3860.1 1 2466 3696.11 1 291 3892 0 3600

C2 4 7 3870.9 3870.9 1 1483 3692.25 1 253 3391 0 3600

C2 4 8 3773.7 3770.24 1 3600 3553.38 1 232 3090 0 3600

C2 4 9 3842.1 3806.45 1 3600 3568.74 1 210 2714 0 3600

C2 6 1 7752.2 7719.46 1 3600 7688.34 1 391 1671 0 3600

C2 6 10 7123.9 6340.81 1 3600 6437.63 1 94 1733 0 3600

C2 6 2 7471.5 7075.15 1 3600 7177.06 1 94 1546 0 3600

C2 6 3 7215 4670.06 1 3600 5953.32 1 41 593 0 3600

C2 6 5 7553.8 7540.44 1 3600 7241.6 1 231 4427 0 3600

C2 6 6 7449.8 7400.61 1 3600 6976.78 1 168 3227 0 3600

C2 6 7 7491.3 6294.69 1 3600 6966.47 1 151 2871 0 3600

C2 6 8 7303.7 7223.09 1 3600 6753.56 1 140 2559 0 3600

C2 6 9 7303.2 5754.15 1 3600 6741.86 1 104 1834 0 3600

Karahalios and Van Hoeve: Column Elimination for Integer Programs
38 00(0), pp. 000–000, © 0000 INFORMS

Table 2 The performance of column elimination on three difficult VRPTW instances.

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB LPIt LagIt CR Time (s)

C1 10 5 42434.8 42434.8 1 1227 42434.8 5 397 7468 6224

C1 8 5 25138.6 25138.6 1 737 25138.6 4 144 3198 1340

C2 10 1 16841.1 - - 3600 16841.1 17 145 1661 10049

Table 3 The performance of column elimination on the five graph multicoloring instances that it closes.

Instance GM Column Elimination

Name n m ω LB UB Time (s) LB UB LPIt CR Time (s)

COG-gesa2-o 192 144 12 12 13 3600 12 12 2 0 0

COG-misc07 410 2928 36 36 39 3600 36 36 141 581 139

COG-nsrand-ipx 13240 69510 30 - - 3600 30 30 2 0 5

COG-opt1217 1536 6528 26 - - 3600 26 26 2 0 13

COG-rout 560 2940 30 30 32 3600 30 30 2 0 0

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 39

Table 4 The performance of column elimination on six PDPTW instances from Li and Lim (2001) that it

solves that have not been reported on by an exact solver.

Instance Column Elimination

Name UB LB CEIt CESIt CR Time (s)

LC1 4 1 7152.06 7152.06 8 15 217 50

LC1 4 5 7150.0 7150.0 9 32 609 477

LC1 4 6 7154.02 7154.02 19 73 1867 3295

LC1 6 5 14086.3 14086.3 8 91 2140 1620

LC2 2 1 1931.44 1931.44 37 54 494 300

LC2 4 1 4116.33 4116.33 12 113 1123 1555

Karahalios and Van Hoeve: Column Elimination for Integer Programs
40 00(0), pp. 000–000, © 0000 INFORMS

Input F

Initialize
relaxation F1

P

Solve LP(Fi)
P1 Decompose

solution Conflict?
Xi

Refine conflicts

yes

Done
no

Pi

Figure 1 Column elimination for solving LP(F).

Input F

Solve LP(F) with
column elimination

P

Solve Fi

Pi Decompose
solution Conflict?

Xi

Refine conflicts
yes

Done
no

Pi

Figure 2 Pure column elimination for solving F .

Input F

Initialize
relaxation

P

Solve LP(Fi)
P1 Decompose

solution Conflict?
Xi

Fractional?

no

Add cuts
yes

Refine conflicts
yes

Done
no

Pi

Gi

Figure 3 Cut-and-refine for solving F .

Input F

Initialize
relaxation

and λ1

P

Solve Li(λi)
P1,λ1

Termination
criteria?

Decompose
solutionno

Conflict?
Xi

Refine conflicts
yes

Update duals
Pi

Done
yes

Pi, λi

no

Figure 4 Column elimination for solving LP(F) using subgradient descent.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 41

r

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 4 5

t

a. State-space relaxation.

r

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 4 5

t

{1, 2}

{1, 2, 3}

{2, 1}

{2, 1, 3}

b. Dynamic program relaxation.

Figure 5 The state-transition graph on the left is a state-space relaxation of a dynamic program, and the

state-transition graph on the right is a dynamic program relaxation created by removing some feasible

sequences from the state-space relaxation on the left.

Locations V = {0, 1, 2, 3, 4, 5}

Depot = 0

Demands q1 = q2 = q3 = q4 = 1, q5 = 3

Number of vehicles K = 2

Vehicle capacity Q = 4

lij 0 1 2 3 4 5

0 0 12 10 11 10 11

1 12 0 2 1 22 23

2 10 2 0 1 20 21

3 11 1 1 0 21 22

4 10 22 20 21 0 1

5 11 23 21 22 1 0
Figure 6 Input data for a CVRP instance.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
42 00(0), pp. 000–000, © 0000 INFORMS

Appendix C: CVRP Formulation

The model F to solve the CVRP is formulated as follows:

F : min
∑
a∈A

caya (9)

s.t.
∑

a∈δ+(r)

ya = K (10)

∑
(s,u)∈A:u=j

ya = 1 ∀j = 1, ...,m (11)

∑
a∈δ+(u)

ya −
∑

a∈δ−(u)

ya = 0 ∀u ∈ N \ {r, t} (12)

ya ∈ {0,1} ∀a ∈ A. (13)

The objective function (9) minimizes the sum of all arc costs. The ‘flow conservation’ constraints (12) ensure

that the solution is a collection of labeled r-t paths, or single feasible routes. Constraint (10) enforces that

exactly K units of flow originate from r and thus K routes are used. Constraints (11) ensure that all locations

are visited once. The binary constraints (13) complete the formulation.

Appendix D: Variable Fixing

Variable fixing is an important method to improve the performance of column elimination. Variable fixing

is an acceleration method used in integer programming (Nemhauser and Wolsey 1988) and constraint pro-

gramming (Focacci et al. 1999) to prove that a variable must equal its lower bound or upper bound in an

optimal solution. For integer programming, the proof requires a primal bound and a feasible dual solution to

the linear programming relaxation. For column elimination, we use a variable fixing algorithm that considers

one arc a ∈ A at a time and reasons about all r − t paths that traverse the arc. Theorem 6 generalizes the

arc fixing theorem from Karahalios and van Hoeve (2023), which is based on Irnich et al. (2010).

Let ν be a feasible solution to the dual of LP(F) such that each ν corresponds to G. For each arc a ∈ A

we define a ‘reduced cost distance’ rc(ya) = ca −
∑m

j=1 gj(a)νj . For each node u ∈ N , we define sp↓
u as the

shortest r-u path in the state-transition graph of P with respect to the reduced cost distances, and similarly

define sp↑
u to be the shortest u-t path in the state-transition graph of P .

Theorem 6. Consider arc a = (v1, v2) ∈ A. Let v(ν) be the solution value of ν to the dual of LP(F), and

let UB an upper bound on the optimal solution value for F . If v(ν) + sp↓
v1 + sp↑

v2 + rc(a) > UB, then arc a

can be fixed to have flow 0 in F .

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 43

Proof Consider the following integer program that is equivalent to F , created by enumerating the solu-

tions to S, where Ax is the set of arcs in the solution x.

(IP) min
∑
x∈X

zxf(x) (14)

s.t.
∑
x∈X

zx
∑
a∈Ax

gj(a) ◦j bj ∀ j ∈ {1, . . . ,m} (15)

z ∈Z|X |
+ (16)

Given ν and a solution x, in the linear program relaxation of IP, the variable zx has reduced cost rc(x) =

f(x)−
∑m

j=1 νj
∑

a∈Ax
gj(a). Each x corresponds to a path p = {a1, . . . , al} in D, so rc(x) can be decomposed

into rc(x) =
∑

a∈Ax
rc(ya). For all p that contain arc a, let p′ be the path that corresponds to the route x

with lowest reduced cost. Denote the lowest reduced cost as rc′(x′) = sp↓
v1 + sp↑

v2 + rc(a). Now for sake of

contradiction assume an optimal solution to F has ya = 1. Then some solution x′′ in D that contains arc a

will be in the solution X to F , which is equivalent to zx′′ = 1 in IP. To construct the remainder of an optimal

solution to the linear programming relaxation of IP, we can solve the linear programming relaxation with

the constraints defined by G adjusted to have the values contributed from x′′ removed. Then, ν remains

feasible to the dual of this updated problem and has value v(ν) −
∑m

j=1 νj
∑

a∈Ax′′
gj(a). So, combining this

feasible dual with the cost of x′′ gives a valid lower bound on IP as v(ν) −
∑m

j=1 νj
∑

a∈Ax′′
gj(a) + f(x′′).

This contradicts UB. Specifically, v(ν) −
∑m

j=1 νj
∑

a∈Ax′′
gj(a) + f(x′′) = v(ν) + rc(x′′) ≥ v(ν) + rc(x′) ≥

v(ν) + sp↓
v1 + sp↑

v2 + rc(a) > UB. Q.E.D.

Appendix E: Convergence of Column Elimination with Subgradient Descent

It is not straightforward to analyze the convergence of column elimination with subgradient descent. Given

Fi, subgradient descent will converge to an optimal dual solution for LP(Fi) if a divergent series step-

length is used (Anstreicher and Wolsey 2009). However, an optimal primal solution is needed to determine

if any conflicts need to be refined. Subgradient descent produces a sequence of solutions to the Lagrangian

relaxation whose average converges to an optimal primal solution, but this does not theoretically guarantee

that an optimal primal solution is found (Anstreicher and Wolsey 2009).

So, to evaluate the convergence of the algorithm in practice, we consider the following example. We apply

column elimination and column elimination with subgradient descent to solve the instance C1 2 5 of the

Karahalios and Van Hoeve: Column Elimination for Integer Programs
44 00(0), pp. 000–000, © 0000 INFORMS

Vehicle Routing Problem with Time Windows (VRPTW) from Gehring and Homberger (2002), which we

define in the next section. For each algorithm, we plot the sequence of dual solutions obtained at each

iteration, converted into three dimensions using a principal component analysis method. Figure 7(a) shows

that the optimal dual solutions of column elimination can greatly change from one iteration to the next,

possibly indicating degeneracy, which can hinder column generation. In contrast, Figure 7(b) shows a smooth

path of dual solution values, indicating that each step of subgradient descent is in the general direction of

the optimal dual solution to LP(F) that the algorithm finds upon termination.

a. CPLEX b. Lagrangian Method

Figure 7 Sequences of dual solutions obtained by running a column elimination and column elimination with

subgradient descent to solve the VRPTW instance C1 2 5. The dual solutions are plotted in three

dimensions using the Python package ‘sklearn’.

Appendix F: Evaluating Column Elimination with Subgradient Descent

We give insights into when column elimination with subgradient descent will outperform column elimination.

To do this, we apply each algorithm to solve the vertex coloring instances from Johnson and Trick (1996)

and the VRPTW instances from Gehring and Homberger (2002) and Solomon (1987). We choose these two

applications, because they differ in the following way. The primal and dual solutions to Fi and Fi+1 for

some iteration i can be greatly different for vertex coloring. However, for the VRPTW, the primal and

dual solutions can remain very similar. This property affects the performance of column elimination with

subgradient descent for two reasons. Firstly, it changes the likelihood that refinements of conflicts at the

current iteration will benefit future iterations. Secondly, the steps of subgradient descent are more likely to be

in the direction of the optimal solutions to F . So, we hypothesize that column elimination with subgradient

descent will perform well for the VRPTW, but not for vertex coloring problem.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 45

We show a plot that validates our hypothesis. For instances that both column elimination and column

elimination with subgradient descent solver, we plot the time it takes for column elimination and column

elimination with subgradient descent to solve each instance in Figure 8(a). For vertex coloring, column elim-

ination solves instances on average 195 seconds faster than column elimination with subgradient descent.

For the VRPTW, the column elimination with subgradient descent solves instances on average 330 seconds

faster than column elimination. For vertex coloring, column elimination solves 13 additional instances and

column elimination with subgradient descent solves no additional instances. For the VRPTW, column elimi-

nation with subgradient descent solves two additional instances and column elimination solves one additional

instance.

a. Subgradient Descent b. Initial Relaxations for SOP

Figure 8 a) The time taken to solve VRPTW and vertex coloring (VC) instances using column elimination (CE)

and column elimination with subgradient descent (CESGD). The axes use log scales. b) The optimality

gap achieved when using column elimination with subgradient descent starting with an initial ng-route

relaxation with ρ = 2 (CESGD NG2) and an initial ng-route relaxation with ρ = 8 (CESGD NG8) for

the SOP with p% precedence constraints.

Appendix G: Sensitivity to Initial Relaxations

We evaluate the sensitivity of column elimination to the initial relaxation. To do this, we use column

elimination with subgradient descent and two different initial relaxations to solve the TSPLIB SOP

instances (Ascheuer et al. 2000). The two initial relaxations are ng-route with ρ = 2 and ρ = 8. We aim

to test the behavior of the following general tradeoff. A stronger initial relaxation can reduce the number

Karahalios and Van Hoeve: Column Elimination for Integer Programs
46 00(0), pp. 000–000, © 0000 INFORMS

of conflict refinements needed for column elimination to solve the problem, but it can increase the time

needed to solve LP(Fi) at each iteration. In the context of the SOP, we consider that an initial relaxation

relaxes precedence constraints and the constraint that the solution is an elementary path. We hypothesize

that a stronger ng-route relaxation will capture the constraint that a solution is an elementary path, but not

capture the precedence constraints because the NG sets are different for each location, so larger NG sets

do not necessarily encode precedence constraints for solutions that have two locations appearing far apart

in the ordering.

We show a plot that gives insight into this hypothesis. We plot the optimality gaps achieved at termination

when starting with the ρ = 2 and ρ = 8 initial relaxations in Figure 8(b). The instances are partitioned based

on the percent of values in the distance matrix that are indicate a precedence, which we denote at p. The

groups are p ≤ 10, 10 < p < 40, and p ≥ 40. The instances in the group p ≤ 10 tend to have a smaller number

of vertices than the instances in the group with p ≥ 40. The average number of locations is 63 and 263

respectively. The plot shows that for instances with a low percent of precedences, starting with the ρ = 8

initial relaxation is beneficial. For these instances, the size of the initial relaxation for ρ = 8 is small enough

that column elimination can run for many iterations; when using ρ = 8 the median number of iterations

solved is 3507 and when using ρ = 2 the median is 19389 iterations. In comparison, the plot shows that for

instances with a high percent of precedences, starting with the ρ = 2 initial relaxation is beneficial. For these

instances, when using ρ = 8, the median number of iterations solved is only 206, and when using ρ = 2 the

median is 1038 iterations.

Appendix H: Impact of Using Minimum Update SSP

We evaluate the impact of the minimum update successive shortest paths (muSSP) instead of SSP during

column elimination with subgradient descent. We use column elimination with subgradient descent to solve

ten CVRP instances from Uchoa et al. (2017) each with a different number of locations. At each iteration,

we solve L(λ) using both muSSP and SSP. We plot the runtimes in Figure 9(b). For smaller instances, there

is not much impact, but for larger instances muSSP can greatly improve performance. Using muSSP solves

the subproblem on average 3.7 times faster than using SSP.

Appendix I: Impact of Using Variable Fixing

We evaluate the effect of using variable fixing during column elimination. We use column elimination with

and without subgradient descent, and with and without variable fixing, to solve the VRPTW instances from

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 47

a. Impact of muSSP b. Impact of Variable Fixing

Figure 9 a) The difference in solve time of L(λ) between SSP and muSSP for solving VRPTW instances with

column elimination. For both plots, the axes use log scales. b) The runtime to solve CVRP instances

using column elimination and column elimination with subgradient descent both with and without

variable fixing.

Solomon (1987). We plot the run times of instances solved by both methods in Figure 9(a). Variable fixing

allows column elimination with subgradient descent to solve one additional instance and solved instances on

average 106 seconds faster than without variable fixing. Variable fixing allows column elimination without

subgradient descent to solve 4 additional instances and solved instances on average 110 seconds faster than

without variable fixing. These are the first experimental results for using variable fixing during column

elimination with subgradient descent by checking dual feasibility and repairing infeasible duals.

Appendix J: Evaluating Cut-and-refine

We evaluate the performance of cut-and-refine compared to column elimination. We implement cut-and-refine

for the CVRP using the framework in Figure 3. We apply column elimination without adding any cutting

planes and cut-and-refine on the CVRP instances from http://vrp.atd-lab.inf.puc-rio.br/index.php/

en/ in classes A,B,M,E,F, and P. We also apply column elimination with subgradient descent without any

cutting planes and cut-and-refine with subgradient descent to the same instances. We choose to remove the

constraint that a solution must use K vehicles, as this is the case for the large-scale VRPTW instances that

we will evaluate when comparing to the state-of-the-art. Similar experiments that include the constraint on

the number of vehicles are shown in Karahalios and van Hoeve (2023).

Karahalios and Van Hoeve: Column Elimination for Integer Programs
48 00(0), pp. 000–000, © 0000 INFORMS

a. Cut-and-refine b. Branch-and-refine

Figure 10 a) The runtime to solve VRPTW instances using column elimination with and without subgradient

descent, with and without cuts. b) The runtime to solve vertex coloring instances using column

elimination (CE) and branch-and-refine. For this plot the axes use log scales.

We plot the optimality gaps achieved at termination for both column elimination without cuts, col-

umn elimination with subgradient descent without cuts, cut-and-refine, and cut-and-refine with subgradient

descent in Figure 10(a). The plot shows that cut-and-refine achieves better optimality gaps than column

elimination without cutting planes. However, the plot also shows that cut-and-refine with subgradient descent

does not improve the performance of column elimination with subgradient descent without cutting planes.

Appendix K: Evaluating Branch-and-refine

We evaluate the performance of branch-and-refine. We implement branch-and-refine for the vertex coloring

problem. We use Zykov branching, which chooses two nonadjacent vertices and defines one branch by con-

tracting these vertices and the other branch by adding an edge between the vertices (Corneil and Graham

1973). We choose the two nonadjacent vertices with the highest sum of their degrees, using an ordering of

the vertices as a tie breaker. We terminate the algorithm when solving a subproblem if there has not been an

improvement to the lower bound for 30 seconds. We choose the subproblem with the greatest lower bound

as the one to solve next, using the most recently created node as a tie breaker. We solve the DIMACS vertex

coloring instances using branch-and-cut and column elimination Johnson and Trick (1996).

We plot the runtimes of column elimination and branch-and-refine on instances that both methods solve

in Figure 10(b). Branch-and-refine solves instances on average 2.3 times faster than without using branching.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 49

Branch-and-refine solves an additional 7 instances, mostly FullIns instances related to Mycielski graphs.

Using column elimination without branching solves an additional 8 instances, mostly larger instances that

require more conflict refinements.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
50 00(0), pp. 000–000, © 0000 INFORMS

Appendix L: VRPTW Results

Table 5 A comparison of the performance of VRPSolver from Pessoa et al. (2020) and column elimination for

solving VRPTW instances by Gehring and Homberger (2002).

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

C1 10 1 42444.8 42444.8 1 1219 42389.3 1 290 742 0 3600

C1 10 10 39816.8 - - 3600 37913.0 1 24 3814 0 3600

C1 10 2 41337.8 41068.76 1 3600 39383.6 1 48 3954 0 3600

C1 10 3 40064.4 - - 3600 38051.3 1 12 2637 0 3600

C1 10 5 42434.8 42434.8 1 1227 41924.9 1 176 4239 0 3600

C1 10 6 42437 42437.0 1 1670 41184.4 1 120 6296 0 3600

C1 10 7 42420.4 42305.87 1 3600 40791.3 1 125 5321 0 3600

C1 10 8 41652.1 41062.0 1 3600 39042.5 1 76 6491 0 3600

C1 10 9 40288.4 39508.04 1 3600 38150.4 1 44 4953 0 3600

C1 2 1 2698.6 2698.6 1 11 2698.6 4 1 3 0 11

C1 2 10 2624.7 2624.7 1 218 2522.82 3 861 8265 0 3600

C1 2 2 2694.3 2694.3 1 29 2694.3 12 121 1099 41 821

C1 2 3 2675.8 2675.8 3 338 2614.92 1 680 5772 0 3600

C1 2 4 2625.6 2625.6 1 457 2516.12 1 414 6904 0 3600

C1 2 5 2694.9 2694.9 1 16 2694.9 6 1 12 1 84

C1 2 6 2694.9 2694.9 1 20 2694.9 6 12 79 2 129

C1 2 7 2694.9 2694.9 1 18 2694.9 7 11 85 4 173

C1 2 8 2684 2684.0 1 26 2680.18 24 124 2178 48 3600

C1 2 9 2639.6 2639.6 1 65 2578.09 6 1150 9021 0 3600

C1 4 1 7138.8 7138.8 1 99 7138.8 4 12 23 1 50

C1 4 10 6825.4 6820.19 1 3600 6608.93 1 226 7098 0 3600

C1 4 2 7113.3 7113.3 7 587 7046.75 1 349 3188 0 3600

C1 4 3 6929.9 6929.9 1 991 6769.86 1 158 4852 0 3600

C1 4 4 6777.7 6769.16 1 3600 6578.63 1 79 4988 0 3600

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 51

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

C1 4 5 7138.8 7138.8 1 134 7138.8 3 33 235 2 258

C1 4 6 7140.1 7140.1 1 204 7140.1 4 73 1096 3 547

C1 4 7 7136.2 7136.2 1 185 7116.39 45 100 2089 25 3600

C1 4 8 7083 7083.0 5 1128 6917.48 1 461 7893 0 3600

C1 4 9 6927.8 6927.8 1 1547 6702.82 1 306 8549 0 3600

C1 6 1 14076.6 14076.6 1 292 14076.6 4 43 102 1 224

C1 6 10 13617.5 13520.25 1 3600 13132.2 1 84 6131 0 3600

C1 6 2 13948.3 13948.3 15 1616 13725.8 1 157 3191 0 3600

C1 6 3 13757 13702.24 1 3600 13285.1 1 58 4470 0 3600

C1 6 4 13538.6 13347.86 1 3600 13026.3 1 24 2556 0 3600

C1 6 5 14066.8 14066.8 1 393 14066.8 3 139 1038 0 1450

C1 6 6 14070.9 14070.9 1 531 14007.8 1 318 3537 0 3600

C1 6 7 14066.8 14066.8 1 476 13999.1 1 314 3249 0 3600

C1 6 8 13991.2 13967.03 3 3600 13598.3 1 220 6853 0 3600

C1 6 9 13664.5 13649.77 1 3600 13225.7 1 136 7265 0 3600

C1 8 1 25156.9 25156.9 1 761 25156.9 3 89 311 0 674

C1 8 10 24026.7 23640.28 1 3600 22962.9 1 49 4641 0 3600

C1 8 2 24974.1 24910.3 1 3600 24094.4 1 77 4205 0 3600

C1 8 3 24156.1 23865.67 1 3600 23194.8 1 26 3668 0 3600

C1 8 4 23797.3 - - 3600 22620.8 1 9 1627 0 3600

C1 8 5 25138.6 25138.6 1 737 25071.0 1 262 2692 0 3600

C1 8 6 25133.3 25133.3 1 1056 24841.7 1 183 4648 0 3600

C1 8 7 25127.3 25127.3 7 1140 24747.7 1 180 4032 0 3600

C1 8 8 24809.7 24688.04 1 3600 23743.9 1 126 7454 0 3600

C1 8 9 24200.4 23972.45 1 3600 23166.8 1 77 6173 0 3600

C2 10 1 16841.1 - - 3600 16727.6 1 142 1476 0 3600

C2 10 10 15728.6 - - 3600 12902.4 1 37 1010 0 3600

Table 5 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
52 00(0), pp. 000–000, © 0000 INFORMS

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

C2 10 2 16462.6 - - 3600 14676.5 1 47 928 0 3600

C2 10 5 16521.3 - - 3600 15453.4 1 109 3093 0 3600

C2 10 6 16290.7 - - 3600 14834.9 1 78 2036 0 3600

C2 10 7 16378.4 - - 3600 14627.6 1 59 1507 0 3600

C2 10 8 16029.1 - - 3600 14079.1 1 55 1491 0 3600

C2 10 9 16075.4 - - 3600 13297.9 1 37 1038 0 3600

C2 2 1 1922.1 1922.1 1 228 1922.1 10 46 19 0 131

C2 2 10 1791.2 1791.2 1 631 1681.9 1 596 4145 0 3600

C2 2 2 1851.4 1851.4 1 387 1819.17 1 352 2095 0 3600

C2 2 3 1763.4 1753.63 3 3600 1668.03 1 237 1907 0 3600

C2 2 4 1695 1666.49 3 3600 1522.69 1 138 1096 0 3600

C2 2 5 1869.6 1869.6 1 276 1847.4 6 317 2291 16 3600

C2 2 6 1844.8 1844.8 1 249 1787.48 2 901 6230 0 3600

C2 2 7 1842.2 1842.2 1 170 1790.72 3 772 5354 0 3600

C2 2 8 1813.7 1813.7 1 222 1732.38 1 723 4992 0 3600

C2 2 9 1815 1815.0 1 511 1728.32 1 586 4173 0 3600

C2 4 1 4100.3 4100.3 1 852 4085.95 29 150 992 0 3600

C2 4 10 3665.1 3647.88 1 3600 3397.41 1 175 2128 0 3600

C2 4 2 3914.1 3900.22 1 3600 3815.14 1 152 2153 0 3600

C2 4 3 3755.2 3723.96 1 3600 3348.42 1 79 1021 0 3600

C2 4 4 3523.7 3486.12 1 3600 2725.34 1 51 474 0 3600

C2 4 5 3923.2 3923.2 1 971 3831.85 1 376 5034 0 3600

C2 4 6 3860.1 3860.1 1 2466 3696.11 1 291 3892 0 3600

C2 4 7 3870.9 3870.9 1 1483 3692.25 1 253 3391 0 3600

C2 4 8 3773.7 3770.24 1 3600 3553.38 1 232 3090 0 3600

C2 4 9 3842.1 3806.45 1 3600 3568.74 1 210 2714 0 3600

C2 6 1 7752.2 7719.46 1 3600 7688.34 1 391 1671 0 3600

Table 5 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 53

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

C2 6 10 7123.9 6340.81 1 3600 6437.63 1 94 1733 0 3600

C2 6 2 7471.5 7075.15 1 3600 7177.06 1 94 1546 0 3600

C2 6 3 7215 4670.06 1 3600 5953.32 1 41 593 0 3600

C2 6 5 7553.8 7540.44 1 3600 7241.6 1 231 4427 0 3600

C2 6 6 7449.8 7400.61 1 3600 6976.78 1 168 3227 0 3600

C2 6 7 7491.3 6294.69 1 3600 6966.47 1 151 2871 0 3600

C2 6 8 7303.7 7223.09 1 3600 6753.56 1 140 2559 0 3600

C2 6 9 7303.2 5754.15 1 3600 6741.86 1 104 1834 0 3600

C2 8 1 11631.9 - - 3600 11551.8 1 196 1177 0 3600

C2 8 10 10946 - - 3600 9589.46 1 62 1133 0 3600

C2 8 2 11394.5 - - 3600 10571.2 1 66 1403 0 3600

C2 8 3 11138.1 - - 3600 7521.76 1 23 438 0 3600

C2 8 5 11395.6 - - 3600 10829.3 1 154 3589 0 3600

C2 8 6 11316.3 - - 3600 10462.4 1 104 2330 0 3600

C2 8 7 11332.9 - - 3600 10403.4 1 88 1968 0 3600

C2 8 8 11133.9 - - 3600 10059.0 1 80 1700 0 3600

C2 8 9 11140.4 - - 3600 9941.42 1 65 1332 0 3600

R1 10 1 53046.5 52756.54 1 3600 50054.4 1 30 38 0 3600

R1 10 10 47364.6 46676.18 1 3600 - - - - - 3600

R1 10 5 50406.7 49928.13 1 3600 46544.8 1 13 118 0 3600

R1 10 9 49162.8 48632.73 1 3600 - - - - - 3600

R1 2 1 4667.2 4667.2 1 16 4645.79 5 806 189 0 3600

R1 2 10 3293.1 3285.31 15 3600 3112.62 1 53 784 0 3600

R1 2 2 3919.9 3919.9 1 45 3548.3 1 57 593 0 3600

R1 2 3 3373.9 3358.72 5 3600 2777.54 1 15 108 0 3600

R1 2 4 3047.6 3039.51 3 3600 - - - - - 3600

R1 2 5 4053.2 4053.2 3 399 3975.13 1 301 1308 0 3600

Table 5 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
54 00(0), pp. 000–000, © 0000 INFORMS

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

R1 2 6 3559.1 3552.78 13 3600 3261.57 1 50 678 0 3600

R1 2 7 3141.9 3141.9 1 750 2738.89 1 15 120 0 3600

R1 2 8 2938.4 2938.4 5 2030 - - - - - 3600

R1 2 9 3734.7 3734.7 3 731 3607.4 1 165 1453 0 3600

R1 4 1 10305.8 10305.8 3 338 10134.3 1 220 137 0 3600

R1 4 10 8077.8 8028.88 1 3600 7230.95 1 15 326 0 3600

R1 4 2 8873.3 8843.47 7 3600 7162.98 1 13 112 0 3600

R1 4 3 7784.3 7698.59 9 3600 - - - - - 3600

R1 4 4 7266.2 7200.12 3 3600 - - - - - 3600

R1 4 5 9184.6 9153.48 11 3600 8911.2 1 89 628 0 3600

R1 4 6 8340.4 8321.6 5 3600 - - - - - 3600

R1 4 7 7599.8 7544.64 1 3600 - - - - - 3600

R1 4 8 7240.5 7161.9 1 3600 - - - - - 3600

R1 4 9 8677.5 8627.8 5 3600 8120.79 1 43 871 0 3600

R1 6 1 21274.2 21231.91 11 3600 20489.4 1 92 246 0 3600

R1 6 10 17583.7 17344.32 3 3600 - - - - - 3600

R1 6 2 18558.7 18419.8 1 3600 - - - - - 3600

R1 6 3 16874.9 16668.68 1 3600 - - - - - 3600

R1 6 4 15721.4 15538.78 1 3600 - - - - - 3600

R1 6 5 19294.9 19210.23 3 3600 18477.3 1 40 399 0 3600

R1 6 6 17763.7 17630.27 1 3600 - - - - - 3600

R1 6 7 16496.2 16300.22 1 3600 - - - - - 3600

R1 6 9 18474.1 18357.21 3 3600 16773.9 1 17 349 0 3600

R1 8 1 36345 36225.6 5 3600 34190.2 1 49 139 0 3600

R1 8 10 30918.4 30551.1 1 3600 - - - - - 3600

R1 8 2 32277.6 31948.36 1 3600 - - - - - 3600

R1 8 5 33494.2 33279.06 1 3600 31174.3 1 22 306 0 3600

Table 5 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 55

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

R1 8 6 30872.4 30460.46 1 3600 - - - - - 3600

R1 8 9 32257.3 31928.06 1 3600 - - - - - 3600

R2 2 1 3468 3468.0 1 142 3147.13 1 179 864 0 3600

R2 2 10 2549.4 2549.4 3 1439 1167.03 1 34 46 0 3600

R2 2 2 3008.2 3008.2 1 531 803.416 1 18 0 0 3600

R2 2 3 2537.5 2537.5 1 2283 - - - - - 3600

R2 2 4 1928.5 1925.02 3 3600 - - - - - 3600

R2 2 5 3061.1 3061.1 1 1125 1912.5 1 71 201 0 3600

R2 2 6 2675.4 2675.4 3 2384 803.416 1 18 0 0 3600

R2 2 7 2304.7 2298.61 1 3600 - - - - - 3600

R2 2 8 1842.4 1819.76 1 3600 - - - - - 3600

R2 2 9 2843.3 2843.3 1 782 1547.69 1 56 104 0 3600

R2 4 1 7520.7 7520.7 1 2828 4927.05 1 59 160 0 3600

R2 4 10 5645.9 5543.96 1 3600 - - - - - 3600

R2 4 2 6482.8 6374.27 1 3600 - - - - - 3600

R2 4 5 6567.9 6527.42 1 3600 3070.78 1 30 13 0 3600

R2 4 6 5813.5 5643.47 1 3600 - - - - - 3600

R2 4 9 6067.8 6027.42 1 3600 - - - - - 3600

R2 6 1 15145.3 - - 3600 7667.62 1 30 10 0 3600

R2 8 1 24969.8 - - 3600 5358.46 1 5 0 0 3600

RC1 10 1 45790.8 45302.6 1 3600 41546.0 1 16 749 0 3600

RC1 10 5 45028.1 44404.77 1 3600 - - - - - 3600

RC1 10 6 44903.6 44284.41 1 3600 - - - - - 3600

RC1 10 7 44417.1 43820.04 1 3600 - - - - - 3600

RC1 10 8 43916.5 43307.23 1 3600 - - - - - 3600

RC1 10 9 43858.1 43191.82 1 3600 - - - - - 3600

RC1 2 1 3516.9 3516.9 23 2632 3434.03 1 422 2113 0 3600

Table 5 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
56 00(0), pp. 000–000, © 0000 INFORMS

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

RC1 2 10 2990.5 2969.39 5 3600 2739.26 1 42 964 0 3600

RC1 2 2 3221.6 3213.54 9 3600 2976.47 1 66 973 0 3600

RC1 2 3 3001.4 2984.21 3 3600 2598.55 1 24 346 0 3600

RC1 2 4 2845.2 2833.72 3 3600 - - - - - 3600

RC1 2 5 3325.6 3319.34 9 3600 3170.65 1 164 2262 0 3600

RC1 2 6 3300.7 3300.7 3 1028 3160.23 1 184 2637 0 3600

RC1 2 7 3177.8 3154.8 5 3600 3002.4 1 113 1915 0 3600

RC1 2 8 3060 3049.85 5 3600 2881.99 1 70 1395 0 3600

RC1 2 9 3073.3 3041.67 7 3600 2863.9 1 72 1443 0 3600

RC1 4 1 8522.9 8481.66 5 3600 8193.9 1 113 1646 0 3600

RC1 4 10 7581.2 7511.6 1 3600 6142.39 1 6 98 0 3600

RC1 4 2 7878.2 7843.85 1 3600 6800.16 1 14 389 0 3600

RC1 4 3 7516.9 7454.57 1 3600 - - - - - 3600

RC1 4 4 7292.9 7206.25 1 3600 - - - - - 3600

RC1 4 5 8152.3 8101.4 1 3600 7567.36 1 45 1575 0 3600

RC1 4 6 8148 8092.64 1 3600 7554.08 1 47 1644 0 3600

RC1 4 7 7932.5 7884.28 1 3600 7192.01 1 29 1036 0 3600

RC1 4 8 7757.2 7687.88 1 3600 6652.32 1 12 586 0 3600

RC1 4 9 7717.7 7641.23 5 3600 6587.73 1 12 574 0 3600

RC1 6 1 16960.1 16846.82 1 3600 15997.1 1 43 1283 0 3600

RC1 6 10 15651.3 15455.46 1 3600 - - - - - 3600

RC1 6 2 15890.6 15715.75 1 3600 - - - - - 3600

RC1 6 3 15181.3 14922.33 1 3600 - - - - - 3600

RC1 6 4 14753.2 14405.48 1 3600 - - - - - 3600

RC1 6 5 16536.3 16377.64 1 3600 14277.6 1 14 920 0 3600

RC1 6 6 16473.3 16315.89 1 3600 14316.6 1 16 938 0 3600

RC1 6 7 16055.3 15929.19 3 3600 13377.0 1 10 422 0 3600

Table 5 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 57

Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)

RC1 6 8 15891.8 15689.09 1 3600 - - - - - 3600

RC1 6 9 15803.5 15611.36 1 3600 - - - - - 3600

RC1 8 1 29978.9 29723.6 1 3600 27854.3 1 25 1162 0 3600

RC1 8 10 28168.5 27725.26 1 3600 - - - - - 3600

RC1 8 2 28290.1 27880.5 1 3600 - - - - - 3600

RC1 8 5 29219.9 28903.94 5 3600 25291.2 1 12 478 0 3600

RC1 8 6 29194.2 28795.58 5 3600 23585.7 1 4 109 0 3600

RC1 8 7 28788.6 28400.17 3 3600 - - - - - 3600

RC1 8 8 28418.1 28007.4 1 3600 - - - - - 3600

RC1 8 9 28347.1 27992.74 1 3600 - - - - - 3600

RC2 2 1 2797.4 2797.4 1 196 2069.59 1 320 1480 0 3600

RC2 2 10 1989.2 1954.78 1 3600 931.879 1 109 189 0 3600

RC2 2 2 2481.6 2481.6 3 1808 835.921 1 52 79 0 3600

RC2 2 4 1854.8 1839.25 1 3600 - - - - - 3600

RC2 2 5 2491.4 2491.4 1 684 1473.23 1 171 606 0 3600

RC2 2 6 2495.1 2495.1 1 713 1457.69 1 195 700 0 3600

RC2 2 7 2287.7 2284.42 5 3600 1218.47 1 143 421 0 3600

RC2 2 8 2151.2 2151.2 1 2476 1092.23 1 134 279 0 3600

RC2 2 9 2086.6 2059.93 1 3600 1121.09 1 149 239 0 3600

RC2 4 1 6147.3 6141.13 1 3600 3494.73 1 109 613 0 3600

RC2 4 2 5407.5 5328.56 1 3600 - - - - - 3600

RC2 4 5 5392.3 5369.86 1 3600 2234.53 1 51 178 0 3600

RC2 4 6 5324.6 5253.47 1 3600 2184.43 1 48 196 0 3600

RC2 4 7 4987.8 4848.73 1 3600 - - - - - 3600

RC2 4 8 4693.3 4126.88 1 3600 - - - - - 3600

RC2 4 9 4510.4 2898.74 1 3600 - - - - - 3600

RC2 6 1 11966.1 - - 3600 4444.29 1 31 218 0 3600

Table 5 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
58 00(0), pp. 000–000, © 0000 INFORMS

Appendix M: Multicoloring Results

Table 6 A comparison of the performance of the branch-and-price algorithm created by Gualandi and Malucelli

(2012) and that of column elimination for solving the COG instances created in Gualandi and Malucelli (2012).

Instance GM Column Elimination

Name n m ω LB UB Time (s) LB UB CEIt CR Time (s)

COG-10teams 3200 124480 73 - - 3600 71 1600 25 3713 3373

COG-air04 17808 2121648 377 377 377 1.8 377 377 2 0 6

COG-air05 14390 2527253 413 - - 3600 1 5295 0 0 2117

COG-atlanta-ip 8124 9250 15 15 15 1844 15 15 2 17 1

COG-cap6000 11992 12103 14 14 14 304 14 14 2 0 1

COG-ds 15252 2057486 1 500 500 6.5 - - - - 3600

COG-gesa2-o 192 144 12 12 13 3600 12 12 2 0 0

COG-misc07 410 2928 36 36 39 3600 36 36 141 581 139

COG-mkc 10394 154870 169 169 169 0.1 169 169 2 0 1

COG-mod011 192 336 12 12 13 3600 12 13 61 2395 3266

COG-mzzv11 19942 257012 101 101 101 0.1 101 101 2 0 5

COG-mzzv42z 18806 225687 91 91 91 0.1 91 91 2 0 4

COG-net12 3202 4835 17 17 17 1301 17 17 2 17 0

COG-nsrand-ipx 13240 69510 30 - - 3600 30 30 2 0 5

COG-opt1217 1536 6528 26 - - 3600 26 26 2 0 13

COG-rd-rplusc-21 904 11785 109 109 109 0 109 109 2 0 0

COG-rout 560 2940 30 30 32 3600 30 30 2 0 0

COG-swath 12480 958000 317 - - 3600 - - - - 3600

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 59

Appendix N: PDPTW Results

Table 7 Comparing the performance of the dual ascent method from Baldacci et al. (2011a) and column

elimination for solving some PDPTW instances by Li and Lim (2001) with 200 locations.

Instance BBM VRPSolver Column Elimination

Name UB LB UB Time (s) LB Time (s) LB CEIt CESIt CR Time (s)

LC1 2 1 2704.6 2704.6 2704.6 3.3 - 3600 2704.57 10 1 7 3600

LC1 2 10 2741.6 2741.6 2741.6 137.1 - 3600 2389.82 1 324 6034 3600

LC1 2 2 2764.6 2764.6 2764.6 21.5 - 3600 2757.11 74 126 2608 3600

LC1 2 3 2772.2 2772.2 2772.2 114.9 - 3600 2499.26 1 124 2080 3600

LC1 2 4 2661.4 2395.8 2661.4 454.2 - 3600 - - - - 3600

LC1 2 5 2702.0 2702.0 2702.0 4.8 - 3600 2702.05 10 13 176 130

LC1 2 6 2701.0 2701.0 2701.0 7.4 - 3600 2701.04 10 24 337 129

LC1 2 7 2701.0 2701.0 2701.0 7.7 - 3600 2701.04 9 23 311 130

LC1 2 8 2689.8 2689.8 2689.8 16.0 - 3600 2673.18 5 1053 6399 3600

LC1 2 9 2724.2 2724.2 2724.2 55.3 - 3600 2606.42 1 638 11183 3600

LR1 2 1 4819.1 4819.1 4819.1 1.6 - 3600 4819.12 18 1 416 75

LR1 2 10 3386.3 3386.3 3386.3 1376.7 - 3600 2614.42 1 342 3346 3600

LR1 2 2 4093.1 4093.1 4093.1 20.6 - 3600 3868.42 1 176 2011 3600

LR1 2 3 3486.8 3486.8 3486.8 3690.8 - 3600 - - - - 3600

LR1 2 4 2830.7 2341.8 2830.7 1809.6 - 3600 - - - - 3600

LR1 2 5 4221.6 4221.6 4221.6 2.6 - 3600 4170.29 6 1309 8835 3600

LR1 2 6 3763.0 3763.0 3763.0 180.9 - 3600 3256.39 1 250 3008 3600

LR1 2 7 3112.9 2761.8 3112.9 1320.4 - 3600 - - - - 3600

LR1 2 8 2645.5 2150.8 2645.5 566.9 - 3600 - - - - 3600

LR1 2 9 3953.5 3953.3 3953.5 15.4 - 3600 3590.42 1 789 9524 3600

LRC1 2 1 3606.1 3606.1 3606.1 3.1 - 3600 3530.91 3 1711 12737 3600

LRC1 2 10 2837.5 2335.5 2837.5 217.4 - 3600 2146.89 1 379 4560 3600

LRC1 2 2 3292.4 3292.4 3292.4 322.3 - 3600 2778.25 1 226 3014 3600

Karahalios and Van Hoeve: Column Elimination for Integer Programs
60 00(0), pp. 000–000, © 0000 INFORMS

Instance BBM VRPSolver Column Elimination

Name UB LB UB Time (s) LB Time (s) LB CEIt CESIt CR Time (s)

LRC1 2 3 3079.5 2497.8 3079.5 304.3 - 3600 - - - - 3600

LRC1 2 4 2525.8 1981.0 2525.8 188.2 - 3600 - - - - 3600

LRC1 2 5 3715.8 3715.8 3715.8 42.1 - 3600 3021.66 1 994 13568 3600

LRC1 2 6 3360.9 3360.9 3360.9 7.0 - 3600 2750.99 1 183 2169 3600

LRC1 2 7 3317.7 3317.7 3317.7 408.2 - 3600 2658.79 1 861 10800 3600

LRC1 2 8 3086.5 3086.5 3086.5 1562.7 - 3600 2339.36 1 611 7051 3600

LRC1 2 9 3053.8 3053.8 3053.8 1757.2 - 3600 2340.17 1 556 6441 3600

Table 7 Continued.

Table 8 Comparing the performance of the dual ascent method from Baldacci et al. (2011a) and column

elimination for solving some PDPTW instances by Li and Lim (2001) with 1000 locations.

Instance BBM VRPSolver Column Elimination

Name UB LB UB Time (s) LB Time (s) LB CEIt CESIt CR Time (s)

LC1 10 1 42488.66 42488.7 42488.7 79.5 - 3600 42432.6 2 257 2946 3600

LC1 10 5 42477.4 42477.4 42477.4 118.7 - 3600 39046.4 1 28 2561 3600

LR1 10 1 56744.91 56744.9 56744.9 233.1 - 3600 36732.4 1 9 613 3600

LR1 10 5 59053.68 52536.3 52901.3 4068.8 - 3600 41026.9 1 77 4069 3600

LRC1 10 1 49111.78 48398.8 48666.5 2533.3 - 3600 31414.6 1 37 2895 3600

LRC1 10 5 50323.04 38177.8 49287.1 1650.3 - 3600 - - - - 3600

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 61

Table 9 The performance of column elimination for solving PDPTW instances by Li and Lim (2001) that have

not yet been reported on by an exact solver.

Instance Column Elimination

Name UB LB CEIt CESIt CR Time (s)

LC1 4 1 7152.06 7152.06 8 15 217 50

LC1 4 2 8007.79 4980.79 1 4 433 3600

LC1 4 5 7150.0 7150.0 9 32 609 477

LC1 4 6 7154.02 7154.02 19 73 1867 3295

LC1 4 7 7149.43 7119.88 3 120 2573 3600

LC1 4 8 8305.42 6941.46 1 293 8755 3600

LC1 4 9 7451.2 5529.08 1 19 1149 3600

LC1 6 1 14095.64 14095.6 8 56 741 3600

LC1 6 5 14086.3 14086.3 8 91 2140 1620

LC1 6 6 14090.79 14002.8 1 168 4464 3600

LC1 6 7 14083.76 13443.7 1 44 2197 3600

LC2 2 1 1931.44 1931.44 37 54 494 300

LC2 2 10 1817.45 1697.61 1 496 3168 3600

LC2 2 2 1881.4 1839.51 1 231 1415 3600

LC2 2 3 1844.33 1605.18 1 90 458 3600

LC2 2 4 1767.12 1320.68 1 46 118 3600

LC2 2 5 1891.21 1852.14 5 389 2845 3600

LC2 2 6 1857.78 1794.7 2 854 6119 3600

LC2 2 7 1850.13 1804.02 1 711 4738 3600

LC2 2 8 1824.34 1740.64 1 551 3798 3600

LC2 2 9 1854.21 1744.24 1 527 3682 3600

LC2 4 1 4116.33 4116.33 12 113 1123 1555

LC2 4 10 3828.44 3302.42 1 83 809 3600

LC2 4 2 4144.29 3800.05 1 104 1109 3600

Karahalios and Van Hoeve: Column Elimination for Integer Programs
62 00(0), pp. 000–000, © 0000 INFORMS

Instance Column Elimination

Name UB LB CEIt CESIt CR Time (s)

LC2 4 5 4030.63 3832.91 1 294 3675 3600

LC2 4 6 3900.29 3637.58 1 157 1858 3600

LC2 4 7 3962.51 3566.45 1 110 1189 3600

LC2 4 8 3844.45 3507.99 1 133 1571 3600

LC2 4 9 4188.93 3337.95 1 66 628 3600

LC2 6 1 7977.98 7741.69 1 189 2328 3600

LC2 6 10 7946.6 5481.81 1 28 278 3600

LC2 6 2 9900.48 6848.34 1 52 543 3600

LC2 6 5 9051.53 7226.97 1 183 3316 3600

LC2 6 6 8775.55 6832.82 1 81 1368 3600

LC2 6 7 9376.58 6266.68 1 37 391 3600

LC2 6 8 7579.63 6516.17 1 64 919 3600

LC2 6 9 8714.22 6173.42 1 41 488 3600

LR1 4 1 10639.75 10588.1 3 859 8357 3600

LR1 4 10 8192.65 4713.16 1 32 1336 3600

LR1 4 5 11374.06 8951.35 1 469 8829 3600

LR1 4 9 9859.47 7249.08 1 203 4032 3600

LR1 6 1 22821.65 21653.7 1 289 8766 3600

LR1 6 5 23623.52 17492.2 1 192 6161 3600

LR1 6 9 21835.87 13748.3 1 70 2195 3600

LR2 2 1 4073.1 3219.89 1 173 858 3600

LR2 2 10 3254.83 1602.35 1 62 55 3600

LR2 2 2 3796.0 1026.3 1 35 16 3600

LR2 2 5 3438.39 2179.08 1 93 209 3600

LR2 2 6 4457.95 1039.18 1 24 4 3600

LR2 2 9 3922.11 1912.56 1 84 110 3600

LR2 4 1 9726.88 5366.15 1 72 212 3600

Table 9 Continued.

Karahalios and Van Hoeve: Column Elimination for Integer Programs
00(0), pp. 000–000, © 0000 INFORMS 63

Instance Column Elimination

Name UB LB CEIt CESIt CR Time (s)

LR2 4 5 9894.46 2878.01 1 28 12 3600

LR2 4 9 7926.07 2536.86 1 26 30 3600

LR2 6 1 21759.33 7190.63 1 26 1 3600

LRC1 4 1 9124.52 7711.6 1 213 4997 3600

LRC1 4 10 7064.36 3579.29 1 8 1189 3600

LRC1 4 5 8847.4 6647.12 1 347 8422 3600

LRC1 4 6 8394.47 6391.08 1 351 8586 3600

LRC1 4 7 8037.87 5685.65 1 214 5303 3600

LRC1 4 8 7930.15 4882.51 1 111 3017 3600

LRC1 4 9 8004.24 4876.15 1 104 2846 3600

LRC1 6 1 18288.9 14261.5 1 149 5428 3600

LRC2 2 1 3595.18 2021.66 1 257 1219 3600

LRC2 2 2 3158.25 803.983 1 44 37 3600

LRC2 2 5 2776.93 1461.8 1 157 482 3600

LRC2 2 6 2707.96 1380.48 1 171 527 3600

LRC2 2 7 3010.68 1250.51 1 138 338 3600

LRC2 2 8 2399.89 1151.38 1 142 254 3600

LRC2 2 9 2208.49 1197.57 1 148 231 3600

LRC2 4 1 9738.95 3489.16 1 108 575 3600

LRC2 4 5 7309.54 2246.14 1 48 107 3600

LRC2 4 6 6337.08 1851.51 1 21 24 3600

LRC2 4 7 6292.23 1863.73 1 36 49 3600

Table 9 Continued.

