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Abstract

Given a set of agents, the multi-agent pathfinding problem
consists in determining, for each agent, a path from its start
location to its assigned goal while avoiding collisions with
other agents. Recent work has studied variants of the problem
in which agents are assigned a sequence of goals (tasks) that
become available over time, such as the online multi-agent
pickup and delivery (MAPD) problem. In this paper, we pro-
pose a multi-label A* algorithm (MLA*) for this problem. It
extends the classic A* algorithm by allowing the computation
of paths with multiple ordered goals (such as a pickup and
delivery). Moreover, we develop a new h-value-based cen-
tralized heuristic for the MAPD. Computational experiments
show that our proposed MLA* obtains substantial improve-
ments in terms of makespan and service time as compared
to existing methods, while being more computationally ef-
ficient. On instances with a thousand tasks and hundreds of
agents, our method reduces the average service time by 43%
compared to the state of the art, with considerably less com-
putational effort.

KEYWORDS Multi-agent pathfinding, pickup and deliv-
ery, multi-label A* algorithm

INTRODUCTION
Multi-agent path finding (MAPF) is a classical problem in
planning and has been studied extensively (Ma et al. 2017a;
Felner et al. 2017). Given a set of agents, MAPF consists
in finding, for each agent, a path from its start location
to its goal while avoiding collisions between agents. Col-
lisions occur when two agents simultaneously occupy the
same location or simultaneously cross the same edge in op-
posite directions. This problem has applications in contexts
as diverse as warehouse logistics (Wurman, D’Andrea, and
Mountz 2008), video games (Silver 2005), and even search
and rescue (Kitano et al. 1999).

Several variants of this problem have recently been devel-
oped by introducing such elements as deadlines for reaching
goals (Ma et al. 2018), kinematic constraints on the agent’s
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motion (Hönig et al. 2016), or task assignments over a set of
anonymous agents (Ma and Koenig 2016). A particular vari-
ant is the extension of single goals to more complex tasks
that consist of multiple goals. For example, Nguyen et al.
(2017) study the MAPF with multiple-goal tasks and dead-
lines and develop an exact resolution method based on an-
swer set programming. This method allows a complete for-
mulation of the problem but quickly meets scalability issues
when the number of agents and/or tasks increases.

Ma et al. (2017b) consider a specific multi-goal MAPF
problem in which each task consists of a pickup and a de-
livery goal. They refer it to as the multi-agent pickup and
delivery (MAPD) problem. Tasks are released at different
time steps and must be assigned to agents dynamically. An
agent performs a task by moving to the pickup point and
from there to the delivery point. An agent may also perform
several tasks sequentially. This resembles a warehouse logis-
tics scenario in which robots move inventory pods between
storage and handling positions in real time; see Figure 1 for
an example.

To solve the MAPD problem, Ma et al. (2017b) propose a
decoupled heuristic algorithm based on token passing (with
or without task swapping), as well as a centralized algorithm
that jointly assigns available agents to tasks and finds paths
with conflict-based search (Sharon et al. 2015). Since the
centralized algorithm does not scale to larger instances, it
is primarily used as a baseline comparison. Some parallels
could be done between this centralized algorithm and the
cooperative auction literature (Koenig et al. 2006; Koenig,
Keskinocak, and Tovey 2010)

For smaller instances of up to 50 agents, the faster ver-
sion of the decoupled heuristic method (the one without
task swapping) takes up to about 5 ms per time step. When
compared to the centralized algorithm on instances with 50
agents, it provides solutions that are about 15% worse with
respect to average makespan and 70% worse with respect
to average service time. Furthermore, while the decoupled
method without task swapping can handle up to 200 agents
for larger instances (taking 500 ms per time step), it needs
about 6,000 ms per time step for 500 agents.

Contributions. The purpose of this paper is to develop im-
proved methods for the MAPD problem. First, we present a



Figure 1: Representation of a warehouse-like grid with 50
agents from (Ma et al. 2017b). Black cells are blocked, gray
cells correspond to possible pickup and delivery locations.
Colored circles correspond to the agents’ initial positions.

multi-label A* (MLA*) algorithm that computes the short-
est path for an agent with respect to an ordered list of goals.
Second, we present a new centralized heuristic for assign-
ing available agents to tasks, based on the agents’ h-values.
Third, we apply our MLA* and heuristic assignment algo-
rithm to the MAPD problem and show that we can improve
both the solution quality and the computation time relative
to the state of the art. For example, for the larger instances
with 500 agents, our approach reduces makespan as much as
30% and average service time as much as 43%, while using
at most 74 ms per time step (a reduction of 97%).

THE MULTI-AGENT PICKUP AND
DELIVERY PROBLEM

The MAPD problem is defined as follows (Ma et al. 2017b).
We are given a set {a1, a2, . . . , am} of agents that can move
on a graph G = (V,E), where V is the set of possible posi-
tions and E is the set of feasible connections between loca-
tions. At each time step, new tasks are added to the task set
T , and idle agents are assigned tasks from T when possible
according to some heuristic.

At a given time step t, each agent a occupies a position
pa(t) ∈ V . Between two consecutive time steps, an agent
can stay at its current position or move along an incident
edge in E. Throughout the time horizon (which dynami-
cally expands in order to fit with agent’s needs), collisions
between agents must be avoided. A collision occurs when
pa(t) = pa′(t), or pa(t) = pa′(t+1) and pa′(t) = pa(t+1),
for some pair of distinct agents a, a′. The objective is to exe-
cute the tasks as soon as possible, as measured by the service
time (average number of time steps to complete tasks after
they are added to T ) or the makespan (difference between
first release time and latest completion time).

In Ma et al.’s decoupled token-passing algorithm without
task swapping, called TP, idle agents take turns selecting a
task from T (if possible) and finding a path that performs
the task. The selected task is one with minimum h-value, de-
fined as the Manhattan distance between the agent’s current
location and the pickup location. If no task assignment is
feasible (e.g., T is empty, or the pickup or delivery location

of every task is blocked by another agent), the agent checks
whether its current location is the pickup or delivery location
assigned to another agent and, if so, moves out of the way. If
a task is assigned, the agent computes a path from its current
location to the pickup location using an A* algorithm, and
then a path from the pickup location to the delivery location,
again via A*.1 The paths it finds must not collide with paths
in the token inherited from the previous agent, where the to-
ken contains the paths already determined for other agents.
The token is updated to contain the new paths and passed to
the next idle agent.

The authors also introduce an extension of TP that allows
for task swapping between agents, called TPTS. It can find
improved solutions but requires more computation time.

MULTI-LABEL A* ALGORITHM
To motivate our multi-label A* algorithm, recall that TP and
TPTS employ two sequential A* calls, one to find a path
from the agent’s location to the pickup location, and an-
other to find a path from the pickup to the delivery location.
This sequential approach over-constrains the problem at the
pickup node, in the following sense. When the A* algorithm
computes agent a’s path from its current location toward the
pickup node, it assumes that a will rest at the pickup loca-
tion until the end of the time horizon. This can unnecessarily
constrain a’s options in two ways:

• Case 1. The pickup node is another agent’s scheduled de-
livery node. The A* algorithm will conclude that a can-
not reach the node because this would block the other
agent’s future arrival, when actually a could pass through
the pickup node and proceed toward its delivery node be-
fore the other agent arrives.

• Case 2. Another agent is scheduled to pass through the
pickup node at some point in the near future. The A* al-
gorithm will delay a’s arrival at the node until the other
agent has passed through it, when actually a could pass
through the node and proceed to its delivery node before
the other agent passes through the node.

To avoid these situations, we propose a multi-label A* al-
gorithm (MLA*) which combines the search for a path to the
pickup location with that of the delivery location (and more
generally any other goals that follow sequentially). We can
therefore create a path to the pickup location even if another
agent uses this location later. This modification allows us to
make more (and therefore better) assignments (Case 1) and
to find shorter paths (Case 2).

Formally, we use the classic A* algorithm structure (Hart,
Nilsson, and Raphael 1968). For each search node n of
the MLA* algorithm, we define gn, pn and `n, which re-
spectively denote the node’s g-value (number of time steps
elapsed), position, and label. The label indicates the current
state of the node; if `n = 1 the agent is seeking a path to
the pickup location, while if `n = 2 the agent is seeking a
path to the delivery location. We also define π1 and π2 to be
the pickup and delivery locations, respectively. We denote

1The two-step sequential application of A* is not explicit in the
text, but is based on the code provided by (Ma et al. 2017b).



Create the initial search node n0 with gn0 = 0, `n0 = 0,
fn0 = hn0 , and pn0 = the agent’s current location;

Add n0 to the queue Q;
while Q is not empty do

Get the node n in Q with the smallest fn;
if `n = 1 and gn > tmax then

continue (reject node n, go to top of while loop)
if `n = 1 and pn = π1 then

Create node n′ with pn′ = pn, gn′ = gn and
`n′ = 2, and add n′ to Q;

if `n = 2 and pn = π2 then
Return the found path;

Expand node n by adding to Q nodes with adjacent
locations that are not blocked by other agents;

end
Return false (no feasible path) ;

Algorithm 1: Outline of the multi-label A* algorithm

by tmax the latest time step at which the agent can reach
the pickup location, with tmax = ∞ when no other agent
is scheduled to terminate at the pickup location. Finally, we
define the f-value fn = gn + hn, where the h-value hn of
the search node n is defined

hn =

{
h(pn, π1) + h(π1, π2) if `n = 1
h(pn, π2) if `n = 2

and where h(·, ·) is the distance between two points.
Algorithm 1 presents the outline of the proposed MLA*.

The method first creates the initial search node correspond-
ing to the current location of the agent and assigns it label
1. This initial node is added to the queue Q. While Q is
nonempty, the search node n with the smallest f-value is se-
lected. Three cases are then tested. If n has label 1 and gn is
greater than the latest pickup time (tmax), node n is rejected,
and another node is selected. If n corresponds to arrival at
the pickup location (`n = 1 and pn = π1), a search node
with the same values and label 2 is created and added to Q.
If n corresponds to arrival at the delivery node, the search is
stopped and the algorithm returns the found path. If none of
those cases obtain, node n is expanded by adding successor
nodes to Q.

H-VALUE-BASED HEURISTIC
We now present our centralized h-value-based heuristic
(HBH) for assigning tasks to agents over the entire time hori-
zon. The heuristic is summarized in Algorithm 2.

At each time step, HBH repeatedly solves an assignment
and path-finding problem until all the tasks are assigned. The
algorithm first retrieves the list of currently available agents
(agents with no assigned task, resting at a location) and the
list of open tasks (tasks released and not yet assigned). A list
of agent-task pairs is created and sorted in increasing order
of h-value. HBH then scans the list and tries each agent-
task pair (a, τ) using MLA*. If the assignment is feasible,
HBH assigns a to τ and updates a’s path to the one found by
MLA*. If some agents remain available, HBH checks their
current locations and move them toward the closest free end-
point if necessary. Endpoints are locations at which agents

Set the time step t = 0;
while not all the tasks have been assigned do

Get the list At of agents available at time step t;
Get the list Tt of released and nonassigned tasks at time

step t;
Create the list Lt of agent-task pairs (a, τ) with a ∈ At

and τ ∈ Tt, and sort the pairs in nondecreasing order of
h-value;

forall pairs (a, τ) in Lt do
if agent a ∈ At, task τ ∈ Tt, and MLA* sccessfully

returns a path for (a, τ) then
Assign task τ to a;
Update a’s path to the path found by MLA*;
Remove a from At and τ from Tt;

end
forall remaining agents a in At do

if agent a currently occupies the pickup or delivery
location for some task in Tt then

Move the a to the closest free endpoint;
end
t = t+ 1;

end
Return the solution found;

Algorithm 2: Outline of the h-value-based heuristic

Table 1: Experimental Design
Method Type Description

TP decoupled code from Ma et al., run on our
machine

TP+MLA* decoupled TP that uses MLA* instead of
two-step A*

HBH+MLA* centralized uses h-value heuristic but MLA*
instead of CBS

Central centralized reported times as in Ma et al.

are authorized to rest indefinitely, including pickup and de-
livery points.

COMPUTATIONAL EXPERIMENTS
The goal of our experiments is twofold: assess the efficiency
of the MLA* algorithm and analyze the impact of the new
h-value-based heuristic. These methods are compared to the
TP and Central methods of Ma et al. (2017b). Specifically,
we compare the methods as indicated in Table 1.

We performed tests on the warehouse instances of Ma et
al. (2017b). The first set contains 30 instances with 500 tasks
that are released over time with a frequency of 0.2 to 10 per
time step, and 10 to 50 agents. The second set has 5 instances
containing 1000 tasks with a frequency of 50 per time step,
and 100 to 500 agents.

The TP, MLA* and HBH methods were implemented in
C++ and run on a 2.7 GHz Intel Core i5 Macbook, with
16 Gb RAM and using one core. The results for the Central
method are those presented in Ma et al. (2017b).

Figure 2 and Table 2(a) show the results for the small in-
stances. Figures 2(a) and 2(b) present, respectively, the av-
erage makespan and service time normalized to the Central
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Figure 2: Performance of the TP, TP+MLA*, and HBH+MLA* algorithms on small instances as compared to the Centralized
algorithm, in terms of average normalized makespan (a) and service time (b). Figure (c) shows the number of created and
checked states for each method (normalized with respect to TP).

Table 2: Performance on small and large instances. The percentages represent the relative improvement of HBH+MLA* to TP.

Nb Agents TP TP+MLA* HBH+MLA* Central

10 0.12 0.12 0.10 123
20 0.53 0.31 0.22 370
30 1.19 0.56 0.41 728
40 3.08 0.86 0.59 1284
50 3.73 1.22 0.84 2085

TP HBH + MLA*

Instance MS ST CT MS Gap MS ST Gap ST CT Gap CT
50 100 1000 990 463 90 800 –19% 363 –22% 2.83 –96.9%
50 200 1000 745 330 503 606 –19% 208 –37% 9.04 –98.2%
50 300 1000 754 302 1458 507 –33% 157 –48% 18.9 –98.7%
50 400 1000 753 289 2261 491 –35% 136 –53% 47.5 –97.9%
50 500 1000 946 290 3290 501 –47% 125 –57% 74.0 –97.8%

Av. Gap –30.5% –43% –97.9%

(a) Computation time on small instances, ms/time step. (b) Performance on large instances, where MS = makespan,
ST = service time, CT = computation time in ms/step.

values. Figure 2(c) compares the total number of created and
checked search nodes during the MLA* calls to those during
the A* calls in the TP heuristic. Finally, Table 2(a) presents
the computation times for all the scenarios, in milliseconds
per time step.

We first observe that, when coupled with TP, MLA* al-
lows substantial improvement in terms of makespan but
more importantly in terms of service time. MLA* also re-
duces the computation time. These improvements are mainly
due to the ability of MLA* to reduce by 50% the number of
created nodes and by 75-80% the number of checked modes,
compared to the TP heuristic (Fig. 2(c)). Second, we observe
that in term of makespan, HBH+MLA* behaves similarly to
TP+MLA*, but the new heuristic substantially improves ser-
vice time for all the instances. It also obtains solutions simi-
lar on quality to those of Central but with computation times
three orders of magnitude smaller (0.84 ms versus 2085 ms
for 50 agents).

Computational experiments on large instances are pre-
sented in Table 2(b). We observe that HBH+MLA* reduces
makespan by 30% and service time by 43% but more im-
portantly, reduces computation time by 98% compared with
TP. These results show the efficiency of both MLA* and
HBH even on large instances. No comparison with the Cen-

tral method is done on those instances due to its scalability
issues.

CONCLUSIONS
We studied the multi-agent pickup and delivery (MAPD)
problem, which consists in dynamically assigning a set of
pickup and delivery tasks to a set of agents while determin-
ing the agents’ paths without collisions. To solve the prob-
lem, we first presented an innovative multi-label A* algo-
rithm (MLA*) that extends the classic A* algorithm by com-
puting a path through a set of ordered goal locations. This
method determines paths with a broader vision of the prob-
lem and avoids the unnecessary constraints that result from
sequential A* calls. Secondly, we proposed a new h-value-
based heuristic (HBH) which iteratively assigns tasks based
on their h-values.

Computational experiments show that the proposed
MLA* algorithm brings substantial improvements in terms
of makespan, service time and computation time. Those im-
provements are enhanced when MLA* is combined with
HBH, which results in computation times that are three or-
ders of magnitude less than the state-of-the-art baseline. On
large instances, HBH reduces average makespan by 30%,
service time by 43%, and computation time by 98%.
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