
Column elimination: An alternative to column generation

via relaxed decision diagrams

Willem-Jan van Hoeve

Carnegie Mellon University

Includes joint work with Ziye Tang and Anthony Karahalios

Partially supported by ONR Grants N00014-18-1-2129 and N00014-21-1-2240, and NSF Award #1918102

• Column generation: brief introduction

– graph coloring

• Decision diagrams: an alternative approach

– graph coloring

• More structural connections

– vehicle routing

Plan

2

• Assign a color to each vertex

• Adjacent vertices are colored differently

• Minimize the number of colors needed

• Fundamental combinatorial optimization problem

• Many applications, e.g., rostering, scheduling, …

• Challenge for exact methods: good lower bounds

Graph Coloring

3

1 2

3 4

1 2

3 4

• Attempt 1

▪ binary variable yik: vertex i has color k

▪ yik + yjk ≤ 1 for all edges {i,j} and colors k

▪ weak LP relaxation

• (Stronger formulations exist using this approach)

MIP formulation? Attempt 1

4

1 2

3 4

1 2

3 4

• Attempt 2

▪ let 𝐼 be the set of all independent sets (color classes)

▪ binary variable xi : use independent set i

▪ ensure that each vertex is colored

▪ stronger LP relaxation

MIP formulation? Attempt 2

5

1 2

3 4

1 2

3 4

𝐼 = {{1}, 2 , 3 , 4 ,
1,2 , 1,4 , {2,3}}

drawback: 𝐼 has exponential size

• Master Problem

– Restricted set 𝐼 of variables (‘columns’)

– Initialize to ensure feasibility, e.g., {{1},{2},{3},{4}}

– Solve LP relaxation: shadow price 𝜋𝑖 for vertex 𝑖

• Pricing Problem

– Find new LP variable (an independent set) with

negative reduced cost: 1 − σ𝑖 𝜋𝑖𝑦𝑖 < 0

– This is an integer program (binary 𝑦𝑖)

– Add to 𝐼 if it exists, otherwise Master LP solution

is optimal

• Repeat until Master LP is optimal

Solve LP Model via Column Generation

6

• Master Problem

– Restricted set 𝐼 of variables (‘columns’)

– Initialize to ensure feasibility, e.g., {{1},{2},{3},{4}}

– Solve LP relaxation: shadow price 𝜋𝑖 for vertex 𝑖

• Pricing Problem

– Find new LP variable (an independent set) with

negative reduced cost: 1 − σ𝑖 𝜋𝑖𝑦𝑖 < 0

– This is an integer program (binary 𝑦𝑖)

– Add to 𝐼 if it exists, otherwise Master LP solution

is optimal

• Repeat until Master LP is optimal

Solve LP Model via Column Generation

7

• Master Problem

– Restricted set 𝐼 of variables (‘columns’)

– Initialize to ensure feasibility, e.g., {{1},{2},{3},{4}}

– Solve LP relaxation: shadow price 𝜋𝑖 for vertex 𝑖

• Pricing Problem

– Find new LP variable (an independent set) with

negative reduced cost: 1 − σ𝑖 𝜋𝑖𝑦𝑖 < 0

– This is an integer program (binary 𝑦𝑖)

– Add to 𝐼 if it exists, otherwise Master LP solution

is optimal

• Repeat until Master LP is optimal

Solve LP Model via Column Generation

8

• Master Problem

– Restricted set 𝐼 of variables (‘columns’)

– Initialize to ensure feasibility, e.g., {{1},{2},{3},{4}}

– Solve LP relaxation: shadow price 𝜋𝑖 for vertex 𝑖

• Pricing Problem

– Find new LP variable (an independent set) with

negative reduced cost: 1 − σ𝑖 𝜋𝑖𝑦𝑖 < 0

– This is an integer program (binary 𝑦𝑖)

– Add to 𝐼 if it exists, otherwise Master LP solution

is optimal

• Repeat until Master LP is optimal

Solve LP Model via Column Generation

9

Integer Optimality: Branch-and-Price

10

Solve LP
with

ColGen

Solve LP
with

ColGen

Solve LP
with

ColGen

Solve LP
with

ColGen

c(i)=c(j) c(i)≠c(j)

………

… …

Branching constraint:

vertices i and j have the
same color vs. different color

Column generation/branch-and-price for
graph coloring: [Mehrotra&Trick 1996]

[MMT2011,GM2012,HCS2012,MSJ2016]

• Column generation works with restricted set of columns

– no valid lower bound until optimal LP basis is found

– stability and convergence issues due to degenerate LP solutions

– solving LP as MIP is not sufficient—embed in branch-and-price search

• Alternative: work with relaxed set of columns

– initial relaxation includes columns that are not feasible

– apply an iterative refinement algorithm to eliminate infeasible columns

– use decision diagrams for compact representation and efficiency

– no need for shadow prices or branch-and-price; just “MIP-it” (or use standard

branch-and-bound)

Column ‘elimination’ instead of column generation?

11

[vH, IPCO 2020] [vH, Mathematical Programming, 2021]

Representing all independent sets as decision diagram

12

1 2

3 4

• Exact decision diagram: each

r-t path corresponds to an

independent set

• Prior work: compilation method

that builds the unique minimum

size diagram
[Bergman, Cire, vH, Hooker, 2012, 2014]

Reformulating the MIP model

13

• Integer variable ya : ‘flow’ through arc a

1 2

3 4

minimize number of paths (colors)

one 1-arc per vertex

‘flow conservation’

integrality

1. Exact decision diagrams can be of exponential size (in the size

of the input graph)

– Use relaxed decision diagrams instead

– Provides lower bound on coloring number

2. Solving the constrained integer flow problem is NP-hard

– Less relevant in practice: MIP solvers scale well

– But we can also use LP relaxation (polynomial)

Two Main Challenges

14

• Decision diagram D for problem P is

Exact and Relaxed Decision Diagrams

15

exact if Sol(𝐷) = Sol(𝑃)

relaxed if Sol(𝐷) ⊇ Sol(𝑃)

relaxed

(5 nodes)

relaxed

(8 nodes)

exact

(10 nodes)

input graph

Incremental Refinement by Separating Conflicts

16

input graph

state: eligible vertices

1

1

1

1

Lemma: Repeated application

yields the unique exact diagram

Lemma: Refinement increases

each layer by at most one node

Corollary: Separating k conflicts

yields diagram of at most O(kn)

size

Compilation by Iterative Conflict Separation

17

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1 11

1

1

1

1

1

1

1

Optimal!input graph

1. Conflicts can be found in polynomial time (in the size of the

diagram) via a path decomposition of the flow

2. Separating k conflicts yields diagram of at most O(kn) size

3. In each iteration, compilation via conflict separation produces a

valid lower bound

4. Algorithm terminates with an optimal solution (if time permits)

Analysis of overall procedure

18

• Theorem: Relaxed decision diagram can be exponentially smaller

than exact decision diagram for proving optimality

Proof sketch:

- There exists a graph coloring instance class (i.e., paths),

- and associated vertex ordering, such that

- the exact decision diagram is of exponential size

- while a polynomial-size relaxed decision diagram exists

that proves optimality

Is there any hope that this might work? Yes!

19

Overall Algorithm with Lower and Upper Bounds

20

• C++ implementation, using IBM ILOG CPLEX 12.9 for LP/MIP

• Design choices

– Vertex ordering*: select most-connected vertex first (degree as tie-breaker)

– Apply LP relaxation first, until no more conflicts found (then use MIP)

– Separate multiple conflicts per iteration (on distinct paths)

– Apply heuristic based on relaxed decision diagram to find upper bound (can help

prove optimality earlier)

• Benchmark: 137 DIMACS Instances (time limit 3,600s)

* We also developed a portfolio approach using multiple orderings [Karahalios&vH, 2021]

Implementation details

21

Exact versus Relaxed Decision Diagrams

22

Exact DD size

R
el

ax
ed

 D
D

 s
iz

e

• Relaxed decision diagram

can be orders of magnitude

smaller than exact decision

diagram to prove optimality,

but not always

• DSJR500.1 (n=500, m=3,555)

– Exact DD: ≥1M nodes

– Relaxed DD: 627 nodes

• Compare with code by Held, Cook, and Sewell [HCS, 2012]

Comparison with Branch-and-Price

23

Results on Open DIMACS Instances

24

• Performance is strongest

when input graph has

either high or low density

Relaxed DD

• Column elimination via decision diagrams is a promising

alternative to column generation

– Can generate strong dual bounds

• Current work 1: embed DD bounds in branch-and-bound (for

graph coloring)

• Current work 2: vehicle routing applications

– Wide use of column generation. What is the potential for DDs?

– First application: TSP with a drone

Summary and Next Steps

25

Case Study: Truck-Drone Routing

26

• One truck + one drone

• Possible legs include:

truck, drone, combined

• Example route duration =

max{1, 0.5+0.5} +

1 +

1 +

max{1+1, 0.5+0.5} +

max{1, 0.5+0.5}

= 6

Depot

6

5
4

3

1

2

7

8

truck speed: 1 unit per edge

drone speed: 0.5 unit per edge

• TSP-D: Traveling Salesperson with a Drone

• Drone speed = α * truck speed (for some fixed α)

• Goal: minimize route duration

• Assumptions:

Definition of TSP-D

27

Drone cannot be dispatched

from the truck while the truck

is traveling

Drone can only visit one

customer before rejoining

with the truck

Waiting required

TSP-D: Related Work

• Initiated by Murray and Chu (2015), now very active, see surveys

by Macrina et al. (2020), Chung et al. (2020)

• Heuristic Algorithms [Murray&Chu, TS2015] [Ponza, master 2016]

[Agatz et al., TS2018] [Poikonen et al., IJOC 2019]

...

• Exact Algorithms [Yurek&Ozmutlu, TS2018] [Bouman et al., Networks18]

[Tang et al., CPAIOR19] [Vasequez et al., 2021]

[Roberti&Ruthmair, TS2021]

Column generation (Branch-and-Price)
– Master LP: set partitioning model

– Pricing: DP model (with ng-route relaxation)

28

Set Partitioning Formulation for TSP-D

29

N: set of locations

R: set of routes

𝑧𝑟: indicator variable for route r

𝑐𝑟 = duration of route r

𝑎𝑖𝑟= #times location i is visited in route r

exactly one route is selected

each location is visited once

[Roberti&Ruthmair, 2021]

u0

ui

Pricing Problem

Find route with negative

reduced cost, i.e.,
𝑐𝑟 − 𝑢0 − σ𝑖 𝑎𝑖𝑟𝑢𝑖 < 0

̶ Similar to TSP-D if only
feasible routes allowed

̶ Allow infeasible routes:
ng-route relaxation

Pricing Problem for TSP-D

30

N: set of locations

R: set of routes

𝑧𝑟: indicator variable for route r

𝑐𝑟 = duration of route r

𝑎𝑖𝑟= #times location i is visited in route r

[Roberti&Ruthmair, 2021]

Dynamic Programming Model for TSP-D

31

Set of controls

• truck leg for customer i: Ti

• drone leg: Di

• combined leg: Ci

0

2

13 4

State definition (S, LC, LT, t), where

• S = customers visited so far

• LC = latest location visited by both vehicles

• LT = latest location visited by truck alone

• t = time spent by the truck traveling alone since leaving LC

Route: T1, T2, D4, C3, C0

({1},0,1,2)

({1,2},0,2,4)

({1,2,4},2,2,0)

({1,2,3,4},3,3,0)

T1

T2

D4

C3

C0

2

21

2

1

1

2

2

max{2+1-4, 0} = 0

1

1

marginal increase
of total travel time

({ },0,0,0)

({0,1,2,3,4},0,0,0)

[Roberti&Ruthmair, 2021]

• Top-down DD compilation can be defined

by state transition function of DP model
[Bergman et al. 2016]

– DD nodes are associated with DP states

– DD arc labels are given by allowed controls

– similar to state-transition graph in DP

• Apply the previous DP model for TSP-D
– exact diagram represents all feasible solutions

– shortest path = optimal solution, but exponential size

• How to compile relaxed decision diagram?
– apply route relaxation DP (e.g., ng-route), or

– define new relaxed DD based on merging rules

Decision Diagram Compilation for TSP-D

33

({1},0,1,2)

({1,2},0,2,4)

T1

T2

({ },0,0,0)

...
...

...

({1,2,4},2,2,0)

({1,2,3,4},3,3,0)

D4

C3

C0

({0,1,2,3,4},0,0,0)

...

...

Node Merging: Example

34

({1},0,1,2)

({1,2},0,2,4)

T1

T2

D4

C3

C0

({ },0,0,0)

T3

T2

D4

C1

C0

({3},0,3,1)

({2,3},0,2,2)

2

2

0

1

1

1

1

1

2

2

State (S, LC, LT, t): ({visited}, latest combined,
latest truck, time spent by truck alone)

Only merge states with equal (LC,LT)!

({1},0,1,2)
T1

T2

D4

C3

C0

({ },0,0,0)

T3

T2

({3},0,3,1)2

2

1

1

1

1

C1

C0

2

2

10
D4

Node Merging: Example

35

({1},0,1,2)

({1,2},0,2,4)

T1

T2

D4

C3

C0

({ },0,0,0)

T3

T2

D4

C1

C0

({3},0,3,1)

({2,3},0,2,2)

2

2

0

1

1

1

1

1

2

2

State (S, LC, LT, t): ({visited}, latest combined,
latest truck, time spent by truck alone)

({1},0,1,2)
T1

T2

D4

C3

C0

({ },0,0,0)

T3

T2

({3},0,3,1)2

2

1

1

1

1

C1

C0

2

2

?

({?},0,2,?)

Merging rule 𝑆 = 𝑆1 ∩ 𝑆2
Merging rule 𝑡 = max(𝑡1, 𝑡2)

({2},0,2,4)

0

Only merge states with equal (LC,LT)!

• Define ‘bucket size’ M

• For each layer

– Partition nodes by (LC, LT) pair into ‘buckets’

– Compute shortest path length from the root to

each node

– Merge those with longer path lengths until

each bucket has size ≤ M

• Relaxed DD has size 𝑂(𝑀𝑛3)

Top-Down Compilation with Node Merging

36

10 12 23 15 16 18 22

root

...
...

Example: M=2, with yellow and
blue ‘buckets’

Derive Bound From Constrained Network Flow

37

T1

T2

D4

C3

C0

T3

T2

C1

C0

Constrained integer network flow model (NP-hard):

Lagrangian relaxation:
‒ Add dual variable to arc weights

‒ Shortest path in DD (integral)

LP relaxation:

‒ 0 ≤ 𝑦𝑎 ≤ 1
‒ Use off-the-shelf LP solver

• Observation: Given a DP model representing a route relaxation R, the

associated decision diagram DR contains exactly all feasible paths

corresponding to R

• Let

– SPLP(R) be the set partitioning LP model with the DP pricing problem

– CFLP(DR) be constrained network flow LP defined over D

– LR(DR) be the Lagrangian relaxation of the constrained network flow defined over D

Equivalence of Relaxation Bounds

38

Theorem: SPLP(R), CFLP(DR), and LR(DR) have the same optimal

objective value

• Resolve conflicts along solution paths by refining the DD

Going Beyond the Set Partitioning Bound

39

Type 1: objective function Type 2: repeated visits

Duration = 7 Path length = 6 Customer 3 repeated

Overall Framework

40

Construct initial DD-based route relaxation

Compute lower bound (LP flow or Lagrangian)

Refine conflicts along solution paths

• Evaluate two variants

– DD-Flow: lower bound from constrained network flow LP

– DD-Lagrangian: lower bound from Lagrangian

– both apply iterative refinement based on conflicts

• Comparison with state-of-the-art bound for TSP-D

– column generation model from [Roberti&Ruthmair, TS2021]

– set partitioning LP using ng-route relaxation

• Benchmark

– random instance generation [Poikonen et al., 2019]

• Upper bound

– best solution found by CP in 1h [Tang et al, CPAIOR19]

Experimental Evaluation on TSP-D

41

Optimality gap improvement over time

42

DD-Flow
DD-Lagrangian
ng-route

DD-Flow
DD-Lagrangian
ng-route

Optimality gap for varying problem sizes

43

DD-Flow DD-Lagrangianng-route

* size for ng-route is #labels after dominance

rules are applied

(Time limit for DD methods is the ng-route solving time)

#Locations 15 20 25

initial DD 9,736 25,086 51,485

DD-Flow 10,725 26,538 51,967

DD-Lagrangian 15,567 37,197 59,204

ng-route* 24,114 73,554 174,725

Decision Diagram/Dynamic Program size comparison

Optimality gap for larger instances

44

DD-Flow DD-LagrangianMath Prog

• Column generation does not scale

beyond 30 locations

• We therefore compare to LP relaxation

of MIP model proposed by

[Roberti&Ruthmair, 2019]

• Relaxed Decision Diagrams can be used as an alternative for

column generation to compute lower bounds

– When defined on existing route relaxation (dynamic program for pricing

problem) it produces the same LP bound

• We introduced a new DD-based route relaxation

– Conflict refinement can further improve the lower bound

• Experiments of TSP with Drone show competitive performance

– Especially for larger instances when column generation cannot be applied

Conclusion for Routing Application

45

