Carnegie Mellon University
Tepper School of Business

Column elimination: An alternative to column generation
via relaxed decision diagrams

Willem-Jan van Hoeve
Carnegie Mellon University

Includes joint work with Ziye Tang and Anthony Karahalios

Partially supported by ONR Grants N00014-18-1-2129 and N00014-21-1-2240, and NSF Award #1918102

Plan

* Column generation: brief introduction
— graph coloring

* Decision diagrams: an alternative approach
— graph coloring

* More structural connections
— vehicle routing

Graph Coloring

« Assign a color to each vertex
« Adjacent vertices are colored differently
* Minimize the number of colors needed

« Fundamental combinatorial optimization problem
 Many applications, e.g., rostering, scheduling, ...
» Challenge for exact methods: good lower bounds

MIP formulation? Attempt 1

* Attempt 1
= binary variable y, : vertex 1 has color k
" Vit Yy < 1 for all edges {i,j} and colors k
= weak LP relaxation

« (Stronger formulations exist using this approach)

MIP formulation? Attempt 2

e Attempt 2

= |let I be the set of all independent sets (color classes)
= binary variable x;: use independent set |

= ensure that each vertex is colored

= stronger LP relaxation

min sz
i€l I'={{1},{2},{3}, {4},
s.t. Za?;ja:?; =1 VjeV (1,2}, 11,4}, {2,3}}
el
r; € {0,1} Viel drawback: I has exponential size

Solve LP Model via Column Generation

min x, + xo + T3 + x4

« Master Problem

T = 1
— Restricted set I of variables (‘columns’) T2 = 1
— Initialize to ensure feasibility, e.g., {{1},{2},{3},{4}} " vy o= 1
— Solve LP relaxation: shadow price m; for vertex i r; >0 (i=1,...,4)
* Pricing Problem objective =4
r1=1lxzeo=1l,z3=1,z4 =1
— Find new LP variable (an independent set) with m=lm=1lLm=1mn=1
negative reduced cost: 1 —), m;y; < 0
— This is an integer program (binary y;) e 1‘:’1 _j’i_y‘* e oo
- . . } Y1 TY3s =
— Add to I if it exists, otherwise Master LP solution y2+ya <1
is optimal ystya <l —®

* Repeat until Master LP is optimal

reduced cost = —1
n=Ly=1Ly3=0,y4=0

Solve LP Model via Column Generation

min z1 + T2 +x3 + T4 + T35

« Master Problem

Ty +z5 = 1
— Restricted set I of variables (‘columns’) 2 +zs = 1
T . &€ = 1
— Initialize to ensure feasibility, e.qg., {{1},{2},{3},{4}} 3 4 —
— Solve LP relaxation: shadow price m; for vertex i z; 20 (i=1,..., 5)
* Pricing Problem objective =3
])]] 1 =020 =0, 23=1,r4 =125 =1
— Find new LP variable (an independent set) with { = mj = o:ﬂ_fj - 1,7; =1
negative reduced cost: 1 —), m;y; < 0
— This is an integer program (binary y;) min 1=y —y3 — v D G
— Add to [if it exists, otherwise Master LP solution mom
IS optimal ys +ya < 1 O—®

* Repeat until Master LP is optimal

reduced cost = —1
y1=Ly2=0,y3=0,y4 =1

Solve LP Model via Column Generation

* Master Problem
— Restricted set I of variables (‘columns’)
— Initialize to ensure feasibility, e.qg., {{1},{2},{3},{4}}
— Solve LP relaxation: shadow price m; for vertex i

* Pricing Problem

— Find new LP variable (an independent set) with
negative reduced cost: 1 —), m;y; < 0

— This is an integer program (binary y;)
— Add to I if it exists, otherwise Master LP solution
IS optimal

* Repeat until Master LP is optimal

min x + o + 3 + T4 + T5 + T

T +I5 +Tg
Ta + 5
I3

I
— e

Ty + Zg

>0 (i=1,...,6)

objective = 3
Ir = U,IQ = ULL'-; = 1,$4 = 1,$5 = 1,$6 =0
m=0m=1m=1,m=1

min 1_y2_y3_y4 o 9
y1+ys <1
Y2 +ys <1

ys+ys <1 3 (4)

reduced cost = —1
y1=0,y2=1Lys=1Lys=0

Solve LP Model via Column Generation

min x, +xo +x3 + x4+ x5 + T + 7

« Master Problem

T + 5 + Tg = 1
— Restricted set I of variables (‘columns’) T + x5 +z; = 1
— Initialize to ensure feasibility, e.g., {{1},{2},{3},{4}} . e T2
— Solve LP relaxation: shadow price m; for vertex i ;20 (i=1,..., 7)
. . objective = 2
PrICIng PrObIem I = U,.?:g = U,S‘L‘S = 0?554 = 0?55‘5 = 0,:1?6 = 1,:87 =1
— Find new LP variable (an independent set) with m=Lm=0m=1m=0
negative reduced cost: 1 —), m;y; < 0
. : . min 1—y1 —y3
— This is an integer program (binary y;) vty < 1 o6
— Add to I if it exists, otherwise Master LP solution Y2 + Y i
is optimal da o= O—®

* Repeat until Master LP is optimal

reduced cost = ()
y1=Ly2=0,y3=0,94 =0

Integer Optimality: Branch-and-Price

Solve LP
with
ColGen

Branching constraint:
_——— vertices i and j have the
same color vs. different color

Solve LP
with
ColGen

Solve LP
with
ColGen

Solve LP
with

ColGen Column generation/branch-and-price for

graph coloring: [Mehrotra&Trick 1996]
[MMT2011,GM2012,HCS2012,MSJ2016]

Column ‘elimination’ instead of column generation?

« Column generation works with restricted set of columns
— no valid lower bound until optimal LP basis is found
— stability and convergence issues due to degenerate LP solutions
— solving LP as MIP is not sufficient—embed in branch-and-price search

« Alternative: work with relaxed set of columns
— Initial relaxation includes columns that are not feasible
— apply an iterative refinement algorithm to eliminate infeasible columns
— use decision diagrams for compact representation and efficiency

— no need for shadow prices or branch-and-price; just “MIP-it” (or use standard
branch-and-bound)

[VH, IPCO 2020] [vH, Mathematical Programming, 2021]

Representing all independent sets as decision diagram

e EXxact decision diagram: each
r-t path corresponds to an
Independent set

O © , * Prior work: compilation method
that builds the unique minimum
(3) (4) size diagram

[Bergman, Cire, vH, Hooker, 2012, 2014]

Reformulating the MIP model

- 0
-1

* Integer variable y, : ‘flow’ through arc a

(F)=min >y, minimize number of paths (colors)
acdt(r)
8.t Z Yo =1 Vj € V. — one l-arc per vertex
a=(u,v)|L(u)=j,l(a)=1
> Wa— > ya=0 YueN\{rt} — ‘flow conservation’
acd= (u) acdt(u)
ve €10,1,...,n} Va € A integrality

Two Main Challenges

1. Exact decision diagrams can be of exponential size (in the size
of the Iinput graph)
— Use relaxed decision diagrams instead
— Provides lower bound on coloring number

2. Solving the constrained integer flow problem is NP-hard
— Less relevant in practice: MIP solvers scale well
— But we can also use LP relaxation (polynomial)

Exact and Relaxed Decision Diagrams

—

exact If Sol(D) = Sol(P)

* Decision diagram D for problem P is - _
relaxed if Sol(D) 2 Sol(P)

2 \J
/
O— 3)
/

input graph

relaxed relaxed exact
(5 nodes) (8 nodes) (10 nodes)

Incremental Refinement by Separating Conflicts

state: eligible vertices |

Lemma: Refinement increases
each layer by at most one node

1

input graph

Corollary: Separating k conflicts
yields diagram of at most O(kn)

2 Size
3 Lemma: Repeated application
yields the unigue exact diagram
4
lower bound: 1

flow path: (1,1,1,1)
conflicting edge: (1,3)

Compilation by lterative Conflict Separation

1 1o
!
L @ /
O—® 2 1
’ "
input graph Optimal!
3 1
/
4 1
lower bound: 1 2 2 2
flow paths: (1,1,1,1) (1,1,0,1) (1,1,0,0) (1,0,0,1)
(0,0,1,0) (0,0,1,1) (0,1,1,0)
conflicting edge: (1,3) (2,4) (3,4) -

Analysis of overall procedure

1. Conflicts can be found in polynomial time (in the size of the
diagram) via a path decomposition of the flow

2. Separating k conflicts yields diagram of at most O(kn) size

3. In each iteration, compilation via conflict separation produces a
valid lower bound

4. Algorithm terminates with an optimal solution (if time permits)

Is there any hope that this might work? Yes!

 Theorem: Relaxed decision diagram can be exponentially smaller
than exact decision diagram for proving optimality

Proof sketch:

- There exists a graph coloring instance class (i.e., paths),
- and associated vertex ordering, such that

- the exact decision diagram is of exponential size

- while a polynomial-size relaxed decision diagram exists
that proves optimality

Overall Algorithm with Lower and Upper Bounds

1 input: input graph G = (V, E)

2 output: chromatic number of G

3 begin

4 initialize width-1 decision diagram D

5 lowerBound < O

6 upperBound < |V|

7 while lowerBound < upperBound do

8 solve flow model (F) with decision diagram D

9 lowerBound < obj(F)

10 apply primal heuristic to determine coloring C

11 upperBound < min(upperBound, |C|)

12 apply path decomposition algorithm to determine conflict (j, k) along path P
13 if no conflict is detected then upperBound < obj(F)
14 else separate conflict (j,k) along path P in D
15 return lowerBound

Implementation detaills

« C++ Implementation, using IBM ILOG CPLEX 12.9 for LP/MIP

* Design choices
— Vertex ordering*: select most-connected vertex first (degree as tie-breaker)
— Apply LP relaxation first, until no more conflicts found (then use MIP)
— Separate multiple conflicts per iteration (on distinct paths)

— Apply heuristic based on relaxed decision diagram to find upper bound (can help
prove optimality earlier)

 Benchmark: 137 DIMACS Instances (time limit 3,600s)

*We also developed a portfolio approach using multiple orderings [Karahalios&vH, 2021]

Exact versus Relaxed Decision Diagrams

* Relaxed decision diagram

can be orders of magnitude
1 smaller than exact decision
A diagram to prove optimality,
. but not always

1000000

100000

10000

1000

@/-» DSJR500.1 (n=500, m=3,555)
E — Exact DD: 21M nodes
— Relaxed DD: 627 nodes

Relaxed DD size

100

10
10 100 1000 10000 100000 1000000

Exact DD size

Comparison with Branch-and-Price

« Compare with code by Held, Cook, and Sewell [HCS, 2012]

HCS DD
Instances solved optimally 60 50
Lower bounds returned 87 137
Best known lower bounds 70 73
Best known upper bounds 82 80

HCS better than DD Same value DD better than HCS
Lower bounds 21 65 51
Upper bounds 37 87 13

Results on Open DIMACS Instances

Relaxed DD
Instance " m 4 x x B tme() Bzp o Performance is strongest
C2000.9 2000 1799532 [(0.90 |[98] 400 145 | 4.7 days [-0.48 -
DSJC500.9 500 112437 | 0.90 || 123 | 126 123 273 | 0 when Input graph has
latin_square_10 900 307350 | 0.76 90 97 90 77 | 0 . : :
queeni616 256 6320 |00l 16| 17 | 16| 00 |0 either high or low density
wap02a 2464 111742 | 0.04 || 40| 42 40 31 |0
wap03a 4730 286722 | 0.03 || 40| 47 40 6.1 | 0
wap04a 5231 294902 | 0.02 || 40| 42 40 7310
wap07a 1809 103368 | 0.06 || 40| 41 40 2012 | 0
wap08a 1870 104176 | 0.06 || 40| 42 40 | 32242 | 0
wap0la 2368 110871 | 0.04 || 41| 43 40 8.1 | 0.02
r1000.1c 1000 485090 | 0.97 || 96| 98 88 | 2985.7 | 0.08
DSJC250.1 250 3218 | 0.10 6 8 5 0.0 | 0.17
1-Insertions_6 607 6337 | 0.03 4 T 3 0.0 | 0.25
3-Insertions_b 1406 9695 (0.01 4 6 3 0.1 (0.25)
DSJC250.5 250 15668 0.50 | 26| 28 16 5045 0.38
DSJC1000.1 1000 49629 0.10 | 10| 20 6 3.1 0.40
DSJC500.1 500 12458 0.10 9| 12 5 0.1 0.44
DSJC500.5 500 62624 050 | 43| 47 18| 13173 0.58
DSJC1000.9 1000 449449 0.90 | 216 | 222 86 | 32907 0.60
flat1000.76.0 1000 246708 049 | 72| 81 19 | 30526 0.74
DSJC1000.5 1000 249826 050 | 73| 82 19| 19750 0.74
C2000.5 2000 999836 0.50 | 99| 145 20 823.1 0.80
C4000.5 4000 4000268 0.50 | 107 | 259 20| 16403 0.81

Summary and Next Steps

* Column elimination via decision diagrams Is a promising
alternative to column generation

— Can generate strong dual bounds

e Current work 1: embed DD bounds in branch-and-bound (for
graph coloring)

e Current work 2: vehicle routing applications
— Wide use of column generation. What is the potential for DDs?
— First application: TSP with a drone

Case Study: Truck-Drone Routing

* One truck + one drone
» Possible legs include:
truck, drone, combined
« Example route duration =
max{1, 0.5+0.5} +
1+
1+
max{1+1, 0.5+0.5} +
max{1l, 0.5+0.5}

=6 truck speed: 1 unit per edge
drone speed: 0.5 unit per edge

Definition of TSP-D

TSP-D: Traveling Salesperson with a Drone
Drone speed = a * truck speed (for some fixed a)
Goal: minimize route duration
Assumptions:

_,__? -
_____ —>’ | »’
/I \ /
/
% , >< ; ,
/ p /
// / ,'
/ /
Drone cannot be dispatched Drone can only visit one Waiting required
from the truck while the truck customer before rejoining

Is traveling with the truck

TSP-D: Related Work

 |nitiated by Murray and Chu (2015), now very active, see surveys
oy Macrina et al. (2020), Chung et al. (2020)

 Heuristic Algorith MmsS [Murray&Chu, TS2015] [Ponza, master 2016]
[Agatz et al., TS2018] [Poikonen et al., IJOC 2019]

« Exact Algorithms [Yurek&Ozmutlu, TS2018] [Bouman et al., Networks18]

[Tang et al., CPAIOR19] [Vasequez et al., 2021]
[Roberti&Ruthmair, TS2021]

/

Column generation (Branch-and-Price)
— Master LP: set partitioning model
— Pricing: DP model (with ng-route relaxation)

Set Partitioning Formulation for TSP-D

N: set of locations min) ¢z,
R: set of routes < _
L . s.t. er =1 » exactly one route is selected
z,.. iIndicator variable for route r oy
¢, = duration of route r Y a2z, =1 Vie N T each location is visited once
. . - .. . reR
a;-= #times location i is visited in route r e

r = LYy L[

feasible route
ay =1LVIEN [Roberti&Ruthmair, 2021]

Pricing Problem for TSP-D

N: set of locations min} "¢,z - Pricing Problem
R: set of routes e |
. . . S.t.ZZT —]. —> UO
z,. indicator variable for route r en |
¢, = duration of route r Y apz=1 VieN />y,
. . .o . . . reR i
a;-= #times location i is visited in route r e

Find route with negative
reduced cost, i.e.,
Cr —Up — Ziairui <0

— Similar to TSP-D if only
feasible routes allowed

— Allow infeasible routes:
ng-route relaxation

[Roberti&Ruthmair, 2021]

infeasible route infeasible route
ag,r = 0,a;, = 2, a; = 1 otherwise

feasible route
a, =1,ViEN ag, = 0, a;- = 1 otherwise

Dynamic Programming Model for TSP-D

State definition (S, LC, LT, t), where
e S = customers visited so far

 LC = |latest location visited by both vehicles
4 ({1,0,0,0)

« LT = latest location visited by truck alone T'l/
* t =time spent by the truck traveling alone since leaving LC ({11,0,1,2) 2 marginal increase
Set of controls . T2 | 2 of total travel time
* truck leg for customer i: Ti ({1,2}0,24) @ /
- drone leg: Di 1 2 D4 | max{2+1-4, 0} =0
« combined leg: Ci 3 1 ({1,2,4},2,2,0) @
c3l1
1 ({112/3)4};31310)N'
2 U ™e ({0,1,2,3,41,0,0,0

Route: T1, T2, D4, C3, CO

[Roberti&Ruthmair, 2021]

Decision Diagram Compilation for TSP-D

« Top-down DD compilation can be defined ({1,0,0,0)
by state transition function of DP model T1
[Bergman et al. 2016] ({1},0,1,2)
— DD nodes are associated with DP states 12
— DD arc labels are given by allowed controls ({1,2},0,2,4)@
— similar to state-transition graph in DP D4
({1,2,4},2,2,0) &
* Apply the previous DP model for TSP-D c3
— exact diagram represents all feasible solutions ({1,2,3,4},3,3,0)
— shortest path = optimal solution, but exponential size C.O\/
 How to compile relaxed decision diagram? ({0,1,2,3,4},0,0,0)

— apply route relaxation DP (e.g., ng-route), or
— define new relaxed DD based on merging rules

Node Merging: Example

Route 1: T1, T2, D4, C3, CO

({1,0,0,0)

T1 T3
(11.0,12) & ° e ({310,3,1)

({1,21024) ¢ @ (2,3},0,2,2)—
D4 |0 1| D4
® ®
311 21 C1
1 2
CO CO

Only merge states with equal (LC,LT)!

State (S, LC, LT, t): ({visited}, latest combined,
latest truck, time spent by truck alone)

({1,0,0,0)
T1 T3
({11,0,1,2) ({31,0,3,1)
T2 T2
D4 D4
C3 C1
CO CO

Node Merging: Example

Route 1: T1, T2, D4, C3, CO

({1,0,0,0)

T1 T3

(11.0,12) & ° e ({310,3,1)

CO CO

Only merge states with equal (LC,LT)!

State (S, LC, LT, t): ({visited}, latest combined,
latest truck, time spent by truck alone)

({1,0,0,0)

(131,0,3,1)
T2

({2},0,2,4)

(111,0,1,2)
T2

Mergingrule S =5, NS,
Merging rule t = max(tq,t5)

Top-Down Compilation with Node Merging

* Define ‘bucket size’ M root
» For each layer /\
— Partition nodes by (LC, LT) pair into ‘buckets’ r oo |
— Compute shortest path length from the root to © €.:0. 0,000,
each node 10 12 23 15 16 18 22
— Merge those with longer path lengths until Example: M=2, with yellow and

blue ‘buckets’

each bucket has size £ M
+ Relaxed DD has size 0(Mn?)

Derive Bound From Constrained Network Flow

Constrained integer network flow model (NP-hard):

min Z YaYa

a€EAp
S.t. Z Yo = Z Yoy, Vu € Vp,u#nr,t
a€dt(u) a€d—(u)
> Ya=1
acdt(r)

1 Lagrangian relaxation:
Z Ya = — Add dual variable to arc weights
— Shortest path in DD (integral)

- Yo=1 VieN

[(a) is a visit to customer i

Ya € {07 1}9 Va € AD

~LP relaxation:
1 - 0 S ya S 1
— Use off-the-shelf LP solver

Equivalence of Relaxation Bounds

* Observation: Given a DP model representing a route relaxation R, the
associated decision diagram D contains exactly all feasible paths
corresponding to R

e Let

— SPLP(R) be the set partitioning LP model with the DP pricing problem
— CFLP(Dg) be constrained network flow LP defined over D
— LR(Dg) be the Lagrangian relaxation of the constrained network flow defined over D

Theorem: SPLP(R), CFLP(Dg), and LR(Dg) have the same optimal
objective value

Going Beyond the Set Partitioning Bound

* Resolve conflicts along solution paths by refining the DD

Type 1: objective function Type 2: repeated visits

Route 2: T3, T2, D4, C1, CO

Duration =7 Path length =6 Customer 3 repeated

Overall Framework

Construct initial DD-based route relaxation

Compute lower bound (LP flow or Lagrangian)

< Refine conflicts along solution paths

Experimental Evaluation on TSP-D

« Evaluate two variants
— DD-Flow: lower bound from constrained network flow LP
— DD-Lagrangian: lower bound from Lagrangian
— both apply iterative refinement based on conflicts
« Comparison with state-of-the-art bound for TSP-D
— column generation model from [Roberti&Ruthmair, TS2021]
— set partitioning LP using ng-route relaxation

 Benchmark
— random instance generation [Poikonen et al., 2019]

« Upper bound
— best solution found by CP in 1h [Tang et al, CPAIOR19]

Optimality gap improvement over time

 — = DD-Flow
45 - DD-Flow 45 _
== DD-Lagrangian = DD-Lagrangian
40 T ng_route 40 . ng-rOUte
S 35 X 35 -
g g
& 30 7 O] 30 -
£ 2
T 25 1 © 25 -
£ E
2 20 - 2 20 -
@) o
15+ 15 -
10 A 10 -
5 1 I I I L] I I I I I I L] | I I I 5 I I I I I 1 | L] I I] I I | I I
0 50 100 150 0 50 100 150
Time Percentages (%) w.r.t ng-route computation time Time Percentages (%) w.r.t ng-route computation time

Number of locations = 15 Number of locations = 20

Optimality gap for varying problem sizes

Bl ng-route = DD-Flow B DD-Lagrangian o))))
Decision Diagram/Dynamic Program size comparison

30 4 #Locations 15 20 25
initial DD 9,736 25,086 51,485
25 A ¢
9 . DD-Flow 10,725 26,538 51,967
g209 ¢ DD-Lagrangian 15,567 37,197 59,204
(O]
Z 15 | ng-route* 24,114 73,554 174,725
O
£
g 10 - * size for ng-route is #labels after dominance
rules are applied
5 .
¢
O .
15 20 25

Number of Locations

(Time limit for DD methods is the ng-route solving time)

Optimality gap for larger instances

50

40

Optimality Gap (%)

20 A

Bl Math Prog)@ DD-Flow BB DD-Lagrangian

;

)

Number of Locations

50

Column generation does not scale
beyond 30 locations

We therefore compare to LP relaxation
of MIP model proposed by
[Roberti&Ruthmair, 2019]

Conclusion for Routing Application

« Relaxed Decision Diagrams can be used as an alternative for
column generation to compute lower bounds

— When defined on existing route relaxation (dynamic program for pricing
problem) it produces the same LP bound

« We Introduced a new DD-based route relaxation

— Conflict refinement can further improve the lower bound

« Experiments of TSP with Drone show competitive performance
— Especially for larger instances when column generation cannot be applied

