Carnegie Mellon University
Tepper School of Business

Decision Diagram Relaxations for Vehicle Routing

Willem-Jan van Hoeve
Carnegie Mellon University

Includes joint work with Andre Cire, Joris Kinable, Ziye Tang, and Anthony Karahalios

Overview

 |ntroduction to Decision Diagrams

. TSP

— special case of single machine scheduling problem
— embed DD relaxations in constraint programming solver
— improve DD bound with Lagrangian relaxation and Additive Bounding

* Vehicle Routing
— apply ‘column elimination’ to iteratively strengthen relaxed DD
— combine with linear programming solver

Decision Diagrams

* Graphical representation of

N X
Boolean functions '
f(X) — (x1 e xz) N\ (x3 & x4) X2
X, X, X3 X, | f(x) X3

o 0 o0 0|1

O 0 o0 110
Xy

o 1 1 0] o0

o o 1 1|1

Decision Diagrams

* Graphical representation of

N X
Boolean functions '
f(X) — (x1 e xz) N\ (x3 & x4) X2
X, X, X3 X, | f(x) X3

O 0 o0 0|1

O 0 o0 110
Xy

o 1 1 0] o0

o o0 1 1|1

Decision Diagrams

* Graphical representation of
Boolean functions

flx) = (x1 @xz) A (x3 <:>x4)

 BDD: binary decision diagram
e MDD: multi-valued decision diagram

Decision Diagrams: Optimization View

-_——— 0

* Graphical representation of — 1
Boolean functions

flx) = (x1 @xz) A (x3 <:>x4)

* Optimization perspective:
- literals - variables
- arcs —» assignments
- paths = solutions

Decision Diagrams: Optimization View

-_——— 0

_>1

max 2X; + X, - 4x3 + X,

subject to .
X;—X,=0
X3—X,=0 X
X1, X5, X3, X, € {0,1}
X3

Decision Diagrams: Optimization View

-_——— 0

_>1

subject to .
X;—X,=0
X3—X,=0 X
X1, X5, X3, X, € {0,1}
X3

Decision Diagrams: Optimization View

-_——— 0
B —— 1

subject to "
X;—X,=0 d
X3 = X4 = 0 \ X,
X1, X5, X3, X, € {0,1}
X3

Decision Diagrams: Optimization View

-_——— 0
B —— 1

max 2X; + X, - 4x3 + X,

subject to
X;—X,=0
X3—X,=0 X

X1, X5, X3, X, € {0,1}

 Maximizing a linear (or separable) function:
* Arc lengths: contribution to the objective
* Longest path: optimal solution

(can also handle nonlinear functions)

Decision Diagrams: Optimization View

-_——— 0
B —— 1

max 2X; + X, - 4x3 + X,

subject to
X;—X,=0
X3—X,=0 X

X1, X5, X3, X, € {0,1}

 Maximizing a linear (or separable) function:
* Arclengths: contribution to the objective
* Longest path: optimal solution

(can also handle nonlinear functions)

O

Compiling DDs: Top-down or iterative refinement

Top-down Iterative Refinement
@ X{—X,= 0
X3—X,=0 ,
X4 X1, Xy, X3, X, € {0,1} . X4
\
X, X2
X3 X3

O

Compiling DDs: Top-down or iterative refinement

Top-down Iterative Refinement
X;—%,=0
g X3—X,=0 ,
/// Xl X]_) XZI X3I X4 E {011} (Xl
/, '
d
|
|
| X3 X3
|
X3 X3

Compiling C

S: Top-down or iterative refinement

Top-down

Iterative Refinement

X;—%,=0
X3—X,=0
X1, X5, X3, X, €1{0,1}

Compiling C

S: Top-down or iterative refinement

Top-down

Iterative Refinement

X;—%,=0
X3—X,=0
X1, X5, X3, X, €1{0,1}

O

Compiling DDs: Top-down or iterative refinement

Top-down Iterative Refinement
X;—%,=0

X3—X,=0)
X4 X1, X5, X3, X4 € {O; 1} /,’ X4

Compiling DDs: Top-down or lterative Refinement

Top-down Iterative Refinement
X;—%,=0
X3—X,=0)
,// Xl X]_) XZI X3I X4 E {011} ,' Xl
of i
. o}
X, X2
X3 X3

Relaxed Decision Diagrams: Polynomial Size

* Exponential size is handled by explicitly limiting

— iterative refinement: stop when width is reached

the size (e.g., the width) of the diagram @\
» Non-equivalent nodes are merged width
— top-down compilation: need node merging rule < »

* Requirement: no solution is lost
— over-approximation of the solution space ‘.
— provides discrete relaxation

— strength is controlled by the maximum width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]
[Bergman, Cire, vH, Hooker, CPAIOR 2011, IJOC 2016]

\
.
\,]
N 7
N\ 7/
\N 7
/I
-’
P d
b d
Ve
/7

Categories of Successful Applications

. . [Andersen et al. CP2007] [Hoda et al. CP2010]
Constraint Programming [Bergman, Cire, and/or vH, 2013-2022]

— DD-based constraint propagation [Perez&Reégin 2015-2018] [Coppé et al., CP 2022]
[Verhaeghe et al. IJCAI 2018, CPAIOR 2019]

[Gentzel et al. CP 2020, 2022]
[Bergman, Cire, vH, Hooker, 2011-2016]

Combinatorial optimization

— MISP, MAX-CUT, graph coloring,... [Gillard et al., IJCAI 2020] [vH, MP 2022]
[Karahalios&vH, 2022] [Coppé et al., CP 2022]
« Scheduling, routing, planning [Cire&vH, OR2013], [Kinable et al. EJOR 2017]
. : [O’Neil&Hoffman, ORL2019] [Bogaerdt&de Weerdt, 2019]
- machllne sch_edullng, TSPTW, SOP, Al [Gillard&Schaus, IJCAI2022] [Rudich et al. CP 2022]
robotic planning,... [Castro et al. 2019-2022] [Horn et al. 2019-2021]

Decomposition and embedding in MIP [Bergman&Cire 2018] [Lozano et al. 2020-2022]
[Morrison et al. [JOC 2016] [Kowalczyk & Leus IJOC 2018]

— nonlinear objective functions, cutting [Tjandraatmadja&vH, 2019, 2021] [Davarnia&vH, MP 2021]

planes, column generatlon"" Textbook: Bergman, Cire, vH, Hooker [Springer 2016]

Survey paper: Castro, Cire & Beck [[JOC 2022]

Industrial DD Solver: Hop from Nextmv

Q’ nextmv Solutions~ Pricing Companyv Learn~v Q login Contact us

New techniques

Our research into modeling techniques led us to Decision Diagrams (DD). DDs represent optimization
problems as the search for a shortest (or longest) path over a layered, directed graph. They are state-based,
have few restrictions on problem representation, and can outperform MIP on optimization and CP on
feasibility reasoning (this, of course, depends on the model).

We've had enormous success with DDs. Some of our pickup and delivery models are orders of magnitude
faster using them. We find them particularly attractive for getting started with simple models and integrating
them into software stacks. There aren't any other industrial grade DD solvers, so we built Hop to be the first.

Ne— L, ;\ r(us

Create a free account. No credit card required.

Application: Traveling Salesperson Problem

A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing Problem:s.
Operations Research 61(6): 1411-1428, 2013.

D. Bergman, A. A. Cire, and W.-J. van Hoeve. Lagrangian Bounds from Decision Diagrams.
Constraints 20(3):346-361, 2015.

J. Kinable, A. A. Cire, and W.-J. van Hoeve. Hybrid Optimization Methods for Time-Dependent
Sequencing Problems. European Journal of Operational Research 259(3):887-897, 2017.

TSP: Special Case of Disjunctive Scheduling

Disjunctive scheduling: Sequencing activities on a resource

« Activities
— Processing time: p, 0 1 2 3 4
— Release time: r,
— Deadline: d Activity 1 [E— -
. Resource Activity 2 E]
— Nonpreemptive Activity 3 F S

— Process one activity at a time

Decision variables
— Start time start, for each activity i

Scheduling: Model Extensions

* Precedence relations a; < a; between two activities

« Sequence-dependent setup times: s;;
— if a; is followed by a; we need at least s;; time units to set up the machine

 Various objective functions
— Makespan (=end time of last activity)
— Sum of setup times
— (Weighted) sum of completion times
— (Weighted) tardiness
— number of late jobs

TSP as Scheduling Problem

TSP input Scheduling format

» Set of locations V Activity a; for ieV

* Distance matrix D;; * Sequence-dependent setup
times D;;

Other options: * Release dates [;

* Time windows [[;, u;] * Deadlines u;

* Precedences i «j * Precedences q; < q;

* Visit duration h; (can be 0) * Processing time h;

* Objective: Sum of setup times

DDs for Disjunctive Scheduling

Three main considerations:

* Representation

— How to represent solutions of disjunctive scheduling in a DD?

 Construction

— How to construct the DD?

 Inference techniques

— What can we infer using the DD?

25

Decision Diagram Representation

» Every solution can be written as a permutation n

. activity sequencing in the resource

Ty, T, Mgy weey Ty

* Schedule is implied by a sequence, €e.q.:

starty, =2 starty, +pgp,_, 1=2,..,n

* Represent feasible permutations with multi-valued
decision diagram (MDD)

[Cire&VvH, OR 2013]

MDD Representation: Example

Act r, p, d
1 3 4 12 M
> o 3 11 Path 3—-2-1:
3 1 2 10 m, 6 sstart; =8

3 sstart, <5

precedence: 3K 1 1 < start, <3

MDD-based propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:
 Alldifferent for the permutation structure

« Earliest start time and latest end time

* Precedence relations

For a given constraint type we maintain specific ‘state information’
at each node in the MDD (both from top down and bottom up)

Propagation (cont'd)

 State information at each node j
— labels on all paths: A,
— labels on some paths: S;

— earliest starting time: E;
— latest completion time: L,

« Top down example for arc (u,v) (1,2,3,4,5)

©

Alldifferent Propagation

» All-paths state: A,

» Labels belonging to all paths from
node r to node u

» A, =13}
» Thus eliminate {3} from (u,v)

{1,2,3,5}5} 7-[4

©

Alldifferent Propagation

» Some-paths state: S,

» Labels belonging to some path
from node r to node u

» S, =11,2,3}
» Identification of Hall sets (number
of variables = number of values)

{4,2}4,5} T,

©

» Thus eliminate {1,2,3} from (u,v)

Propagate Earliest Completion Time

» Earliest Completion Time: E,

» Minimum completion time of all

paths from root to node u

» Similarly: Latest Completion Time

Propagate Earliest Completion Time

Act d, P,
1 0 4 2
2 3 7 3
3 1 8 3
4 5 6 1
5 2 10 3

» Eliminate 4 from (u,v)

Propagate Precedence Relations

» Arc with labelj infeasible if
[< jandiisnotonsome path fromr

» Suppose 4 K 5
» Some-paths state S, = {1,2,3}

» Since 4 notin S, eliminate 5
from (u,v)

» Similarly: Bottom-up forj < i

34

-

Inference from the MDD

* Theorem: Given exact MDD M, we can deduce all
implied activity precedences in O(n?|M|) time

* The algorithm can also be applied to relaxed MDD to find
a subset of precedences

— can be stronger than edge-finding, not-first/not-last, etc.

[Cire&vH, OR 2013]

Communicate Precedence Relations

1. Provide precedence relations from MDD to CP
— update start/end time variables in CP model
— other inference techniques may utilize them
— may help to guide search

2. Filter the MDD using precedence relations from other (CP)
techniques

3. In context of MIP, these can be added as linear inequalities

Top-down MDD compilation: Example

precedence:
3«1 T M2
—
_—
y
N
relaxed MDDs exact MDD

(strength is controlled by
maximum width)

Top-down MDD compilation: Example

precedence:

3«1 T 2>3
—

Top-down MDD compilation: Example

precedence:

3K1

Act r. p, d
1 3 4 12
2 0 3 11
3 1 2 10

minimize makespan:

T, 2] |3

lower bound =7 lower bound =7 optimum =9

Performance

« MDD propagation implemented in IBM ILOG CPLEX CP
Optimizer 12.4 (CPO)
— State-of-the-art constraint based scheduling solver
— Uses a portfolio of inference techniques and LP relaxation
— MDD is added as user-defined propagator

» Compare three different variants
— CPO (only use CPO propagation)
— MDD (only use MDD propagation)
— CPO+MDD (use both)

TSP with Time Windows

10000)
_ Dumas/Ascheuer instances
] - 20-60 cities
1000] - max MDD width: 16

o ’ X |

o 100 | X

L x,

& Z » :

= | x
O

o 10 i x x XX %

= _ X x _

Q 1+ <

- I X]
o

>2< XXX
0.1 | . X .
X >2< X X
XK XX X
0.01 L e —
0.01 0.1 1 10 100 1000 10000
CPO time (s)

Total Tardiness

Number of Instances Solved

60

50

40

30

20

MDD-128-—+—s=-s=ra=rt=t=a e s
* MDD 64 T

! v

I .

o I\/ID[Y 32

[v oo 8
b MDD-16,--"

1© -V _o-- o~

:_,'I _.-V- _..a-- o’
T CPO

v -

«—* . «—
_—
—
—— CPO
- CPO+MDD Width 16
% CPO+MDD Width 32
-o- CPO+MDD Width 64
—%- CPO+MDD Width 128
T I T T T
600 900 1200 1500 1800
Time(s)

total tardiness

Number of Instances Solved

30 40 50 60
|

20

MDD- 128*__*__*__*__*-f*——ﬁ——ﬁ——%‘

-0=-0"

gV VY

--O'I _ VV?/
- MQD 32 CB@/ oe-a-- _D_—-I:I

.a
—— CPO
- CPO+MDD Width 16
~%- CPO+MDD Width 32
-& CPO+MDD Width 64
—%- CPO+MDD Width 128
T I I T T T
300 600 900 1200 1500 1800

Time(s)

total weighted tardiness

Sequential Ordering Problem (TSPLIB)

CPO CPO+MDD, width 2048
instance vertices bounds best time (s) best time (s)
br17.10 17 55 55 0.01 55 4.98
br17.12 17 55 55 0.01 55 4.56
ESCO07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 (28175, 28480)] 28545 TL 28480 279.18 *
p43.3 43 28366, 28835] 28930 TL 28835 177.29 *
p43.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 (15220, 15805] 18209 TL 16561 TL
ry48p.2 48 (15524, 16666] 18649 TL 17680 TL
ry48p.3 48 (18156, 19894] 23268 TL 22311 TL
ry48p.4 48 (29967, 31446] 34502 TL 31446 96.91 *
ft53.1 53 (7438, 7531] 9716 TL 9216 TL
ft53.2 53 (7630, 8026] 11669 TL 11484 TL * solved for
ft53.3 53 (9473, 10262] 12343 TL 11937 TL the first time
ft53.4 53 14425 16018 TL 14425 120.79

Strengthening Relaxed Decision Diagrams

« Lagrangian relaxation
— penalize constraint violations by modifying arc weights

* Additive bounding

— incorporate dual information from LP relaxations
— e.g., aggregate reduced costs along path from root to terminal

Extension: Lagrangian bounds

* Observation: MDD bounds can be very loose

— main cause: repetition of activities T,
* Apply Lagrangian relaxation
— penalize repeated activities; reward unused activities m,
min z + Z Aj (Z(m =7j)— 1)
7j=1 =1 T[3
—z4) > Nm=j)->_ N

i=1 j=1 j=1 i

Z (mi=j)=1 V]

— shortest path with updated weights i=1

Impact of Lagrangian Relaxation (TSPTW)

Scatter plot of optimality gap at the root node Number of instances solved versus time

35 | | | | | | > [T L T T e T

200 SR
o 0T . E
Q =

S 25 - 3 150 | -
= - w
=3 D
E 20 B - — E
2 gl s

7 5 n N

E 15 B //"’, = .E 100

= - 5
4 i @

g 2 50F -
=

X - pd without Lagrangian —+—
with Lagrangian --->¢--
: ol | number of instances -------- N
30 35 0.01 0.1 1 10 100 1000 10000

Without Lagrange multipliers Time (seconds)

[Bergman, Cire, vH, 2015]

Extension: Additive Bounding

« Case: time-dependent sequencing
— sequence-dependent setup times also depend on position!
— 65]- = setup time between i and j if i is at position t

0 1 2 3 4 5 6 7

MDD representation

rctivit 1 .

— state-dependent costs ctivity 1 [— .
Activity 2 E — ﬁ
Activity 3 H’ al j

[Kinable, Cire, vH, EJOR 2017]

Additive Bounding: LP + MDLC

e Add LP reduced costs to MDD relaxation [Fischetti &Toth, 1989]

» Effectivess depends on the quality of the LP relaxation
* LP can be made stronger for specific problem class

— TD-TSP [Picard & Queyranne, 1978] [Vander Wiel and Sahinidis, 1995
[Gouveia and Voss, 1995] [Abeledo et al. 2013] [Miranda-Bront et al., 2014

— TD-TSP-TW (time windows) [Miller, Tucker, Zemlin, 1960
[Desrocher & Laporte, 2014]

— TD-SOP (precedence constraints) [Sarin, Sherali, Bhootra, 2005]

Experimental Setup

« Solvers: IBM ILOG CPLEX and CP Optimizer 12.6.3
— MDD added to CP Optimizer (Cire & v.H., 2013)
— maximum width 1024
— time limit: 30 minutes

« TD-TSP 38 instances from TSPLIB (n=14-107 jobs)
67 = (n-t)*6; ; [Abeledo et al., 2013]
e TD-TSPTW based on Dumas et al. (n=30, 35, 40), 270 total
« TD-SOP 29 instances from SOP dataset in TSPLib (n=7 to 100)

TD-TSP: Performance Plot

45

“MIP ——
MDD(1024) = =
10 || MDD(1024)-A8 —

Instances(#)

i j j
0 450 900 1350 1800/0 <25 <50 <75 <100

Time (s) Gap (%)

TD-TSPTW: Performance Plot

max width 32 max width 1024

).IJIDD(S% —
MDD(32)-AB —— :

MDD+

MDD(1021) —— ‘ 5 : :
MDD(1024)-AB ——— i

200 oo

 mMDQWmmmmeMmém_ 3 WMDDWWWWMWfWWEWEWW

| | | | | | K i i i i i i
0 450 900 1350 1800/0 <25 <50 <75 <100 0 450 900 1350 1800/0 <25 <50 <75 <100

Time (s) Gz_:\p (%) Time (s) Gap (‘;Aa)

(MIP was unable to find any single integer solution)

TD-SOP: Performance Plot

“MIP —..—.
MDD(1024) —
MDD(1024) AB ——

o . MDD+AB. | . f |

Instances(#)

Application: Vehicle Routing

Z. Tang and W.-J. van Hoeve. Dual Bounds from Decision Diagram-Based Route Relaxations:
An Application to Truck-Drone Routing. Transportation Science, to appear.

Background: Column Generation for VRPs

« Branch-and-Price with Column Generation is a very effective method for
solving VRPs

« |t uses an extended formulation: binary variable for every possible truck
route (in principle exponentially many)

min Z d.x, min (cost of route) — (dual values of route)
TR LP-dual values s.t. route constraints
: g capacity constraints
S.t. M x, =1 Vi 1,2,...,n . : :
Z;z e €il2,...,n}) time window constraints
re) precedence constraints
K new route
Z Lr (add to R) etc.
reR d ©
0<x,<1 Vre R (Often solved with Dynamic Programming)
Restricted master problem with subset of routes R Pricing problem: find improving route

Column ‘elimination’ instead of column generation?

« Column generation works with restricted set of columns
— no valid lower bound until optimal LP basis is found *
— stability and convergence issues due to degenerate LP solutions
— solving LP as MIP is not sufficient—embed in branch-and-price search

» Alternative: work with relaxed set of columns [VH, IPCO 2020]
N . .) [VH, Math. Prog. 2021]
— initial relaxation includes columns that are not feasible
— apply an iterative refinement algorithm to eliminate infeasible columns
— use decision diagrams for compact representation and efficiency

— no need for shadow prices or branch-and-price; just “MIP-it” (or use standard branch-
and-bound)

— for VRP, we can use the dynamic program of the pricing problem to compile the DD!

* But can use reduced cost information to find approximate LP bound

Case Study: Truck-Drone Routing

* One truck + one drone
» Possible legs include:
truck, drone, combined
« Example route duration =
max{1, 0.5+0.5} +
1+
1+
max{1+1, 0.5+0.5} +
max{1, 0.5+0.5}

=6 truck speed: 1 unit per edge
drone speed: 0.5 unit per edge

-

Definition of TSP-D

TSP-D: Traveling Salesperson with a Drone
Drone speed = a * truck speed (for some fixed a)

Goal: minimize route duration

Assumptions: State of the art: Branch-and-Price
* Master LP: set partitioning model
* Pricing: DP model (with ng-route

_____ . "! TSy relaxation)
74 . % } ’,’ [Roberti & Ruthmair, TS2021]
‘I

Drone cannot be dispatched Drone can only visit one Waiting required
from the truck while the truck customer before rejoining
is traveling with the truck

Dynamic Programming Model for TSP-D

State definition (S, LC, LT, t), where
e S = customers visited so far

« LC = latest location visited by both vehicles
Y {1,0,0,0)

« LT = latest location visited by truck alone T'l/
 t =time spent by the truck traveling alone since leaving LC ({11,0,1,2) 2 marginal increase
Set of controls . T2 | 2 of total travel time
« truck leg for customer i: Ti ({1,210,.2,4) @ /
» drone leg: Di 1 2 D4 | max{2+1-4,0}=0
« combined leg: Ci 3 1 ({1,2,4},2,2,0) @
c311
1 ({112)314}131310)N'
2 U e ({0,1,2,3,41,0,0,0

Route: T1, T2, D4, C3, CO

[Roberti&Ruthmair, 2021]

-

Decision Diagram Compilation for TSP-C

 Top-down DD compilation can be defined ({1,0,0,0)
by state transition function of DP model T1
[Bergman et al. 2016] ({1},0,1,2)
— DD nodes are associated with DP states T2
— DD arc labels are given by allowed controls ({1,2},0,2,4)@
— similar to state-transition graph in DP D4
({1,2,4},2,2,0) &
* Apply the previous DP model for TSP-D 3
— exact diagram represents all feasible solutions ({1,2,3,4},3,3,0)
— shortest path = optimal solution, but exponential size C.O\/
 How to compile relaxed decision diagram?? ({0,1,2,3,4},0,0,0)

— apply route relaxation DP (e.g., ng-route), or
— define new relaxed DD via Column Elimination

Derive Bound From Constrained Network Flow

Constrained integer network flow model (NP-hard):

min Z YaYa
S.t. Z Yo = Z Yoy, Vu € Vp,u#nr,t

a€dt(u) a€d—(u)

1 Lagrangian relaxation:
Z_: Ya = — Add dual variable to arc weights
acd™(t) — Shortest path in DD (integral)

- Yo=1 VieN

[(a) is a visit to customer i

LP relaxation:
ya,G{O,l}, VGGAD '_ OSyagl

— Use off-the-shelf LP solver

Equivalence of Relaxation Bounds

« Observation: Given a DP model representing a route relaxation R, the
associated decision diagram Dg contains exactly all feasible paths
corresponding to R

e Let

— SPLP(R) be the set partitioning LP model with the DP pricing problem
— CFLP(Dg) be constrained network flow LP defined over D
— LR(Dg) be the Lagrangian relaxation of the constrained network flow defined over D

Theorem: SPLP(R), CFLP(Dg), and LR(Dg) have the same optimal
objective value

Going Beyond the ng-Route Bound

« Resolve conflicts along solution paths by refining the DD

Type 1: objective function Type 2: repeated visits

Route 2: T3, T2, D4, C1, CO

0
/ZTZ
1
a4
3;\21
1
2

Duration =7 Path length =6 Customer 3 repeated

63

Overall Framework

Construct initial DD-based route relaxation

\ 4

Compute lower bound (LP flow or Lagrangian)

< Refine conflicts along solution paths

Experimental Evaluation on TSP-D

- Evaluate two variants
— DD-Flow: lower bound from constrained network flow LP
— DD-Lagrangian: lower bound from Lagrangian
— both apply iterative refinement based on conflicts
« Comparison with state-of-the-art bound for TSP-D
— column generation model from [Roberti&Ruthmair, TS2021]
— set partitioning LP using ng-route relaxation

 Benchmark
— random instance generation [Poikonen et al., 2019]

 Upper bound
— best solution found by CP in 1h [Tang et al, CPAIOR2019]

Optimality gap improvement over time

 — = DD-Flow
45 - DD-Flow 45 _
== DD-Lagrangian = DD-Lagrangian
40 T ng_route 40 . ng‘route
S 35 X 35 -
g g
& 30 7 O] 30 -
£ 2
T 25 1 © 25 -
£ E
2 20 - 2 20 -
@) o
15+ 15 -
10 A 10 -
5 1 I I I L] I I I I I I L] | I I I 5 I I I I I 1 | L] I I] I I | I I
0 50 100 150 0 50 100 150
Time Percentages (%) w.r.t ng-route computation time Time Percentages (%) w.r.t ng-route computation time

Number of locations = 15 Number of locations = 20

Optimality gap for varying problem sizes

B ng-route S DD-Flow B DD-Lagrangian

= N N w
u o w o
I I I I

L 2
L 2

Optimality Gap (%)

=
o
1

ol
1

15 20 25
Number of Locations

(Time limit for DD methods is the ng-route solving time)

Optimality gap for larger instances

50

40

Optimality Gap (%)

20 A

Bl Math Prog)@ DD-Flow B DD-Lagrangian

;

)

Number of Locations

50

Column generation does not scale
beyond 30 locations

We therefore compare to LP relaxation
of MIP model proposed by
[Roberti&Ruthmair, 2019]

Conclusions

* Decision Diagrams provide a new way to represent VRPs

* Relaxed DDs trade off size (memory) for strength of bound
— Can be embedded in existing solvers, e.g., constraint programming

— Or can be the basis of stand-alone solution method, e.g., column
elimination

« Competitive results on variants of TSP and TSP+drone routing

DDs for general Capacitated VRPs will be presented on Thursday:

Karahalios and vH: Column Elimination for Capacitated Vehicle Routing
Problems, CPAIOR 2023

	Slide 1: Decision Diagram Relaxations for Vehicle Routing
	Slide 2: Overview
	Slide 3: Decision Diagrams
	Slide 4: Decision Diagrams
	Slide 5: Decision Diagrams
	Slide 6: Decision Diagrams: Optimization View
	Slide 7: Decision Diagrams: Optimization View
	Slide 8: Decision Diagrams: Optimization View
	Slide 9: Decision Diagrams: Optimization View
	Slide 10: Decision Diagrams: Optimization View
	Slide 11: Decision Diagrams: Optimization View
	Slide 12: Compiling DDs: Top-down or iterative refinement
	Slide 13: Compiling DDs: Top-down or iterative refinement
	Slide 14: Compiling DDs: Top-down or iterative refinement
	Slide 15: Compiling DDs: Top-down or iterative refinement
	Slide 16: Compiling DDs: Top-down or iterative refinement
	Slide 17: Compiling DDs: Top-down or Iterative Refinement
	Slide 18: Relaxed Decision Diagrams: Polynomial Size
	Slide 19: Categories of Successful Applications
	Slide 20: Industrial DD Solver: Hop from Nextmv
	Slide 21: Application: Traveling Salesperson Problem
	Slide 22: TSP: Special Case of Disjunctive Scheduling
	Slide 23: Scheduling: Model Extensions
	Slide 24: TSP as Scheduling Problem
	Slide 25: DDs for Disjunctive Scheduling
	Slide 26: Decision Diagram Representation
	Slide 27: MDD Representation: Example
	Slide 28: MDD-based propagation
	Slide 29: Propagation (cont’d)
	Slide 30: Alldifferent Propagation
	Slide 31: Alldifferent Propagation
	Slide 32: Propagate Earliest Completion Time
	Slide 33: Propagate Earliest Completion Time
	Slide 34: Propagate Precedence Relations
	Slide 35: Inference from the MDD
	Slide 36: Communicate Precedence Relations
	Slide 37: Top-down MDD compilation: Example
	Slide 38: Top-down MDD compilation: Example
	Slide 39: Top-down MDD compilation: Example
	Slide 40: Performance
	Slide 42: TSP with Time Windows
	Slide 43: Total Tardiness
	Slide 44: Sequential Ordering Problem (TSPLIB)
	Slide 45: Strengthening Relaxed Decision Diagrams
	Slide 46: Extension: Lagrangian bounds
	Slide 47: Impact of Lagrangian Relaxation (TSPTW)
	Slide 48: Extension: Additive Bounding
	Slide 49: Additive Bounding: LP + MDD
	Slide 50: Experimental Setup
	Slide 51: TD-TSP: Performance Plot
	Slide 52: TD-TSPTW: Performance Plot
	Slide 53: TD-SOP: Performance Plot
	Slide 54: Application: Vehicle Routing
	Slide 55: Background: Column Generation for VRPs
	Slide 56: Column ‘elimination’ instead of column generation?
	Slide 57: Case Study: Truck-Drone Routing
	Slide 58: Definition of TSP-D
	Slide 59: Dynamic Programming Model for TSP-D
	Slide 60: Decision Diagram Compilation for TSP-D
	Slide 61: Derive Bound From Constrained Network Flow
	Slide 62: Equivalence of Relaxation Bounds
	Slide 63: Going Beyond the ng-Route Bound
	Slide 64: Overall Framework
	Slide 65: Experimental Evaluation on TSP-D
	Slide 66: Optimality gap improvement over time
	Slide 67: Optimality gap for varying problem sizes
	Slide 68: Optimality gap for larger instances
	Slide 69: Conclusions

