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• Assign a color to each vertex such that adjacent vertices have a 
different color.  Minimize the number of colors.


Graph Coloring
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• MIP model 1

	 	  	: vertex v is assigned color k, for 


	 	  	 : color k is used, for 

xvk v ∈ V, k ∈ K
yk k ∈ K

• Relatively weak LP relaxation

min	 


s.t.	    		 	 for 


  	 for 

∑
k∈K

yk

xuk + xvk ≤ yk (u, v) ∈ E, k ∈ K
xvk ∈ {0,1}, yk ∈ {0,1} v ∈ V, k ∈ K

G = (V, E)



• Each integer solution is a collection of independent sets 
(=subset of vertices that share no edges) 

– Independent set represents a color class


• MIP model 2: binary variable xi for each independent set i

Graph Coloring: Dantzig-Wolfe Reformulation
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I = { {1},{2},{3},{4}, 
{1,2},{1,4},{2,3} }

min	 


s.t.	 	 for 


	 	 for 

∑
i∈I

xi

∑
i:v∈i

xi = 1 v ∈ V

xi ∈ {0,1} i ∈ I

• Stronger LP relaxation (but exponential number of variables!)



Solving Linear Program with Column Generation
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Restricted set of 
color classes

Exact set of color 
classes

Master Problem: Linear Program

Pricing Problem: Dynamic Program*

optimal dual solution color class to add

min	 


s.t.	 	for 


	 	 for 

∑
i∈I′ 

xi

∑
i:v∈i

xi = 1 v ∈ V

xi ∈ [0,1] i ∈ I′ Integer Optimality: Embed 
Column Generation LPs within 

Branch-and-Price

[Desrosiers et al. 1984, Barnhart et al. 1998, 
Mehrotra and Trick 1996]

* When pricing problem is NP-hard: 
Use state-space relaxations or other 
techniques to compute a dual bound



Graph Coloring: Network Representation
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• We can compactly represent all 
columns as paths in a network

G = (V, E)

• This is an exact decision diagram 
representing all independent sets

[Bergman, Cire, vH, Hooker, 2012, 2014]



Graph Coloring: Arc Flow Formulation
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• MIP model 3: variable ya for each arc a

min	 


s.t.	 	 for 


	 	 	 	 for 


	 		 	 for 

∑
a∈δ+(r)

ya

∑
a∈δ−(i)

ya − ∑
a∈δ+(i)

ya = 0 i ∈ N

∑
a:ℓ(a)=v

ya = 1 v ∈ V

ya ∈ {0,1,…, n} a ∈ A

D = (N, A)

G = (V, E)

• Same LP bound as Dantzig-Wolfe



1. Exact decision diagrams can be of exponential size (in the size of 
the input graph)

– Remedy: Use smaller relaxed decision diagrams instead

– Provides lower bound on coloring number


2. Solving the arc flow formulation is NP-hard

– Less relevant in practice: MIP solvers scale well

– But we can also use LP relaxation (polynomial)

Two Main Challenges
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• Decision diagram D for problem P is

Exact and Relaxed Decision Diagrams
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exact	 	 if  

relaxed	 if 

Sol(𝐷) = Sol(𝑃 )
Sol(𝐷) ⊇ Sol(𝑃 )

relaxed

(5 nodes)

relaxed

(8 nodes)

exact

(10 nodes)

input graph

[Bergman, Cire, vH, 

Hooker, 2016]



Column Elimination: Iterative Refinement
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Lemma: Conflicts can be found in polynomial time (in the size of the state-
transition graph) via a path decomposition of the flow

Lemma: Eliminating k conflicts increases the size by at most O(kn) nodes 


– Eliminating one conflict increases each layer by at most one node

Lemma: In each iteration, compilation via conflict elimination produces a valid 
lower bound

Lemma: Eliminating all conflicts yields the exact dynamic program

Theorem: The algorithm terminates with an optimal LP/IP solution (if time 
permits)

Analysis of overall procedure
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[vH IPCO 2020, Math. Prog. 2022]



Evaluation on DIMACS benchmark instances
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• Relaxed dynamic program from 
column elimination can be 
orders of magnitude smaller 
than exact dynamic program to 
prove optimality, but not always


• DSJR500.1 (n=500, m=3,555)

– Exact diagram: ≥1M nodes

– Relaxed diagram: 627 nodes

(Each instance is solved to optimality by at least one of the two methods)
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• Arc flow models can be defined over the state-transition graph of 
a dynamic program [de Lima et al. 2022]


• Exact decision diagrams can likewise be compiled using dynamic 
programming models

Dynamic Programming-Based Arc Flow Models
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• Column elimination works with relaxations

– But these are not the classical state-space relaxations which are 

often used in column generation

– What dynamic program leads to relaxed decision diagrams?



Example: Capacitated Vehicle Routing
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Example: Capacitated Vehicle Routing
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Update the DP states to ‘remember’ the repeated location

Q-route relaxation [Fukasawa et al. 2006]



Dynamic Program Relaxation

[Christofides et al. 1981]
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Column Elimination Revisited
Column elimination solves (a relaxation of) the linear program relaxation. 
1. Construct an initial dynamic program relaxation. 
2. Solve the linear program relaxation of the arc-flow model. 
3. If the optimal solution uses an “infeasible” r-t path, eliminate the r-t path from the 
dynamic program relaxation and go back to step 2. 
4. If the optimal solution has no “infeasible” r-t paths, terminate.
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• Input:

– Dynamic Programming model (its state-transition graph defines sequences)

– Integer Programming constraints: Arc flow formulation

Column Elimination: General Approach
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The constraints are 

functions of the arcs

≥



• Input:

– Dynamic Programming model (its state-transition graph defines sequences)

– Integer Programming constraints: Arc flow formulation

Column Elimination: Linear Program
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LP



• Input:

– Dynamic Programming model (its state-transition graph defines sequences)

– Integer Programming constraints: Arc flow formulation

Column Elimination: Integer Program
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IP



Lagrangian Reformulation

• For fixed λ, L(λ) can be solved by a Successive Shortest Paths algorithm.

Large LPs can still be difficult to solve. We consider a Lagrangian Reformulation:

• Max L(λ) can be solved using Subgradient Descent.

[Wang et al. 2020]
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Column Elimination: Lagrangian Method

• Each iteration computes a dual bound, which is helpful for variable fixing. 
• We are using Subgradient Descent to solve a changing problem.

Our method combines Subgradient Descent and relaxation updates.
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Cut-and-Refine

• The cuts need to be in terms of the arc variables. 
• There are “robust” and “non-robust” cuts, as in column generation. [Poggi 2003] 
• Effectively adding cuts is difficult for the Lagrangian method. [Lucena 2005]

To solve the IP, we can add cutting planes into the LP arc-flow formulation.

24



Apply Arc Fixing to Improve Efficiency
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Reduced Cost Arc Fixing: 
1. Input a feasible solution v to the dual of LP(F(D)) with associated LB, and an UB on the IP. 
2. Consider an arc. If the best reduced cost based on v for any r-t path through the arc is 

such that LB + reduced cost  UB, then the arc can be fixed to 0.≥

[Pecin et al. 2017]

Can arcs be pruned? (i.e. provably not in an optimal solution)



Discussion: Column Generation / Elimination
Similarities 
1. The models are equivalent when the dynamic program relaxation is the same for 

the arc-flow formulation and the pricing problem.  
2. The dynamic program relaxation can be strengthened for both models. 

Differences 
1. Column generation solves a restricted master problem and column elimination 

solves relaxed models. 
• The method for computing lower bounds is different. 
• The dynamic program relaxations in each method can be different.
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Discussion: Related Literature

Similar Methods 
• Iterative Refinement of Relaxed Decision Diagrams [Hazdic et al. 2008] 
• Dynamic Discretization Discovery [Boland et al. 2017] 
• Iterative Aggregation and Disaggregation [Clautiaux et al. 2017] 
• Decremental State Space Relaxations [Righini & Salani 2018] 
• State Augmenting Algorithm [Lozano et al. 2022] 

These methods also (iteratively) update and refine the underlaying discrete relaxation
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Experimental Setup
Experimental Setup: 
• The code is written in C++ 
• We use CPLEX as LP/IP Solver 
• We use a timeout of 3600 seconds 

Experiments: 
1. Evaluate the impact of LP vs LAG and variable fixing 
2. Benchmark comparisons with state-of-the-art on CVRP, VRPTW, Graph 

Multicoloring, and PDPTW 
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Experiments: LP vs. LAG

Why is LP best for GC and LAG best for 
VRPTW? Primal and dual solutions 
change more for GC as the relaxation is 
refined.

We plot the runtimes of column 
elimination with an LP solver versus 
the Lagrangian method. 
We evaluate graph coloring (GC) and 
vehicle routing problem with time 
windows (VRPTW)
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Experiments: Variable Fixing

Variable fixing uses a feasible dual solution 
to prove that we can remove arcs in the 
dynamic program. [Pecin et al. 2017] 

Benefits both the LP and LAG method. 

Can be very effective for large instances. 
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Experiments: CVRP
Initial results on the Capacitated Vehicle Routing Problem  [Karahalios & vH, 2023]

We compare the optimality gap found by CE to the optimality gap found by column 
generation (the root node of BCP). [Pecin et al. 2017]
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Instance classes: 
- NP = number of instances 
- 30 to 1000+ locations



Experiments: VRPTW

Instances: Clustered on 400 and 600 locations 

VRPSolver: [Pessoa et al. 2020] Branch-cut-and-price
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UB = upper bound 
LB = lower bound 
Nodes = VRPSolver BCP nodes 
Time = total running time in seconds  

CEIt = CE iterations 
CESIt = CE subgradient descent iterations 
CR = number of refinements 
Cuts = number of cuts added 
Time = total running time in seconds



Experiments: VRPTW cont’d
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Longer Routes Shorter Routes



Experiments: Three Difficult VRPTW Instances

[Pessoa et al. 2020]
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Experiments: Graph Multi-Coloring

GM: 
[Gualandi & Malucelli 2012] 
Constraint programming + branch-and-price method

36

Graph multi-coloring: 
Assign k colors to each vertex such that 
adjacent vertices have no colors in common. 
(Each color induces an independent set)



Experiments: PDPTW (=VRPTW + precedences)

200 locations 
BBM = [Baldacci et al. 2012]

Instances:  
[Li and Lim 2001] 
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1000 locations



• Column Elimination solves integer programming problems as arc flow models 
over dynamic programming relaxations.

Conclusion
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• Column Elimination solves iteratively strengthened DP relaxations.

• Column Elimination has closed open instances of Vehicle Routing Problems and 
Graph Coloring Problems.


• Column Elimination has been integrated as generic technique in the commercial 
optimization solver Hexaly (to be released in July 2025)
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