

Hybrid Optimization for Time-Dependent Sequencing

Willem-Jan van Hoeve

Tepper School of Business

Carnegie Mellon University

www.andrew.cmu.edu/user/vanhoeve/

Joris Kinable

Andre A. Cire

Robotics Institute & Tepper School of Business
Carnegie Mellon University

Rotman School of Management & U Toronto Scarborough University of Toronto

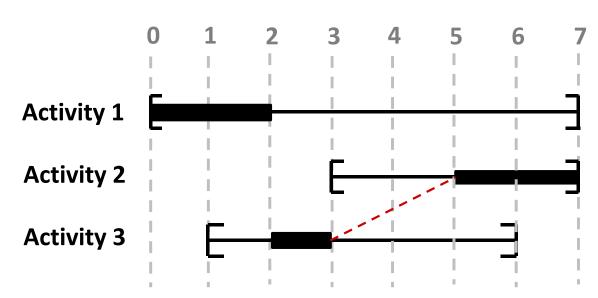
Motivation

- Time-dependent sequencing
 - machine scheduling, routing
- Challenging problem
 - best results with dedicated methods
 - not easy to extend with side constraints
- Utilize constraint programming framework?
 - strengthened constraint propagation with MDDs
 - improved bounds via additive bounding with LP
 - evaluate on TD-TSP and TD-SOP

Time-Dependent Sequencing

Activities

- processing time p_i
- released date r_i
- deadline d_i



Resource

- non-preemptive
- process one activity at a time
- sequence-dependent setup times: also depend on position! $\delta_{i,i}^t$ = setup time between i and j if i is at position t

Extensions

- Precedence relations between activities
- Various objective functions
 - Sum of setup times
 - Makespan
 - (Weighted) sum of completion times
 - (Weighted) tardiness
 - number of late jobs

— ...

Existing Approaches

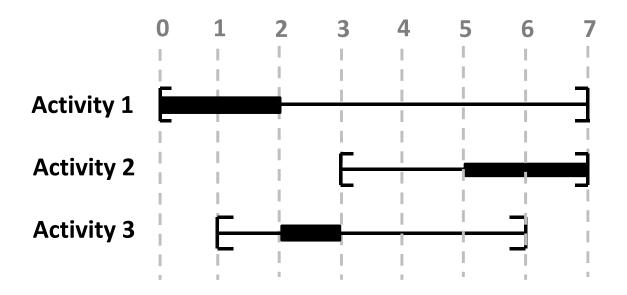
- MIP-based
 - Picard and Queyranne (1978)
 - Gouveia and Voss (1995)
 - Abeledo et al. (2013)
 - **—** ...

- Many more approaches to time-dependent TSP
 - Ichoua et al. (2003)
 - Cordeau et al. (2014)
 - Melgarejo et al. (2015)
 - **—** ...

Constraint Programming Model

• Every solution can be written as a permutation π

$$\pi_1, \pi_2, ..., \pi_n$$
: activity sequencing



$$\pi_1 = 1$$
, $\pi_2 = 3$, $\pi_3 = 2$

Constraint Programming Model

• Variables π_i : label of ith activity in the sequence L_i : position of activity i in the sequence

min
$$\sum_{i=0}^{n} \delta_{\pi_{i},\pi_{i+1}}^{i}$$
s.t.
$$\operatorname{AllDiff}(\pi_{1},\ldots,\pi_{n})$$

$$L_{\pi_{i}} = i \qquad \forall i = 1,\ldots,n$$

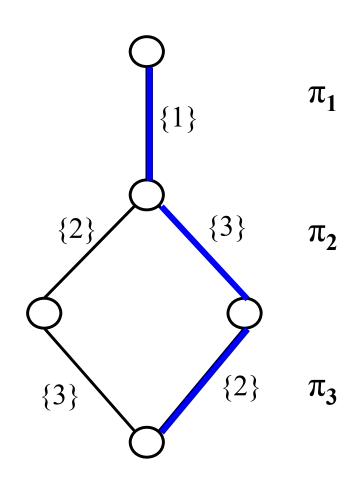
$$L_{i} < L_{j} \qquad \forall (i \ll j) \in P$$

$$L_{i} \in \{1,\ldots,n\} \qquad \forall i = 1,\ldots,n$$

$$\pi_{i} \in \{1,\ldots,n\} \qquad \forall i = 1,\ldots,n$$

Weak model: objective and AllDiff are decoupled

MDD Representation



Act	r _i	p _i	d_{i}
1	0	2	3
2	4	2	9
3	3	3	8

Path
$$\{1\} - \{3\} - \{2\}$$
:

$$0 \le \text{start}_1 \le 1$$

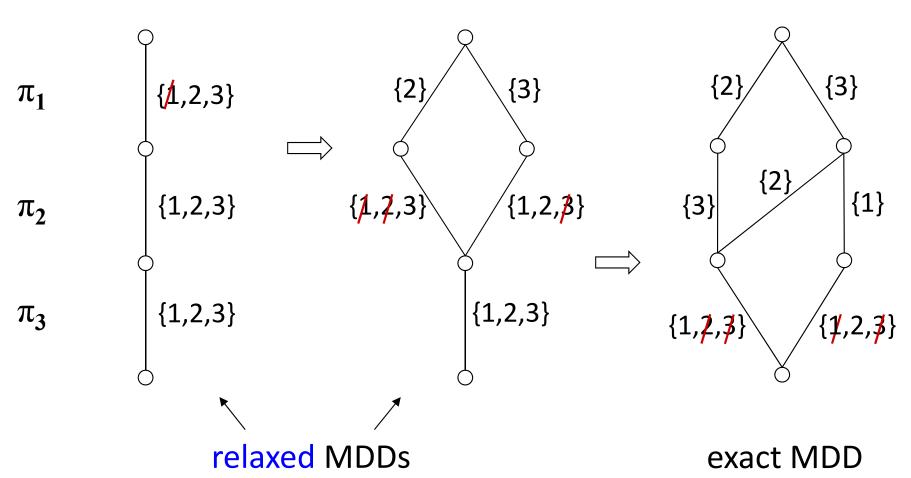
$$6 \le \text{start}_2 \le 7$$

$$3 \le \text{start}_3 \le 5$$

Cire and v.H. (2013)

Top-down MDD compilation

precedence: 3 << 1



(strength is controlled by maximum width)

MDD-based propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:

- Alldifferent for the permutation structure
- Precedence relations
- Earliest start time and latest end time

Propagating MDDs rather than variable domains can yield orders of magnitude speedup

Andersen et al. (2007), Hoda et al. (2010), Cire&v.H. (2013),

Bergman et al. (2015)

MDD-based propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:

- Alldifferent for the permutation structure
- Precedence relations
- Earliest start time and latest end time
 - adapt rule: $\delta_{i,j}$ becomes $\delta_{i,j}^t$
- Also needed for objective
 - minimize sum of setup times

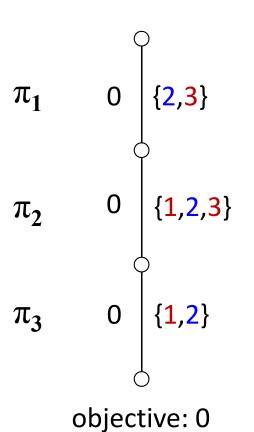
Updated CP Model

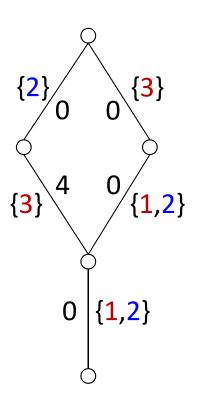
min
$$z$$

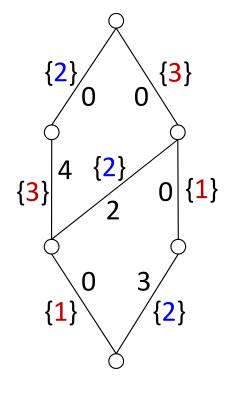
s.t. AllDiff (π_1, \dots, π_n)
MDDconstr $(\pi_1, \dots, \pi_n, W, z, \delta^t, P)$
 $L_{\pi_i} = i$ $\forall i = 1, \dots, n$
 $L_i < L_j$ $\forall (i \ll j) \in P$
 $L_i \in \{1, \dots, n\}$ $\forall i = 1, \dots, n$
 $\pi_i \in \{1, \dots, n\}$ $\forall i = 1, \dots, n$
 $z \in \{0, \dots, \infty\}$

Stronger model: objective handled within MDD constraint

Bounds from relaxed MDDs







objective: 0

objective: 3

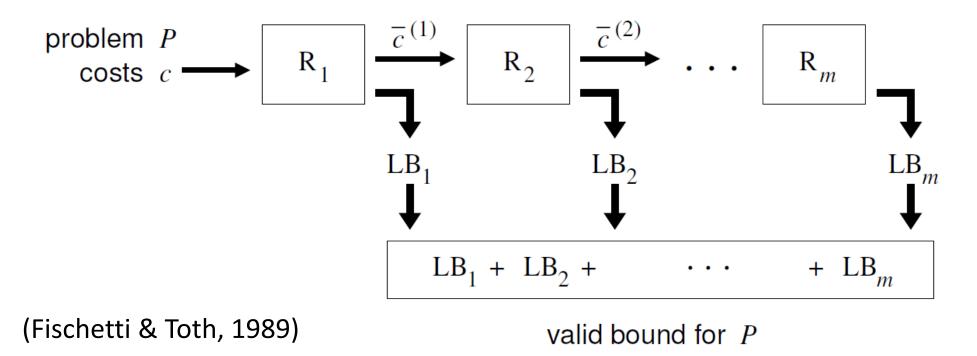
$$\delta_{\rm red,blue}^1$$
 = 2

$$\delta_{\text{red,blue}}^{1} = 2$$
 $\delta_{\text{blue,red}}^{1} = 4$
 $\delta_{\text{red,blue}}^{2} = 3$ $\delta_{\text{blue,red}}^{2} = 6$

$$\delta_{\text{blue.red}}^1 = 4$$

$$\delta_{\text{blue.red}}^2 = 6$$

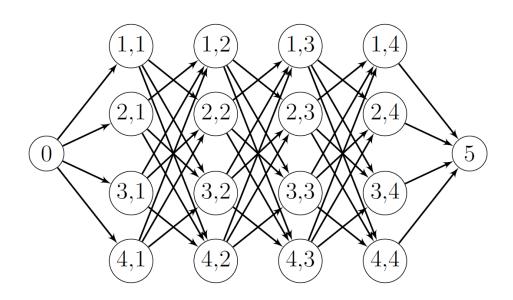
Additive Bounding



Add LP reduced costs to MDD relaxation

- Continuous LP relaxation 'discretized' through MDD
- Stronger bounds
- Improved cost-based filtering

MIP and LP relaxation



- Time-space network model (Picard & Queyranne, 1978)
- Variables

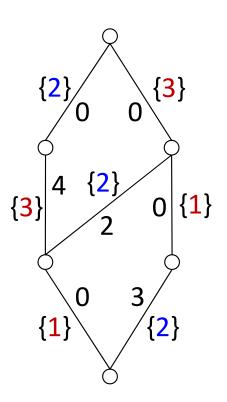
$$x_{i,j}^t = \left\{ \begin{array}{l} 1 \quad \text{if i is performed at t and followed by j} \\ 0 \quad \text{otherwise} \end{array} \right.$$

Constraints: flow conservation; perform each activity

Embedding reduced costs in MDD

- Approach
 - solve LP relaxation
 - in MDD, replace $\delta_{i,j}^t$ with $\overline{c}_{i,j}^t$

 Since MDD is relaxation, shortest path is valid bound



Experiments

- Time-dependent TSP benchmark
 - 38 instances from TSPLIB (14-107 jobs)

$$- \delta_{i,j}^t = (n-t)^* \delta_{i,j}$$

- Time limit: 30 minutes
- IBM ILOG CPLEX and CP Optimizer 12.4
- MDD added to CP Optimizer (Cire & v.H., 2013)
 - maximum width 512

Impact of additive bounding

Compare root node bound improvement

percentage improvement

5.96%

	LP	MDD	MDD+LP	w.r.t. LP	w.r.t. MDD
berlin52	112,350.0	49,056.0	119,694.0	6.54%	143.99%
dTSP50.0	10,465.7	5,537.0	10,646.0	1.72%	92.27%
kroA100	693,870.0	223,039.0	719,992.0	3.76%	222.81%
pr76	2,496,050.0	2,116,910.0	2,679,143.0	7.34%	26.56%

Average improvement (38 instances):

18

103.34%

Overall performance

	#Solved	Avg end gap*
(Picard & Queyrrane, 1978) (MIP)	6/38	33.37%
(Gouveia & Voss, 1995) (MIP)	6/38	31.64%
(Abeledo et al., 2013) (BPC**)	35/38	1.64%
Pure CP	0/38	45.02%
CP + MDD	7/38	7.42%
CP + MDD + Additive Bounding	12/38	6.49%

^{*} Average end gap w.r.t. overall best bound

^{**} Dedicated method; much longer time limit

Sequential Ordering Problem

	#Solved	Avg end gap
(Picard & Queyrrane, 1978) (MIP)	6/30	29.85%
(Gouveia & Voss, 1995) (MIP)	6/30	29.17%
Pure CP	5/30	25.68%
CP + MDD + Additive Bounding	10/30	21.22%

On average, additive MDD+LP bound improves

- LP root node bound by 51.41%
- MDD root node bound by 9.54%

Summary

- Hybrid optimization method for timedependent sequencing
 - CP framework
 - MDD relaxation for improved propagation
 - Additive bounding with LP for stronger bounds
 - Side constraints are easily added
- Experiments
 - Competitive generic approach