

Decision Diagrams for Discrete Optimization

Willem-Jan van Hoeve

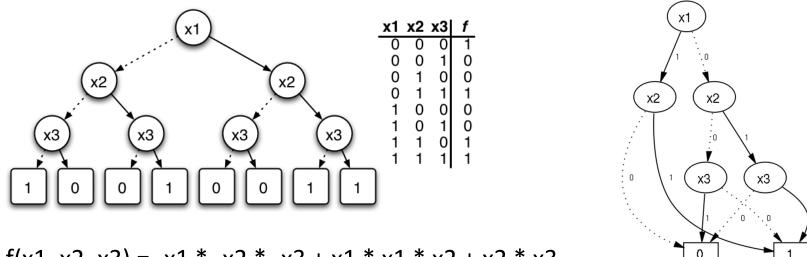
Tepper School of Business Carnegie Mellon University

based on joint work with David Bergman, Andre A. Cire, Sam Hoda, and John N. Hooker

Outline

- Motivation and background
 - multi-valued decision diagrams (MDDs)
- Constraint Programming with MDDs
- MDDs as Relaxations
- MDDs as Restrictions
- Conclusions

Decision Diagrams



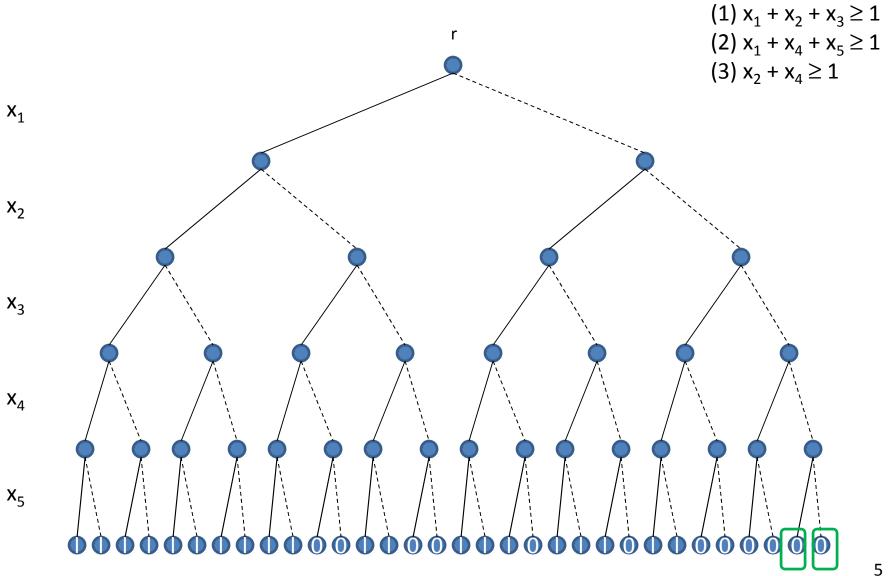
f(x1, x2, x3) = -x1 * -x2 * -x3 + x1 * x1 * x2 + x2 * x3

- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- Main operation: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

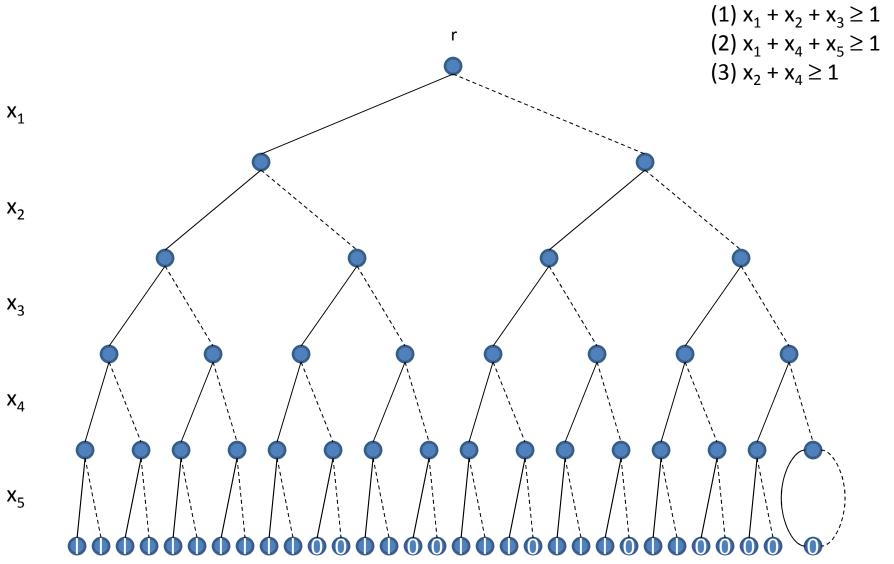
Brief background

- Original application areas: circuit design, verification
- Usually Reduced Ordered BDDs/MDDs are applied
 - fixed variable ordering
 - minimal exact representation
- Recent interest from optimization community
 - cut generation [Becker et al., 2005]
 - 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
 - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
- Interesting variant
 - approximate MDDs

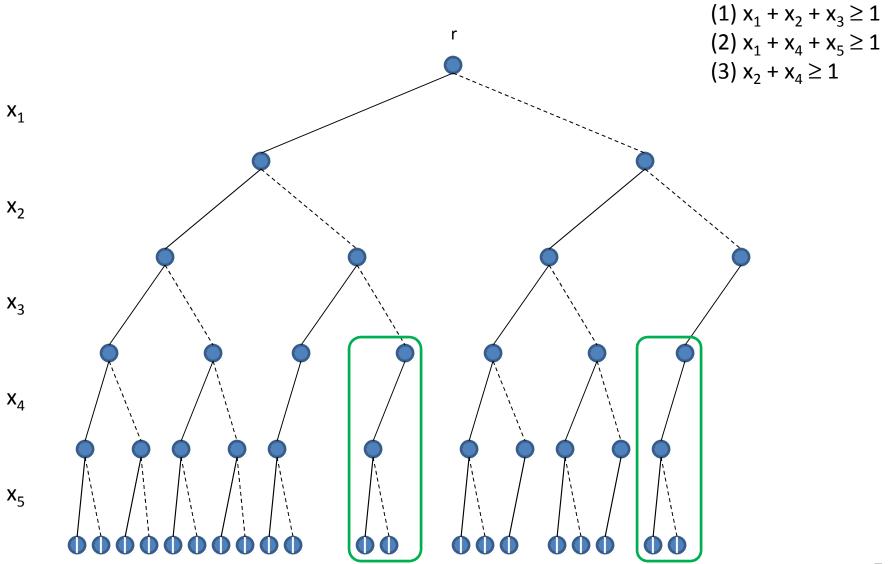
[H.R. Andersen, T. Hadzic, J.N. Hooker, & P. Tiedemann, CP 2007]



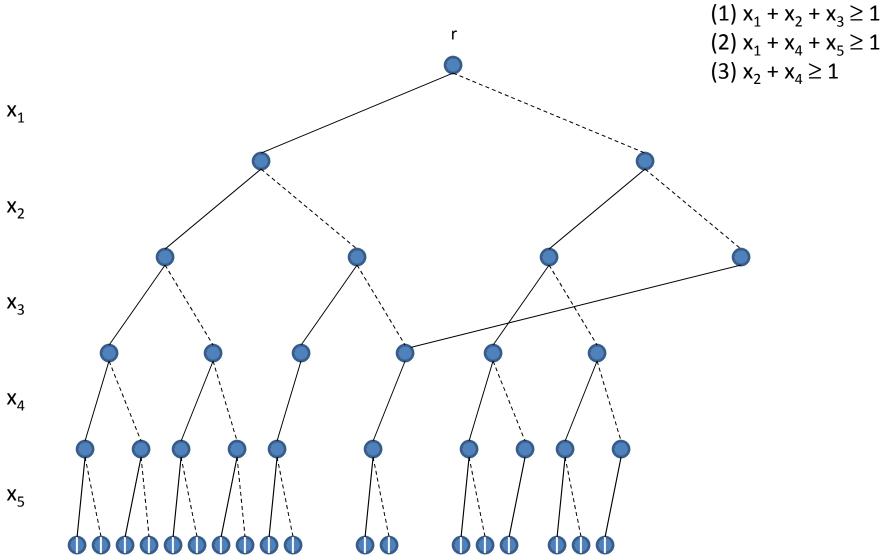
Carnegie Mellor



Carnegie Mellor

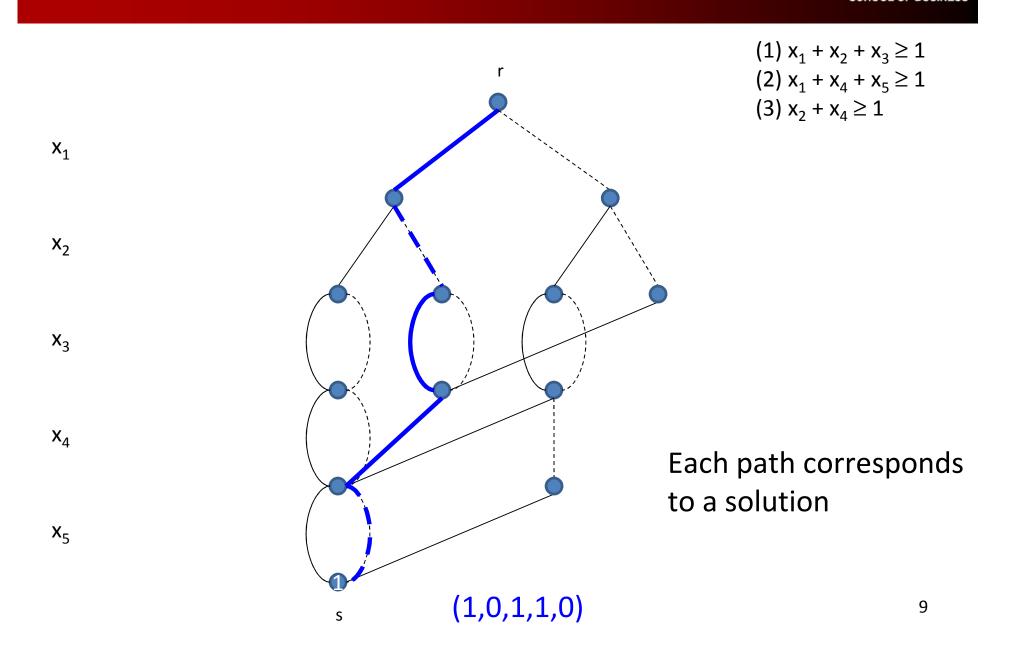


Carnegie Mellor



Carnegie Mellor

Carnegie Mello



- Exact MDDs can be of exponential size in general
- Can we limit the size of the MDD and still have a meaningful representation?
 - Yes, first proposed by Andersen et al. [2007] :
 Limit the *width* of the MDD (the maximum number of nodes on any layer)
- This talk: applications to CP and IP

MDDs for Constraint Programming

Hoda, v.H., and Hooker. A Systematic Approach to MDD-Based Constraint Programming. In *Proceedings of CP*. LNCS 6308, pp. 266-280. Springer, 2010.

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$x_1 > x_2$$

 $x_1 + x_2 = x_3$
alldifferent(x_1, x_2, x_3, x_4)

$$x_1^{} \in \{2\}, x_2^{} \in \{1\}, x_3^{} \in \{3\}, x_4^{} \in \{0\}$$

Drawback of domain propagation

Carnegie Mellon PEPPER SCHOOL OF BUSINESS

Observations:

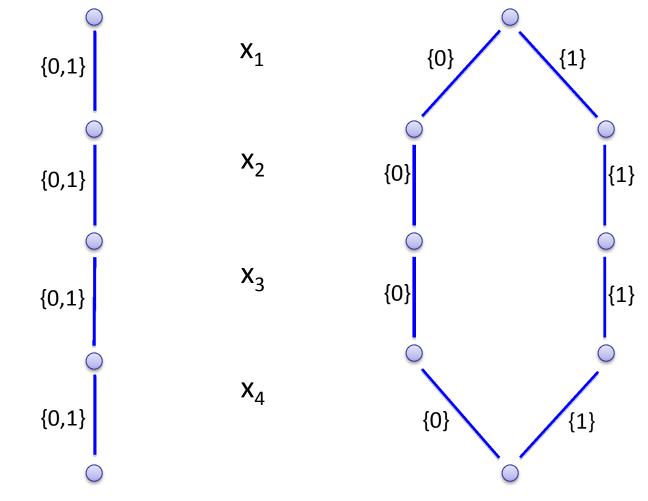
- Communication between constraints only via variable domains
- Information can only be expressed as a domain change
- Other (structural) information that may be learned by a constraint is lost: it must be projected onto variable domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)

This drawback can be addressed by communicating more expressive information, using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential solution space

Illustrative Example

 $AllEqual(x_1, x_2, x_3, x_4)$, all x_i binary



MDD representation, size 2

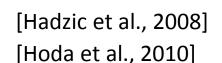
domain representation, size 2⁴

MDD-based constraint programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

- Linear equalities and inequalities
- Alldifferent constraints
- Element constraints
- Among constraints
- Sequential scheduling constraints [Hoda et al., 2010]
- Sequence constraints (combination of Amongs)
 [v.H., 2011]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]



[Andersen et al., 2007]

[Hoda et al., 2010]

[Hoda et al., 2010]

[Cire & v.H., 2011]

Case study: Among constraints

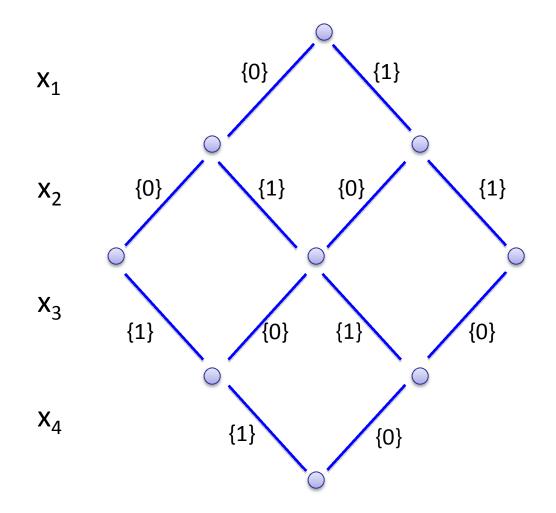
 Given a set of variables X, and a set of values S, a lower bound l and upper bound u,

Among(X, S, l, u) :=
$$l \leq \sum_{x \in X} (x \in S) \leq u$$

"among the variables in X, at least *l* and at most *u* take a value from the set *S*"

- Applications in, e.g., sequencing and scheduling
- WLOG assume here that X are binary and S = {1}

Example: MDD for Among



Exact MDD for *Among*({x₁,x₂,x₃,x₄},{1},2,2)

18

MDD Filtering for Among

Goal: Given an MDD and an *Among* constraint, remove *all* inconsistent edges from the MDD (establish "MDD-consistency")

Approach:

- Compute path lengths from the top node and from the bottom node
- Remove edges that are not on a path with lengths between lower and upper bound
- Complete (MDD-consistent) version
 - Maintain all path lengths; quadratic time
- Partial version (does not remove all inconsistent edges)
 - Maintain and check bounds (longest and shortest paths); linear time

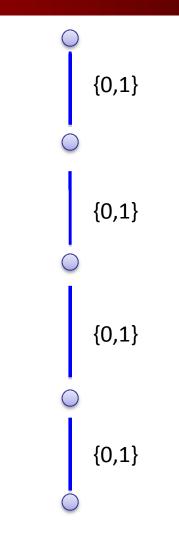
Node refinement for Among

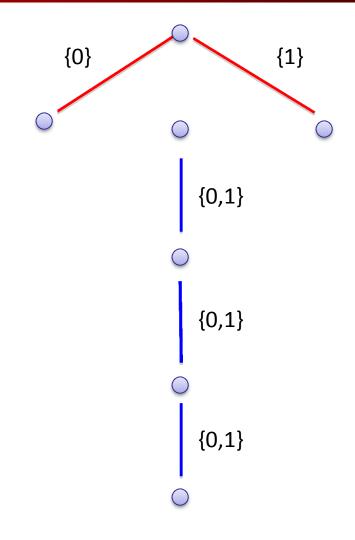
For each layer in MDD, we first apply edge filter, and then try to refine

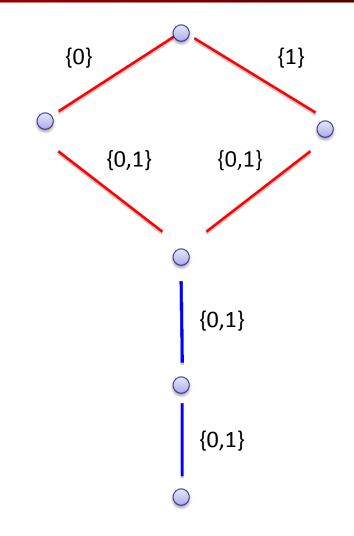
- consider incoming edges for each node
- split the node if there exist incoming edges that are not equivalent (w.r.t. path length)

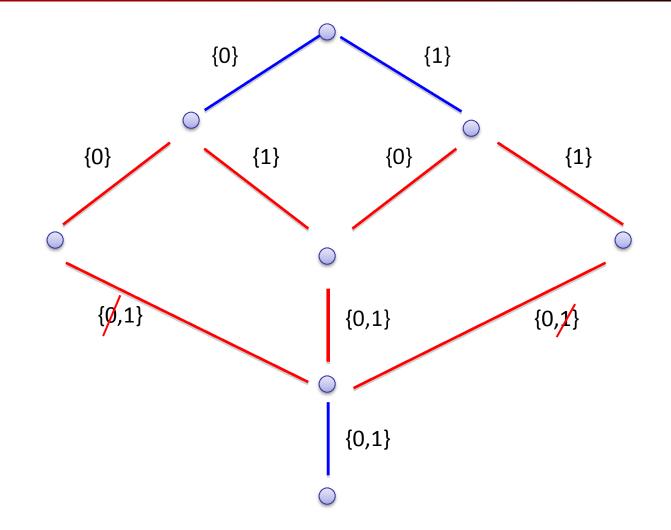
Example:

We will propagate Among({x₁,x₂,x₃,x₄},{1},2,2) through a BDD of maximum width 3





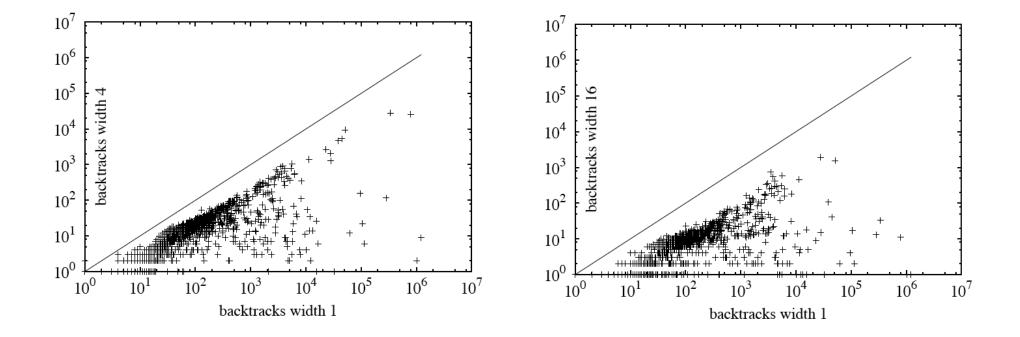




Experiments

- Multiple among constraints
 - 50 binary variables total
 - 5 variables per among constraint, indices chosen from normal distribution with uniform-random mean in [1..50] and stdev 2.5, modulo 50
 - Classes: 5 to 200 among constraints (step 5), 100 instances per class
- Nurse rostering instances (horizon *n* days)
 - Work 4-5 days per week
 - Max A days every B days
 - Min C days every D days
 - Three problem classes
- Compare width 1 (traditional domains) with increasing widths

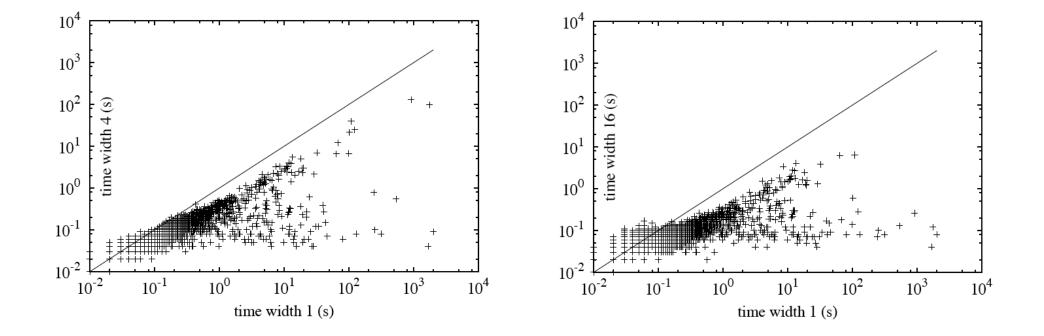
Multiple Amongs: Backtracks



width 1 vs 4

width 1 vs 16

Multiple Amongs: Running Time



width 1 vs 4

width 1 vs 16

Nurse rostering problems

		Width 1		Width 4		Width 32	
	Size	BT	CPU	BT	CPU	BT	CPU
Class 1	40	61,225	55.63	8,138	12.64	3	0.09
	80	175,175	442.29	5,025	44.63	11	0.72
Class 2	40	179,743	173.45	17,923	32.59	4	0.07
	80	179,743	459.01	8,747	80.62	2	0.32
Class 3	40	91,141	84.43	5,148	9.11	7	0.18
	80	882,640	2,391.01	33,379	235.17	55	3.27

Summary for MDD-based CP

- MDD provides substantial advantage over traditional domains for filtering multiple *Among* constraints
 - Strength of MDD can be controlled by the width
 - Wider MDDs yield greater speedups
 - Huge reduction in the amount of backtracking and solution time
- Intensive processing at search nodes can pay off when more structural information is communicated between constraints

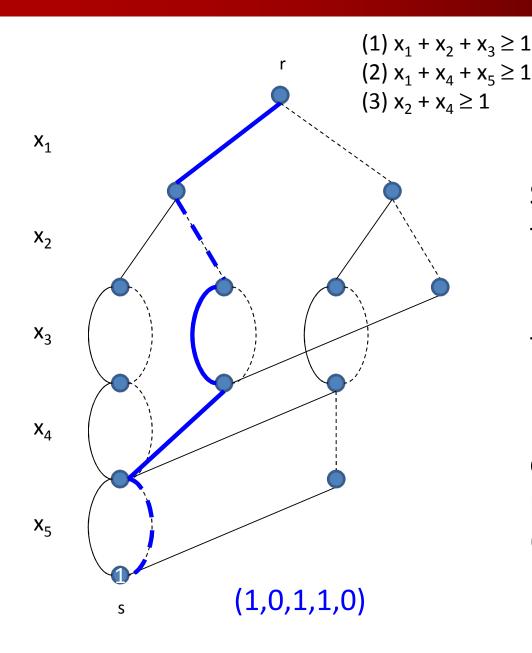
Relaxation MDDs

Bergman, v.H., and Hooker. Manipulating MDD Relaxations for Combinatorial Optimization. In *Proceedings of CPAIOR*, LNCS 6697, pp. 20-35. Springer, 2011.

Motivation and outline

- Limited width MDDs provide a (discrete) relaxation to the solution space
- Can we exploit MDDs to obtain bounds for discrete optimization problems?

Handling objective functions



Carnegie Mellon ECOPOET

Suppose we have an objective function of the form $\min \sum_{i} f_{i}(x_{i})$ for arbitrary functions f_i

In an exact MDD, the optimum can be found by a shortest r-s path computation (edge weights are $f_i(x_i)$)

Approach

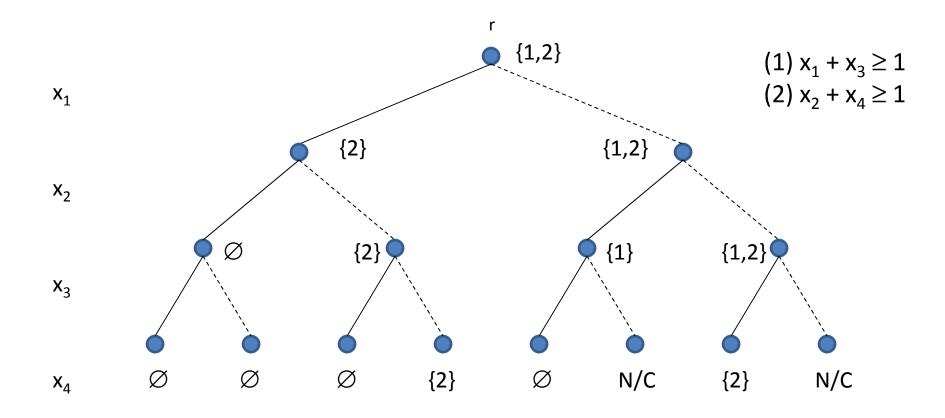
- Construct the relaxation MDD using a top-down compilation method
- Find shortest path \rightarrow provides bound B
- Extension to an exact method
 - 1. Isolate all paths of length B, and verify if any of these paths is feasible^{*}
 - 2. if not feasible, set B := B + 1 and go to 1
 - 3. otherwise, we found the optimal solution
- * Feasibility can be checked using MDD-based CP

Case Study: Set covering problem

- Given set S={1,...,n} and subsets C₁,...,C_m of S
- Find a subset X of S with minimum cardinality such that $|C_i \cap X| \ge 1$ for all i=1,...,m

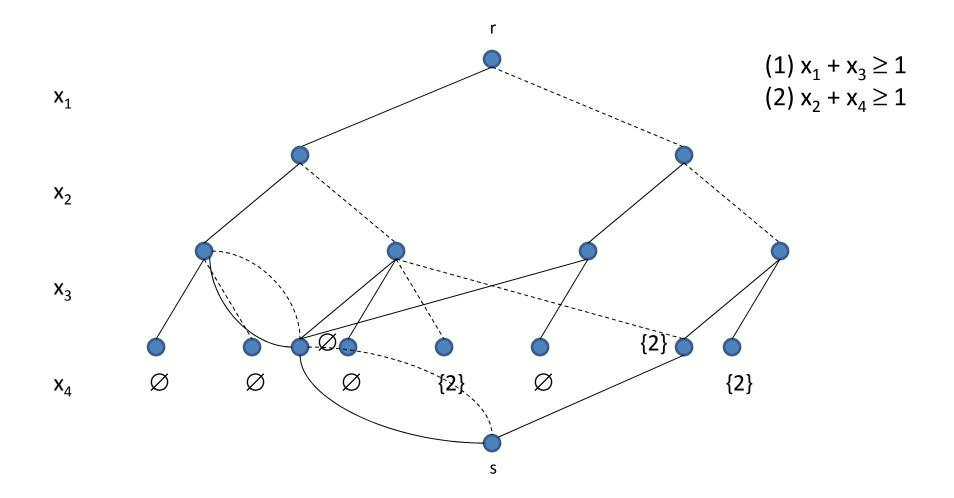
$$\begin{array}{ll} \mbox{min} & \sum_j x_j \\ \mbox{s.t.} & \sum_{j \mbox{ in } Ci} x_j \geq 1 & \mbox{ for all } i=1,...,m \\ & x_1,...,x_n \mbox{ binary} \end{array}$$

Exact top-down compilation

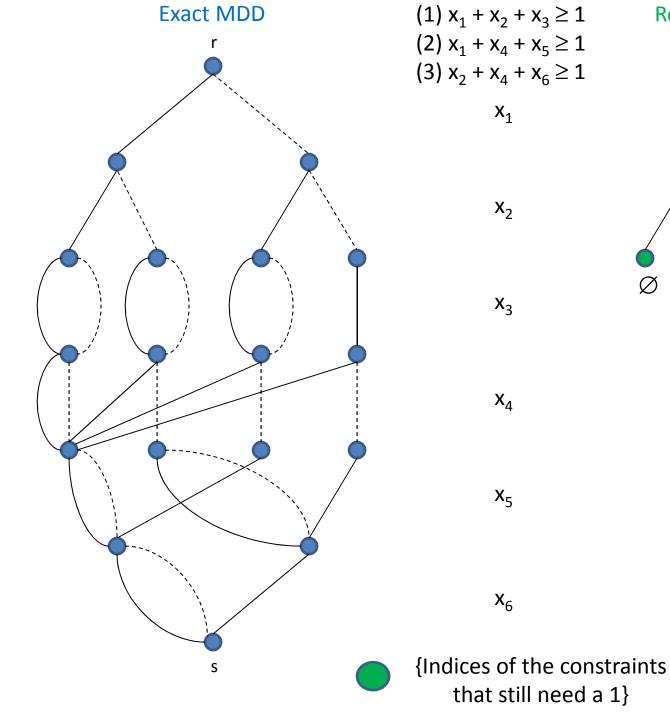


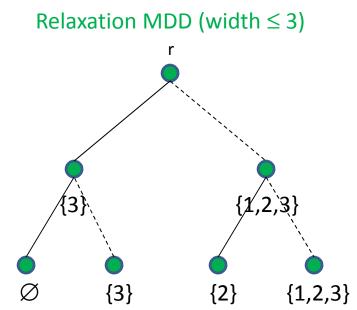
Indices of the constraints that still need a 1

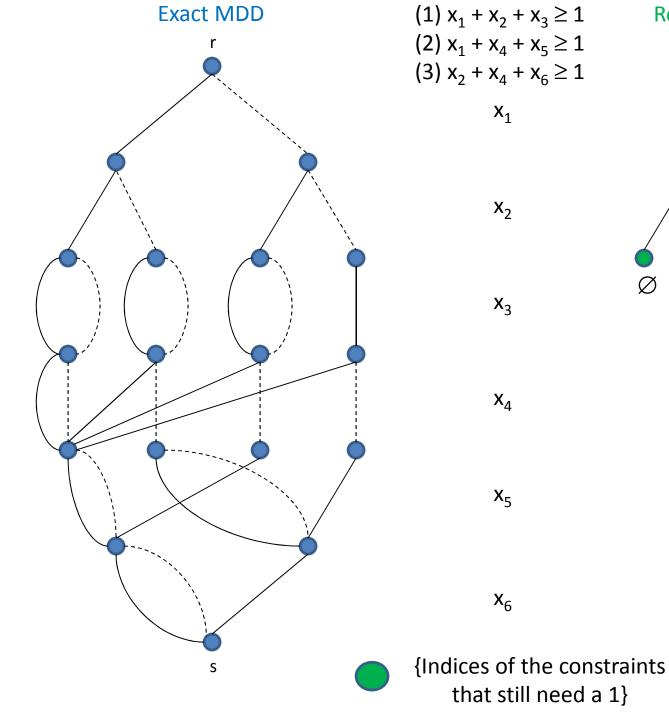
Equivalence test for set covering

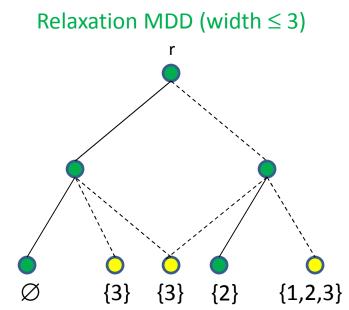


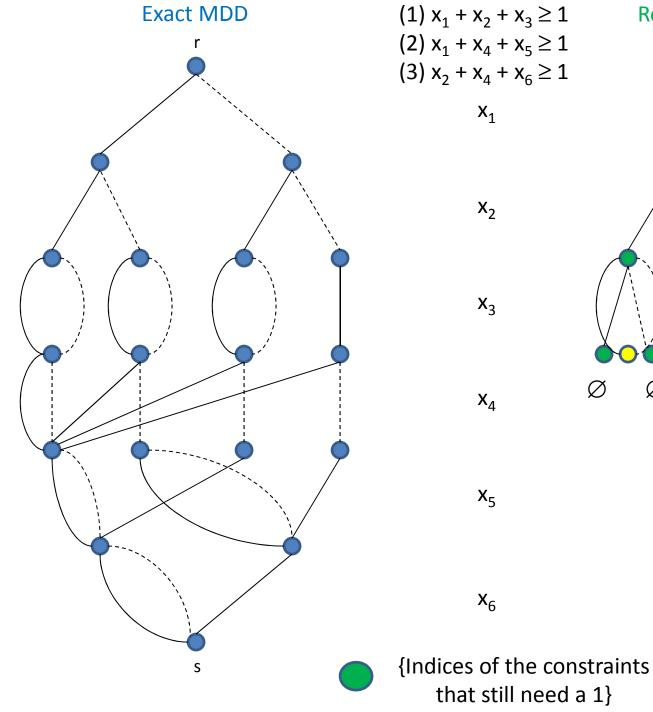
Relaxation MDD: merge non-equivalent nodes when the given width is exceeded

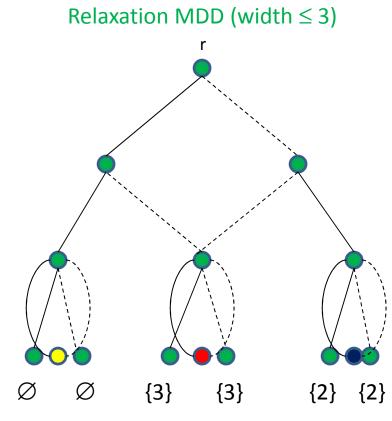


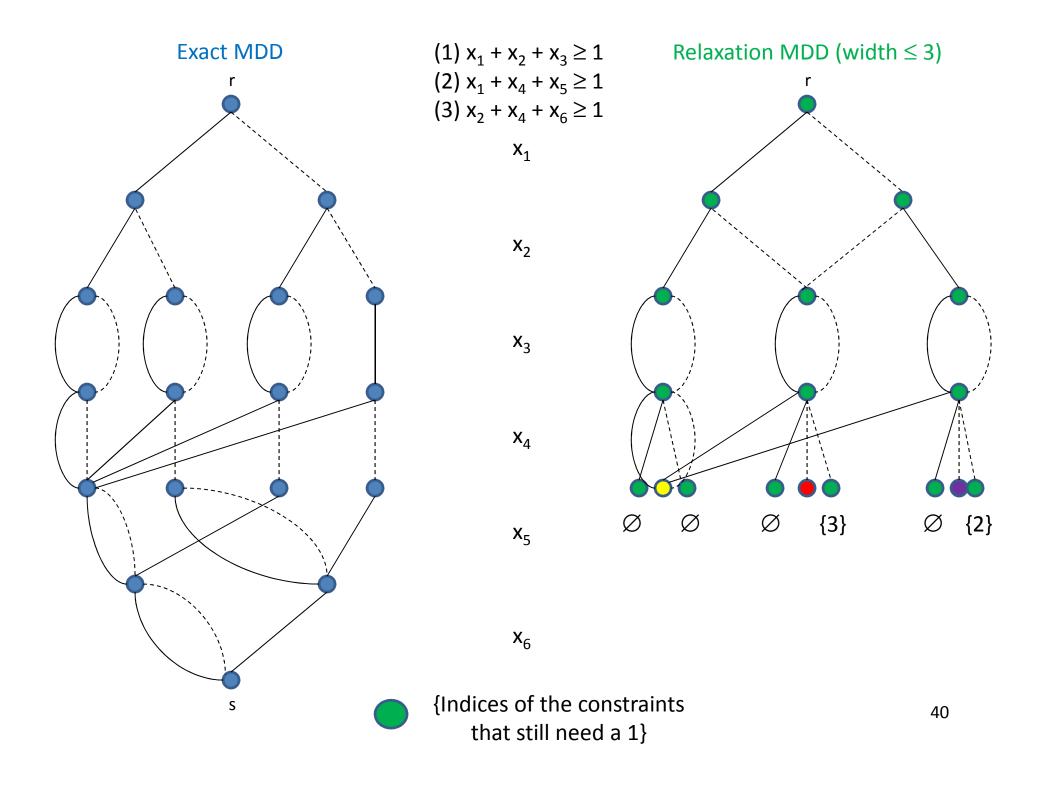


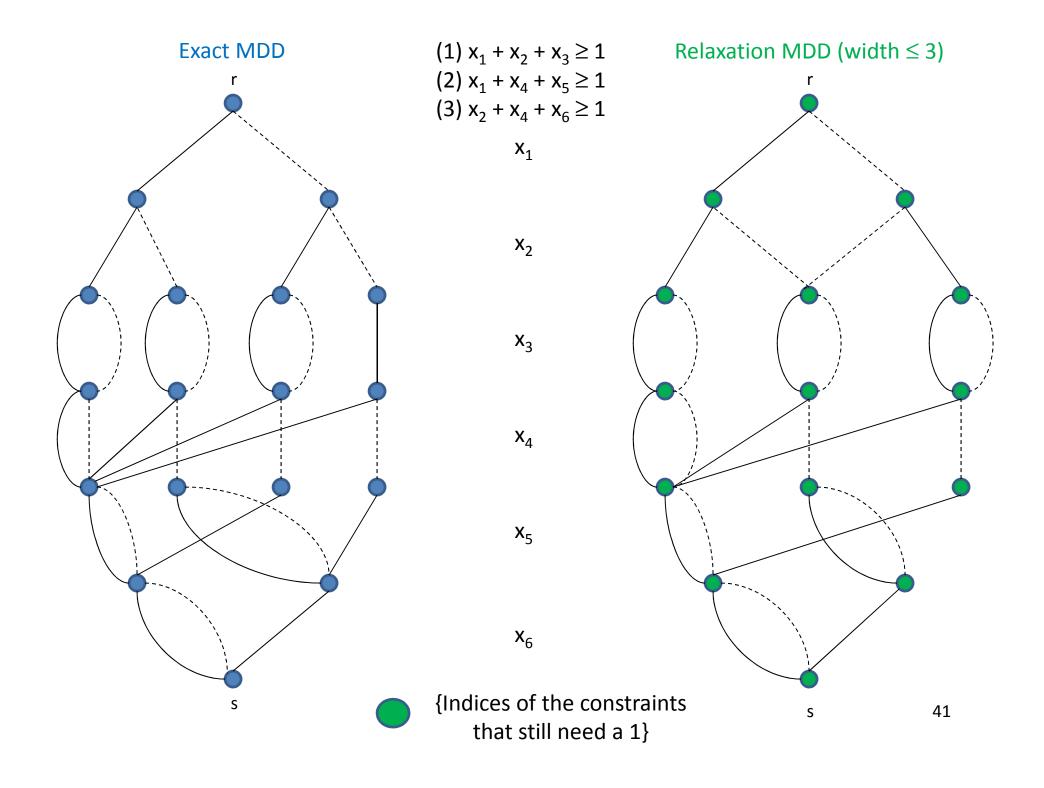


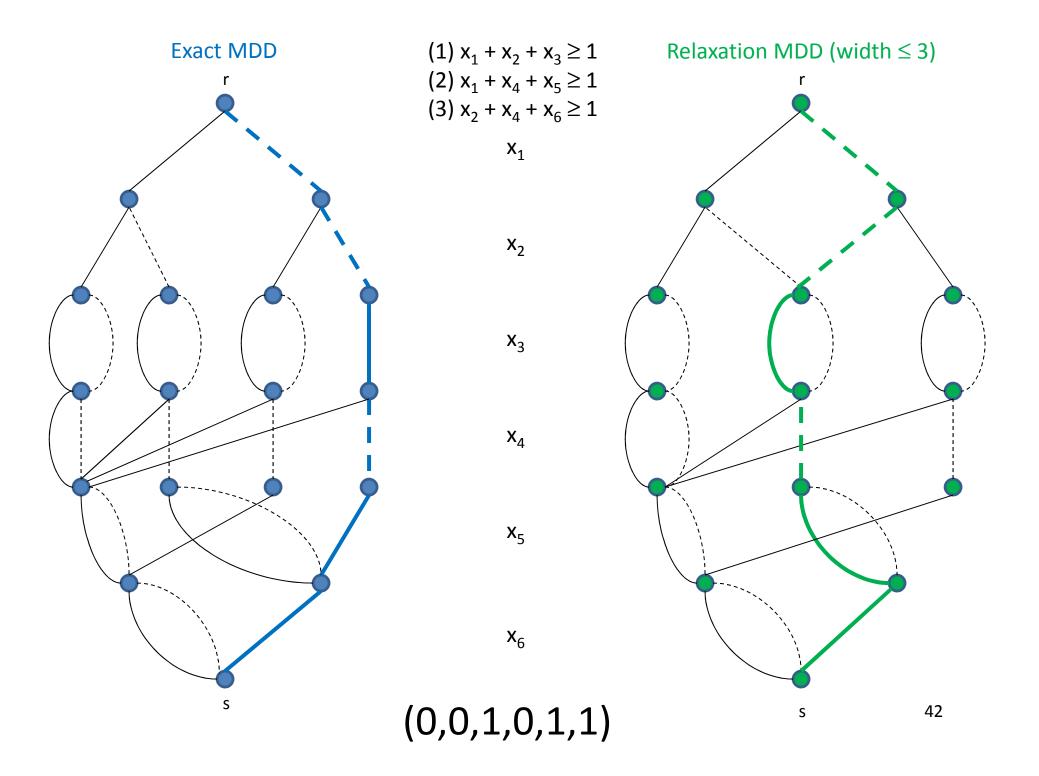


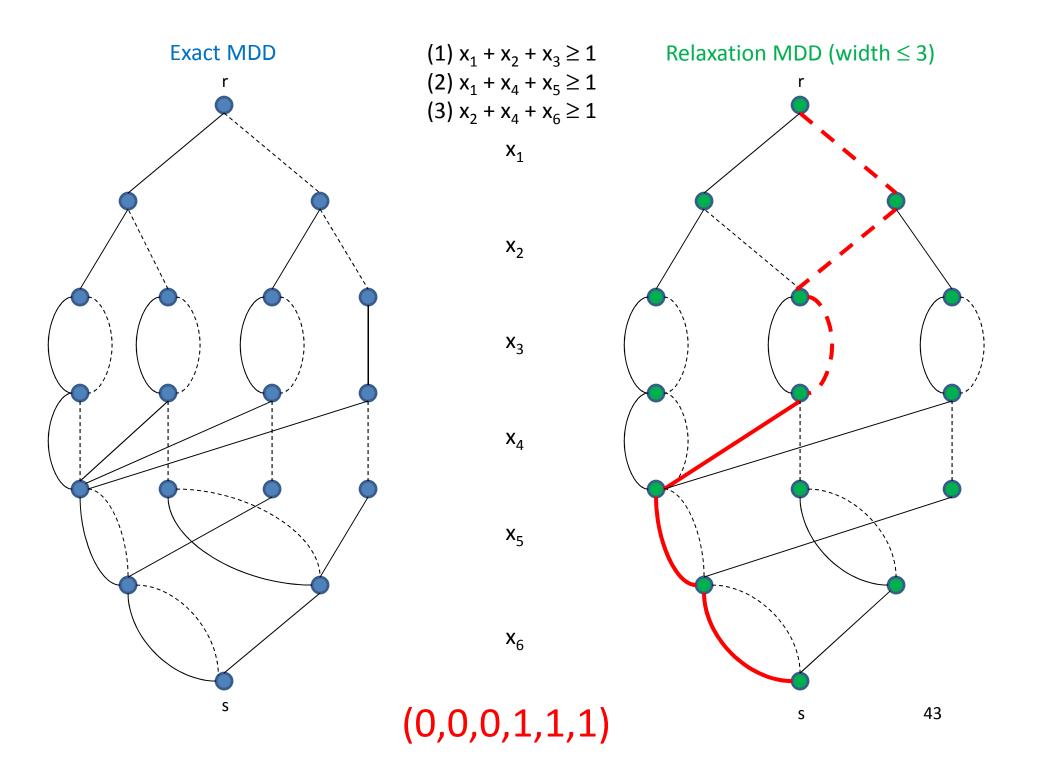


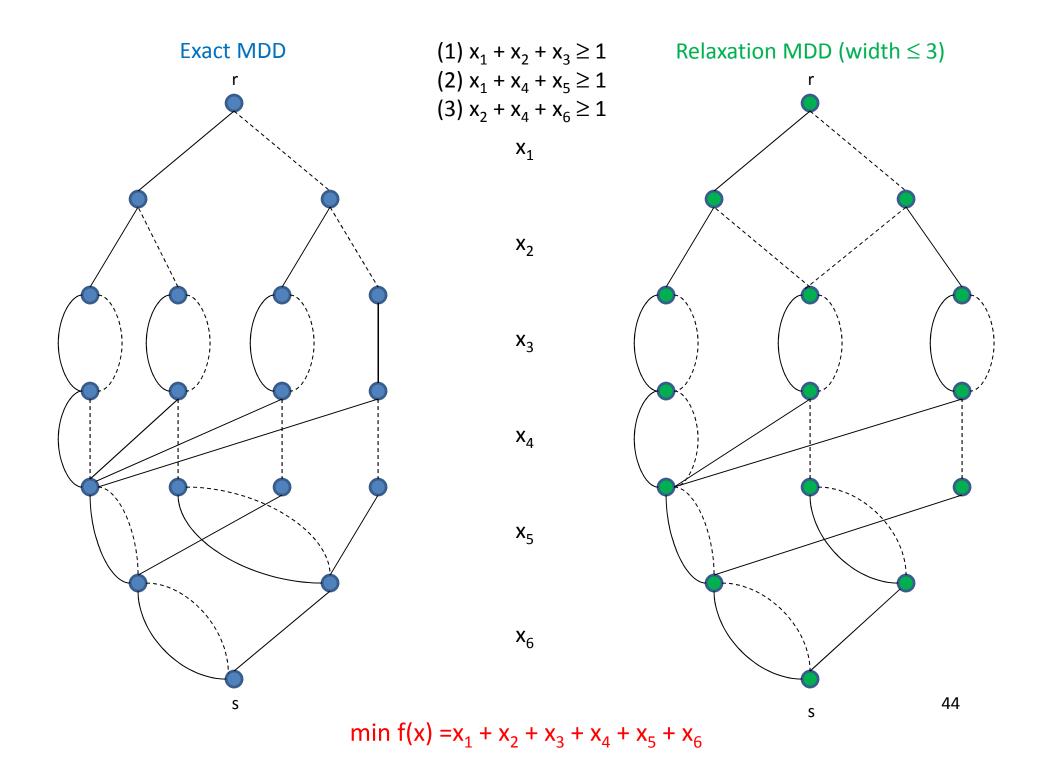


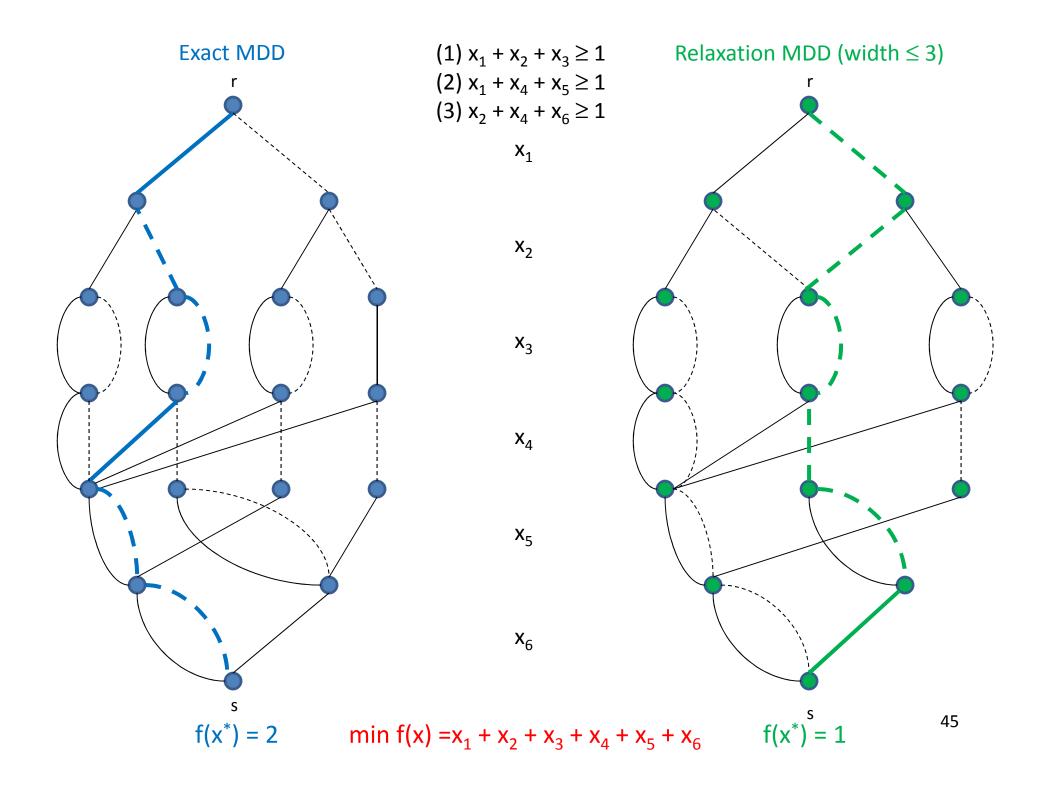












Tightening the Lower Bound

- Value extraction method
 - Given: an MDD relaxation, M
 - Given: a valid lower bound, v
 - Extract all paths in M that correspond to solutions with objective function value equal to v in the form of another MDD M |_{z=v}
- Creating $M|_{z=v}$ can be done efficiently
- Apply MDD-based CP to $M|_{z=v}$ in order to either
 - Increase v to v+1 (if no solution exists)
 - Find a feasible (and optimal) solution

Experimental Results

- Investigate whether relaxation MDDs are able to capture and exploit problem structure
 - We consider structured set covering problems
- Purest structure: all constraints are defined on consecutive variables
 - TU constraint matrix; easy for IP
 - exact MDD has bounded width; also easy for MDD

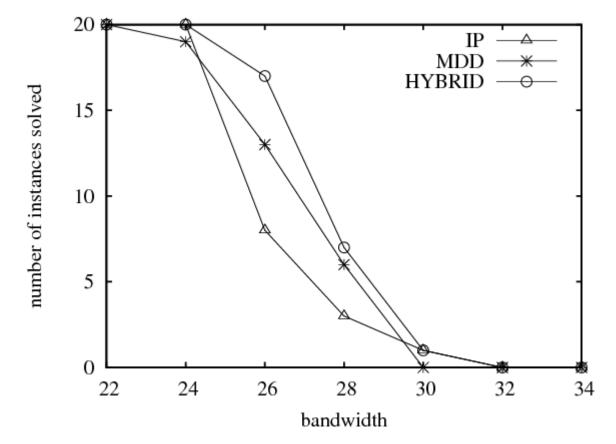
Instance Generation

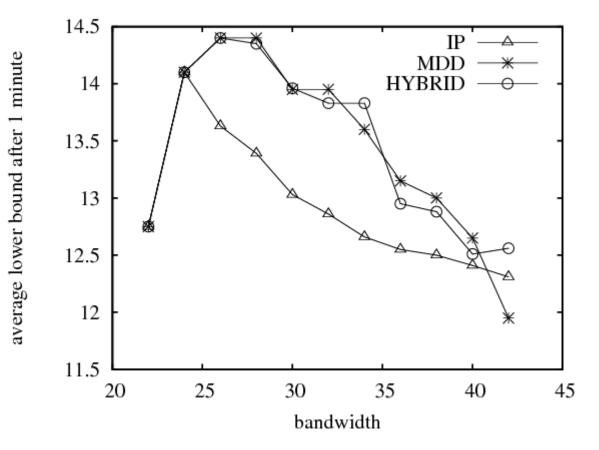
- We generated random instances
 - Fix number of variables per constraint, k
 - Vary the bandwidth, b_w
 - Randomly assign a 0 to $b_w k$ ones in the bandwidth

 Destroys both the TUM property for IP and the bounded width property for MDD

Computational Results

- 250 variables, 20 instances, k = 20, b_w∈ {22,...,44}
- Compare 3 different solution methods
 - Pure-IP (CPLEX)
 - Pure-MDD (Value Extraction)
 - Hybrid (1/10 solution time given to pure-MDD and then pass bound to CPLEX)

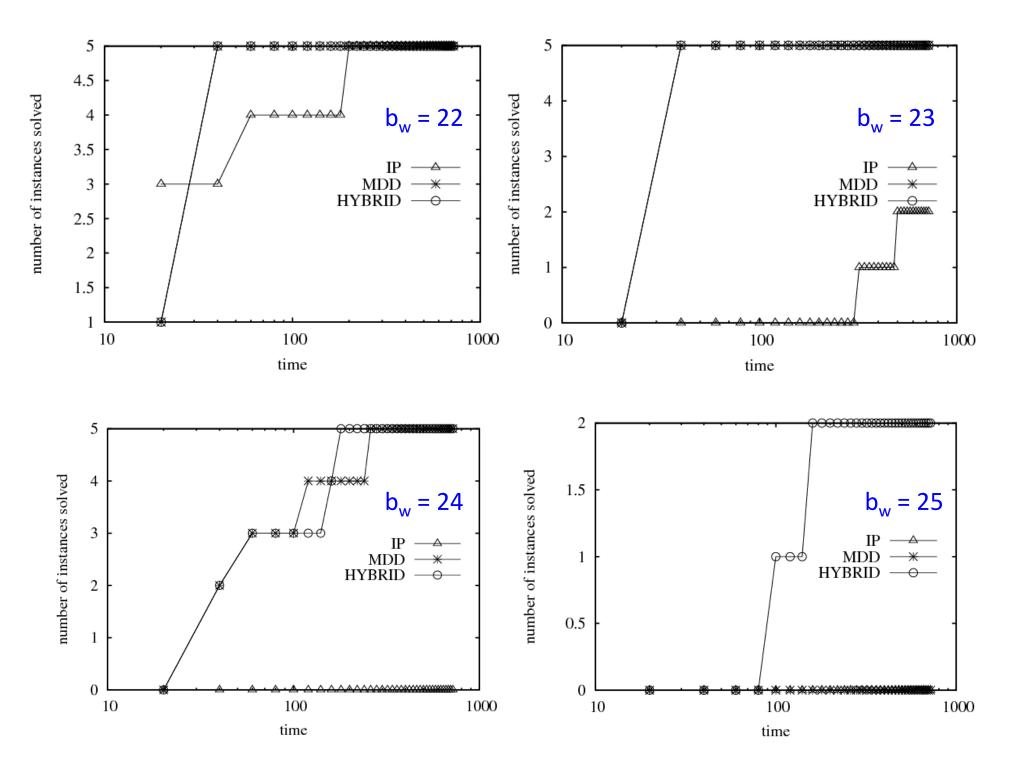




Carnegie Mellon

SCHOOL OF BUSINESS

• 500 variables, 5 instances, k = 20, b_w∈ {22,...,25}



Restriction MDDs

Definition

- Restriction MDDs represent a subset of feasible solutions
 - we require that every r-s path corresponds to a feasible solution
 - but not all solutions need to be represented
- Goal: Use restriction MDDs as a heuristic to find good feasible solutions

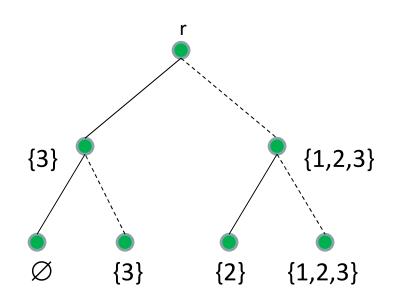
Using an exact top-down compilation method, we can create a limited-width restriction MDD by

- 1. merging nodes, or
- 2. deleting nodes

while ensuring that no solution is lost

Node merging by example

Restriction MDD (width \leq 3)

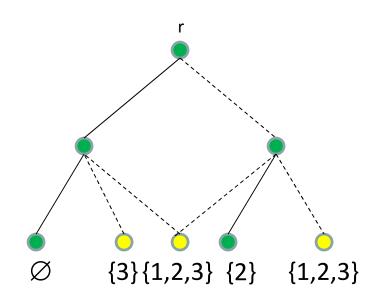


(1) $x_1 + x_2 + x_3 \ge 1$ (2) $x_1 + x_4 + x_5 \ge 1$ (3) $x_2 + x_4 + x_6 \ge 1$

Indices of the constraints that still need a 1}

Node merging by example

Restriction MDD (width \leq 3)



(1) $x_1 + x_2 + x_3 \ge 1$ (2) $x_1 + x_4 + x_5 \ge 1$ (3) $x_2 + x_4 + x_6 \ge 1$

Indices of the constraints that still need a 1}

Node merging heuristics

• Random

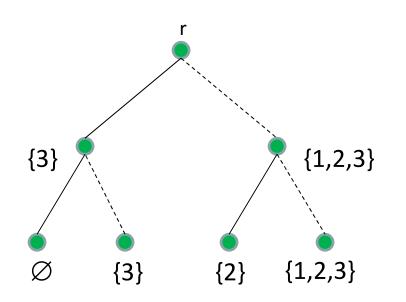
- select two nodes $\{u_1, u_2\}$ uniformly at random
- Objective-driven
 - select two nodes $\{u_1, u_2\}$ such that

 $f(u_1), f(u_2) \ge f(v)$ for all nodes $v \ne u_1, u_2$ in the layer

- Similarity
 - select two nodes {u₁, u₂} that are 'closest'
 - problem dependent (or based on semantics)
 - for our set covering example: symmetric difference

Node deletion by example

Restriction MDD (width \leq 3)



(1) $x_1 + x_2 + x_3 \ge 1$ (2) $x_1 + x_4 + x_5 \ge 1$ (3) $x_2 + x_4 + x_6 \ge 1$

Indices of the constraints that still need a 1}

Node deletion heuristics

- Random
 - select node u uniformly at random
- Objective-driven
 - select node u such that

 $f(u) \ge f(v)$ for all nodes $v \ne u$ in the layer

- Information-driven
 - for set covering: select node u such that
 I(u) ≥ I(v) for all nodes v ≠ u in the layer
 where I(u) is the set of constraints that still need a 1

Preliminary Experimental Results

• Goals

- obtain insight in the relative strength of the different restriction heuristics
- compare to well-known greedy heuristic [Chvátal, 1979]
- Randomly generated set covering instances
 - n variables and m constraints
 - n, m \in {25, 50}, with 25 instances per setting
 - unit cost instances and random cost instances
 (costs are uniform-randomly drawn from {1,...,20}
- MDD widths: 10, 25, 50, 100

Unit costs

				Merge Delete				
n	m width		rnd obj s		simil rnd		l obj	info
25	25	10	1.47	1.07	1.23	1.36	5 1.04	1.29
		25	1.32	1.03	1.16	1.21	1.01	1.17
		50	1.23	1.00	1.09	1.17	1.00	1.12
		100	1.14	1.00	1.08	1.10) 1.00	1.06
25	50	10	1.41	1.07	1.19	1.34	1.06	1.30
		25	1.33	1.05	1.17	1.26	5 1.04	1.26
		50	1.26	1.04	1.15	1.18	3 1.03	1.22
		100	1.23	1.02	1.16	1.15	5 1.01	1.51
50	25	10	1.50	1.10	1.29	1.42	1.05	1.29
		25	1.38	1.04	1.19	1.29	1.03	1.21
		50	1.29	1.02	1.19	1.24	1.01	1.16
		100	1.21	1.01	1.15	1.13	3 1.00	1.10
50	50	10	1.67	1.13	1.27	1.49	1.10	1.48
		25	1.60	1.08	1.23	1.43	3 1.07	1.39
		50	1.55	1.05	1.22	1.38	3 1.06	1.33
		100	1.48	1.04	1.20	1.33	3 1.04	1.28

averages over 25 instances

compilation time (obj-based) is around 0.05s

Random costs

			Merge			Delete			
n	m width		rnd	obj	simil	rnd	obj	info	
25	25	10	1.66	1.12	1.36	1.65	1.10	1.53	
		25	1.48	1.04	1.20	1.37	1.04	1.37	
		50	1.31	1.01	1.14	1.23	1.01	1.26	
		100	1.17	1.00	1.08	1.11	1.00	1.16	
25	50	10	1.79	1.14	1.41	1.80	1.13	1.64	
		25	1.60	1.07	1.33	1.51	1.07	1.52	
		50	1.57	1.04	1.29	1.41	1.04	1.42	
		100	1.42	1.02	1.17	1.36	1.02	1.34	
50	25	10	1.76	1.09	1.46	1.83	1.09	1.51	
		25	1.57	1.02	1.35	1.63	1.02	1.38	
		50	1.46	1.01	1.28	1.46	1.01	1.26	
		100	1.30	1.00	1.20	1.27	1.00	1.15	
50	50	10	2.00	1.25	1.55	1.94	1.21	1.87	
		25	1.87	1.13	1.42	1.74	1.13	1.72	
		50	1.83	1.09	1.38	1.68	1.09	1.63	
		100	1.74	1.05	1.30	1.60	1.05	1.52	

averages over 25 instances

compilation time (obj-based) is around 0.05s

MDDs versus greedy heuristic

				Unit			Random			
n	m	width	MDD+	=	MDD-	MDD+	=	MDD-		
25	25	5	20	3	2	8	2	15		
		25	21	4	0	13	8	4		
		100	21	4	0	15	10	0		
25	50	5	23	2	0	6	3	16		
		25	24	1	0	11	8	6		
		100	24	1	0	19	4	2		
50	25	5	15	5	5	8	1	16		
		25	18	6	1	20	2	3		
		100	21	4	0	23	2	0		
50	50	5	16	8	1	4	0	21		
		25	21	4	0	9	1	15		
		100	24	1	0	18	1	6		

Conclusions

- Limited-width MDDs can be a very useful tool for discrete optimization
 - The maximum width provides a natural trade-off between computational efficiency and strength
 - Powerful inference mechanism for constraint propagation
 - Generic discrete relaxation and restriction method for MIP-style problems
- Many open questions
 - MDD variable ordering, interaction with search, formal characterizations, ...