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Summary

What can MDDs do for discrete optimization?

• Compact representation of all solutions to a problem

• Limit on size gives approximation

• Control strength of approximation by size limit

MDDs for Constraint Programming and Scheduling

• MDD propagation natural generalization of domain propagation

• Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

• MDDs provide discrete relaxations

• Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated 

methods, theory, applications,…
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Decision Diagrams

• Binary Decision Diagrams were introduced to compactly 

represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]

• BDD: merge isomorphic subtrees of a given binary decision tree

• MDDs are multi-valued decision diagrams (i.e., for discrete 

variables)
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Brief background

• Original application areas: circuit design, verification

• Usually reduced ordered BDDs/MDDs are applied

– fixed variable ordering

– minimal exact representation

• Recent interest from optimization community

– cut generation [Becker et al., 2005]

– 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]

– post-optimality analysis [Hadzic & Hooker, 2006, 2007]

– set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]

• Interesting variant

– approximate MDDs 

[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization

7

l lllll l l l lll l llll l l l

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r 

x1

x2

x3

x4

x5

: 0

: 1



Exact MDDs for discrete optimization
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Exact MDDs for discrete optimization
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Approximate MDDs

• Exact MDDs can be of exponential size in 

general

• Can we limit the size of the MDD and still have 

a meaningful representation?

– Yes, first proposed by Andersen et al. [2007] :

Limit the width of the MDD (the maximum number 

of nodes on any layer)

• Approximate MDDs: main focus of this talk
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Suppressed Decision Diagrams

• Zero-suppressed BDD (0-BDD or ZDD)

– arc skips layers for which variables will take value 0

• One-suppressed BDD (1-BDD)

– arc skips layers for which variables will take value 1

• Zero/one-suppressed BDD (0/1-BDD)

– arc skips layers for which variables will take value 0/1

14
standard BDD 0-BDD

• Similarly compressed 

MDDs can be defined

• Will not be discussed in 

detail, but methodology 

can be extended



MDDs for Constraint Programming
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Motivation

Constraint Programming applies 

• systematic search and 

• inference techniques 

to solve discrete optimization problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable domains

• Propagating the updated domains to other constraints

x1 < x2 

x1 ∈ {1,2}, x2 ∈ {1,2,3}, x3 ∈ {2,3}

alldifferent(x1,x2,x3)

x2 ∈ {2,3}

x1 ∈ {1}
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Illustrative Example

AllEqual(x1, x2,…, xn),  all xi binary

x2

xn-1

xn

x1
{0,1}

{0,1}

domain representation, size 2n

{0,1}

{0,1}

x1 + x2 + … + xn ≥ n/2

{1}

{0}

{0}

{0}

{0}

{1}

{1}

{1}

MDD representation, size 2
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Drawback of domain propagation

• All structural relationships among variables are 

projected onto the domains

• Potential solution space implicitly defined by Cartesian 

product of variable domains (very coarse relaxation)

We can communicate more information between 

constraint using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential 

solution space

• Limited width defines relaxed MDD

• Strength is controlled by the imposed width
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MDD-based Constraint Programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those 

that do not participate in any solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD



Characterization of Propagation

Domain consistency generalizes naturally to MDDs:

• Let C(X) be a constraint on variables X and let M be an 

MDD on X

• Constraint C is MDD consistent if for each arc in M, 

there is at least one path in M that represents a 

solution to C

Equivalent to domain consistency for MDD of width 1
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Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008] 

[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010]

[Cire & v.H., 2011, 2013]

• Sequence constraints (combination of Amongs)
[v.H., 2011]

• Generic re-application of existing domain filtering 

algorithm for any constraint type [Hoda et al., 2010]
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Constraint Representation in MDDs

• For a given constraint type we maintain specific 

‘state information’ at each node in the MDD

• Computed from incoming arcs (both from top and 

from bottom)

• State information is basis for MDD filtering and for 

MDD refinement

22
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First example: Among constraints

� Given a set of variables X, and a set of values S, a 
lower bound l and upper bound u,

Among(X, S, l, u) :=   l ≤ ∑x∈X ( x ∈ S ) ≤ u

“among the variables in X, at least l and at most u  
take a value from the set S”

� Applications in, e.g., sequencing and scheduling

� WLOG assume here that X are binary and S = {1}
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Example MDD for Among

Exact MDD for Among({x1,x2,x3,x4},{1},2,2)

x2

x3

x4 {0}

{1} {0}

{0}{0}

{0}

{1}

{1}

{1} {1}

{1}

{0}

x1

State information:

path length from top 

and from bottom
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MDD Filtering for Among

Goal: Given an MDD and an Among constraint, remove all

inconsistent edges from the MDD

(establish MDD-consistency) [Hoda et al., CP 2010]

Approach:

• Compute path lengths from the root and from the sink to each 

node in the MDD

• Remove edges that are not on a path with                             

length between lower and upper bound

• Complete (MDD-consistent) version

– Maintain all path lengths; quadratic time

• Partial version (does not remove all inconsistent edges)

– Maintain and check bounds (longest and shortest paths); linear time
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Node refinement for Among

For each layer in MDD, we first apply edge filter, and 

then try to refine

� consider incoming edges for each node

� split the node if there exist incoming edges that are 

not equivalent (w.r.t. path length)

� in other words, need to identify equivalence classes

Example:

� We will propagate Among({x1,x2,x3,x4},{1},2,2) through 

a BDD of maximum width 3



27Among({x1,x2,x3,x4},{1},2,2)

Example

{0,1}

{0,1}

{0,1}

{0,1}
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{0}

{0,1}

{0,1}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)
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{0}

{0,1}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)

{0,1}{0,1}
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{0}

{0,1}

{1}

Example

Among({x1,x2,x3,x4},{1},2,2)

{0}{1}{0} {1}

{0,1}{0,1} {0,1}
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Experiments

• Multiple among constraints

– 50 binary variables total

– 5 variables per among constraint, indices chosen from normal 

distribution with uniform-random mean in [1..50] and stdev 2.5, 

modulo 50 (i.e., somewhat consecutive)

– Classes: 5 to 200 among constraints (step 5), 100 instances per class

• Nurse rostering instances (horizon n days)

– Work 4-5 days per week

– Max A days every B days

– Min C days every D days

– Three problem classes

� Compare width 1 (traditional domains) with increasing widths
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width 1 vs 4 width 1 vs 16

Multiple Amongs: Backtracks
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width 1 vs 4 width 1 vs 16

Multiple Amongs: Running Time
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Nurse rostering problems

Width 1 Width 4 Width 32

Size BT CPU BT CPU BT CPU

Class 1 40 61,225 55.63 8,138 12.64 3 0.09

80 175,175 442.29 5,025 44.63 11 0.72

Class 2 40 179,743 173.45 17,923 32.59 4 0.07

80 179,743 459.01 8,747 80.62 2 0.32

Class 3 40 91,141 84.43 5,148 9.11 7 0.18

80 882,640 2,391.01 33,379 235.17 55 3.27



Sequence Constraint

Employee must work at most 7 days every 9 consecutive days

35

sun mon tue wed thu fri sat sun mon tue wed thu

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 ≤ x1+x2+ ... +x9 ≤ 7

0 ≤ x2+x3+ ... +x10 ≤ 7

0 ≤ x3+x4+ ... +x11 ≤ 7

0 ≤ x4+x5+ ... +x12 ≤ 7

=: Sequence([x1,x2,...,x12], q=9, S={1}, l=0, u=7)

Sequence(X, q, S, l, u) :=        ∧ l ≤ ∑x∈X’ ( x ∈ S ) ≤ u
|X’|=q

Among(X, S, l, u) 



MDD Representation for Sequence

Exact MDD for Sequence(X, q=3, S={1}, l=1, u=2) 36

• Equivalent to the DFA 
representation of 
Sequence for domain 
propagation             

[v.H. et al., 2006, 2009]

• Size O(n2q)
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MDD Filtering for Sequence

Goal: Given an arbitrary MDD and a Sequence constraint, remove 

all inconsistent edges from the MDD  (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for Sequence on an 

arbitrary MDD is NP-hard

(even if the MDD order follows the sequence of variables X)

Proof: Reduction from 3-SAT

Next goal: Develop a partial filtering algorithm, that does not 

necessarily achieve MDD consistency



Hardness Proof

Theorem: Establishing MDD consistency for Sequence on 

an arbitrary MDD is NP-hard

Proof structure:

• Given 3-SAT problem (NP-complete)

• We will construct a polynomial-size MDD such that a particular 

Sequence constraint will have a solution in the MDD if and only 

if the 3-SAT instance is satisfiable

• Example 3-SAT problem
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Single clause representation
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Each path from root to terminal 

corresponds to a satisfying 

assignment for these clauses



Group clauses together

• Literal xj in clause ci

represented by variable yij

• MDD size O(6(2mn+1))

• How to ensure that a variable 

takes the same value in each 

clause?
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Impose Sequence Constraint

Sequence(Y, q=2n, S={1}, l=n, u=n)

41

• Start from a positive literal: sub-
sequence always contains n times 
the value 1 (namely, for each 
variable it contains both literals)

• Start from a negative literal: the 
corresponding positive literal in the 
next clause must take the opposite 
value (all other variables sum up to  
n-1)

• Therefore, variables take the same 
value in each clause

• Solution to Sequence in this MDD is 
equivalent to 3-SAT solution



Partial filter from decomposition

• Sequence(X, q, S, l, u) with X = x1, x2, …, xn

• Introduce a ‘cumulative’ variable yi representing the sum of the 

first i variables in X

y0 = 0

yi = yi-1 + (xi∈S) for i=1..n

• Then the Among constraint on [xi+1,…, xi+q] is equivalent to 

l ≤ yi+q − yi

yi+q − yi ≤ u for i = 0..n-q

• [Brand et al., 2007] show that bounds reasoning on this decomposition 

suffices to reach Domain consistency for Sequence (in poly-time)
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MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

Approach

• The auxiliary variables yi can be 

naturally represented at the 

nodes of the MDD – this will be 

our state information

• We can now actively filter this 

node information (not only the 

edges)



MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



MDD filtering from decomposition
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Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



MDD filtering from decomposition
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This procedure does 
not guarantee MDD 
consistency

Sequence(X, q=3, S={1}, l=1, u=2)

yi = yi-1 + xi

1 ≤ y3 − y0 ≤ 2

1 ≤ y4 − y1 ≤ 2

1 ≤ y5 − y2 ≤ 2



Analysis of Algorithm

• Initial population of node domains (y variables)

– linear in MDD size

• Analysis of each state in layer k

– maintain list of ancestors from layer k-q

– direct implementation gives O(qW2) operations per 

state (W is maximum width)

– need only maintain min and max value over 

previous q layers: O(Wq)

• One top-down and one bottom-up pass
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Experimental Setup

• Decomposition-based MDD filtering algorithm

– Implemented as global constraint in IBM ILOG CPLEX CP 

Optimizer 12.3

• Evaluation

– Compare MDD filtering with Domain filtering

– Domain filter based on the same decomposition      

(achieves domain consistency for all our instances)

– Random instances and structured shift scheduling instances

• All methods apply the same fixed search strategy

– lexicographic  variable and value ordering

– find first solution or prove that none exists
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Random instances

• Randomly generated instances

– n=20-48 variables

– domain size between 10 and 30

– 1, 2, 5, 7, or 10 Sequence constraints

– q random from [2..n/2]

– u – l random from 0 to q-1

– 360 instances

• Vary maximum width of MDD

– widths 1 up to 32
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Random instances results

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 1

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 2

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 1

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 2
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Random instances results (cont’d)

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Backtracks – width 32

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 16

Domain Filtering

M
D

D
 F

il
te

ri
n

g

Time – width 32
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Shift scheduling instances

• Shift scheduling problem for n=40, 50, 60, 70, 80 days 

• Shifts: day (D), evening (E), night (N), off (O)

• Problem type P-I

– work at least 22 day or evening shifts every 30 days

Sequence(X, q=30, S= {D, E}, l=22, u=30)

– have between 1 and 4 days off every 7 consecutive days

Sequence(X, q=7, S={O}, l=1, u=4)

• Problem type P-II

– Sequence(X, q=30, S={D, E}, l=23, u=30)

– Sequence(X, q=5, S={N}, l=1, u=2)
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MDD Filter versus Domain Filter
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Summary for MDD-based CP

• Key idea: Propagate approximate MDDs instead of 

domains

• Strength of MDD can be controlled by its width

• Constraint-specific propagation algorithms

– very similar to domain propagators

– define state information for each constraint

– central operations: edge filtering and node refinement

• Detailed examples: Among and Sequence

• Huge reduction in the amount of backtracking and 

solution time is possible



Exercises

1. Consider the constraint x ≠ y for two finite-domain 

variables x and y.  Assume that x and y belong to a 

set X of variables for which we are given a relaxed 

MDD.  Design an MDD propagator for x ≠ y.

2. Consider the following CSP:

x1 ϵ {0,1}, x2 ϵ {0,1,2}, x3 ϵ {1,2}

x1 ≠ x2 , x2 ≠ x3 , x1 ≠ x3

55

Apply the propagators from Exercise 2, starting 

from a width-1 MDD, until the MDD represents all 

solutions to the CSP.



MDDs for Disjunctive Scheduling
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Disjunctive Scheduling
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Constraint-Based Scheduling

• Disjunctive scheduling may be viewed as the ‘killer 

application’ for CP

– Natural modeling (activities and resources)

– Allows many side constraints (precedence relations, time 

windows, setup times, etc.)

– State of the art while being generic methodology

• However, CP has some problems when

– objective is not minimize makespan (but instead, e.g., 

weighted sum)

– setup times are present

– … 

• What can MDDs bring here?
58

Heinz & Beck [CPAIOR 2012]

compare CP and MIP



Disjunctive Scheduling

• Sequencing and scheduling of activities on a resource

• Activities

– Processing time: pi

– Release time: ri

– Deadline: di

– Start time variable: si

• Resource

– Nonpreemptive

– Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4

59



Common Side Constraints

• Precedence relations between activities

• Sequence-dependent setup times

• Induced by objective function

– Makespan

– Sum of setup times

– Sum of completion times

– Tardiness / number of late jobs

– …

60



Inference

• Inference for disjunctive scheduling

– Precedence relations

– Time intervals that an activity can be processed

• Sophisticated techniques include:

– Edge-Finding

– Not-first / not-last rules

• Examples:   1 ≪ 3

s3 ≥ 3

61

Activity 1

Activity 2

Activity 3

0 1 2 3 4



MDDs for Disjunctive Scheduling

Three main considerations:

• Representation

– How to represent solutions of disjunctive 

scheduling in an MDD?

• Construction

– How to construct  this relaxed MDD?

• Inference techniques

– What can we infer using the relaxed MDD?

62

Cire & v.H. [2012, 2013]



MDD Representation

• Natural representation as ‘permutation MDD’

• Every solution can be written as a 

permutation π

π1, π2 , π3, …, πn :  activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

�������
		 �������
�

� ��
�
							� � 2,… , �

63



π
1

π
2

π
3

{2}

{1}

{3}

{3} {2}

Path {1} – {3} – {2} : 

0 ≤ start1  ≤ 1

6 ≤ start2  ≤ 7

3 ≤ start3  ≤ 5

64

MDD Representation

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3



Exact MDD Compilation

Theorem: Constructing the exact MDD for a Disjunctive 

Instance is an NP-Hard problem

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ � if   � � � 	 � for cities i, j 

Lemma:  The exact MDD for the TSP above has O(n2k) nodes



MDD Propagation

We can apply several propagation algorithms:

• Alldifferent for the permutation structure

• Earliest start time / latest end time

• Precedence relations

66



Propagation (cont’d)

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{1,2,3,4,5}

• State information at 

each node i

– labels on all paths: Ai

– labels on some paths: Si

– earliest starting time: Ei

– latest completion time: Li

• Top down example for 

arc (u,v)

π
1

π
2

π
3

π
4

…
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Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

� All-paths state:  Au

� Labels belonging to all paths 

from node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

π
1

π
2

π
3

π
4

…

68[Andersen et al., 2007]

{1,2,3,4,5}



Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

� Some-paths state:  Su

� Labels belonging to some

path from node r to node u

� Su = {1,2,3}

� Identification of Hall sets

� Thus eliminate {1,2,3} from 

(u,v)

π
1

π
2

π
3

π
4

…
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{1,2,4,5}



Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5} π
4

� Earliest Completion Time:  Eu

� Minimum completion time 

of all paths from root to 

node u

� Similarly: Latest Completion 
Time

…
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Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

π
4� Eu = 7

� Eliminate 4 from (u,v) …
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0

2

4

7

Act ri di pi

1 0 4 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

Act ri di pi

1 0 4 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

{4,5}
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Propagate Precedence Relations

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

π
4

…
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� Arc with label j infeasible if

� ≪ �	and i not on some path from r

� Suppose 4 ≪ 5

� Su = {1,2,3}

� Since 4 not in Su, eliminate 5 

from (u,v)

� Similarly: Bottom-up for � ≪ �



More MDD Inference

Theorem: Given the exact MDD M,  we can deduce all implied 

activity precedences in polynomial time in the size of M

r

u

t

i

j

� For a node v,

� ��
↓ : values in all paths from root to u

� ��
↑ : values in all paths from node u to terminal

� Precedence relation � ≪ � holds if and only if

for all nodes u in M

� Same technique applies to relaxed MDD
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• Build a digraph �=(V, E) where V is the set of activities

• For each node u in M

– if � ∈ ��
↓ and � ∈ ��

↑ add edge (i,j) to E

– represents that � ≪ � cannot hold

• Take complement graph �

– complement edge exists iff � ≪ � holds

Extracting precedence relations

74

r

t

3

1 2

2 1 4

14

���
↓ , ��

↑  (Ø, 1234)

(3, 124)

(23, 14)(13, 24)

(234, 1)(123, 4)

(1234, Ø)

1 2

34

�

1 2

34

�

3 ≪ 1

3 ≪ 2

3 ≪ 4

2 ≪ 4



• Build a digraph �=(V, E) where V is the set of activities

• For each node u in M

– if � ∈ ��
↓ and � ∈ ��

↑ add edge (i,j) to E

– represents that � ≪ � cannot hold

• Take complement graph �

– complement edge exists iff � ≪ � holds

• Time complexity: O(|M|n2)

Extracting precedence relations

75

• Same technique applies to relaxed MDD

– add an edge if � ∈ #�
↓ and � ∈ #�

↑

– complement graph represents subset of precedence 

relations



Communicate Precedence Relations

1. Provide precedence relations from MDD to CP

– update start/end time variables

– other inference techniques may utilize them

2. Filter the MDD using precedence relations from 

other (CP) techniques
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MDD Refinement

• For refinement, we generally want to identify 

equivalence classes among nodes in a layer

• Theorem:

Let M represent a Disjunctive Instance. Deciding if two nodes 

u and v in M are equivalent is NP-hard.

• In practice, refinement is based on alldifferent

– Order activities by some criterion (e.g., decreasing ri+pi)

– For given layer, expand all nodes into next layer

– Separate nodes that are exact relative to as many of the 

ordered activities, i.e., Au = Su

– Nodes beyond maximum width are merged

See [Cire, v.H., 2013] for more details 77



Experiments

• MDD propagation implemented in IBM ILOG CPLEX 

CP Optimizer 12.4 (CPO)

– State-of-the-art constraint based scheduling solver

– Uses a portfolio of inference techniques and LP relaxation

– MDD is added as user-defined propagator

• Main purpose of experiments

– where can MDDs bring strength to CP

– compare stand-alone MDD versus CP

– compare CP versus CP+MDD (most useful in practice)
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Problem classes

• Disjunctive instances with 

– sequence-dependent setup times

– release dates and deadlines

– precedence relations

• Objectives (that are presented here)

– minimize makespan

– minimize sum of setup times

• Benchmarks

– Random instances with varying setup times

– TSP-TW instances (Dumas, Ascheuer, Gendreau)

– Sequential Ordering Problem

79



Importance of setup times

Random instances

- 15 jobs

- lex search

- MDD width 16

- min makespan

80(increasing average length of setup times)



Minimize Makespan

• 229 TSPTW benchmark instances with up to 100 jobs

• Minimize makespan

• Time limit 7,200s

• Max MDD width is 16

# instances solved by CP: 211

# instances solved by pure MDD: 216

# instances solved by CP+MDD: 227

81



Minimize Makespan: Search tree size
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CPO fails
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Minimize Makespan: Time
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CPO time (s)
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Min sum of setup times: Fails

Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16

84
CPO fails
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Min sum of setup times: Time

85

Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16

P
u
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D
D

 t
im
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CPO time (s)



Instances Dumas (TSPTW)

CPO CPO+MDD

Instance Cities Backtracks Time (s) Backtracks Time (s)

n40w40.004 40 480,970 50.81 18 0.06

n60w20.001 60 908,606 199.26 50 0.22

n60w20.002 60 84,074 14.13 46 0.16

n60w20.003 60 > 22,296,012 > 3600 99 0.32

n60w20.004 60 2,685,255 408.34 97 0.24

MDDs have maximum width 16minimize sum of setup times 
86



Sequential Ordering Problem

• ATSP with precedence constraints (no time windows)

• Instances up to 53 jobs

• Time limit 1,800s

• Default CPO search

• Max MDD width 2,048

87



Sequential Ordering Problem Results

88* solved for the first time

*
*

*



Minimize Total Tardiness

• Consider activity i with due date δi

– Completion time of i: ci = si + pi

– Tardiness of i: max{0, ci – δi }

• Objective: minimize total (weighted) tardiness

• 120 test instances

– 15 activities per instance

– varying ri, pi, and δi, and tardiness weights

– no side constraints, setup times (measure only impact of 

objective)

– lexicographic search, time limit of 1,800s

89



Total Tardiness Results

90

total tardiness total weighted tardiness

CPO

MDD-16

MDD-32
MDD-64

MDD-128

CPO
MDD-16

MDD-32
MDD-64

MDD-128
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Summary for Disjunctive Scheduling

• Application of MDD-based CP to generic disjunctive 

scheduling

• MDD propagation for

– Alldifferent constraint (permutation of activities)

– Precedence constraints

– Earliest start time/Latest end time

– Various objective functions (makespan, setup times, 

tardiness, …)

• Communication of precedence constraints between 

MDD and domain propagators

• Orders of magnitude improvement



Exercises

3. Consider the following scheduling problem

92

a) Create an exact MDD M representation for this problem.

b) Use the state information ��
↓ and ��

↑ to derive all 

precedence relations from M.

Activity 1

Activity 2

Activity 3

0 2 4 6 81 3 5 7

Activity 4

Act ri di pi

1 0 4 2

2 2 6 2

3 2 6 2

4 0 8 2



Exercises

4. Consider an arbitrary disjunctive scheduling 

problem, and assume we are given an exact MDD M 

representing all its solutions.

a) Verify that the optimal solution to objectives ‘minimize 

makespan’ and ‘minimize sum of setup times’ can be 

derived by computing a shortest path in M.

b) Give an example that shows that for objective ‘minimize 

total tardiness’, a shortest path in M provides a lower 

bound.
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MDDs for Discrete Optimization

94



Motivation

• Limited width MDDs provide a (discrete) 

relaxation to the solution space

• Can we exploit MDDs to obtain bounds for 

discrete optimization problems?

• Relaxation: [Bergman et al., CPAIOR 2011; IJOC to appear]

• Restriction (heuristic solutions): [Bergman et al., 2013]
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Handling objective functions

96

(1) x1 + x2 + x3 ≥ 1

(2) x1 + x4 + x5 ≥ 1

(3) x2 + x4 ≥ 1

r 

x1

x2

x3

x4

x5

1

Suppose we have an objective 

function of the form

min ∑i fi(xi) 

for arbitrary functions fi

In an exact MDD, the optimum 

can be found by a shortest r-s 

path computation

(edge weights are fi(xi) )

(1,0,1,1,0)t 



Approach

• Construct the relaxation MDD using a top-down

compilation method

• Find shortest path → provides bound B

• Extension to an exact method

1. Isolate all paths of length B, and verify if any of these 

paths is feasible*

2. if not feasible, set B := B + 1 and go to 1

3. otherwise, we found the optimal solution

* Feasibility can be checked using MDD-based CP

97



Case Study: Independent Set Problem

• Given graph G = (V, E) with vertex weights wi

• Find a subset of vertices S with maximum total weight 

such that no edge exists between any two vertices in S

max ∑i wi xi

s.t.  xi + xj ≤ 1 for all (i,j) in E

xi binary for all i in V

98
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Exact top-down compilation

99

r 

{3,4}

x1

x2

x3

x4

{1,2,3,4,5}

: 0

: 1

{2,3,4,5}

Merge equivalent nodes

3

4

2

5

1

{3,4} {3,4,5}{5}

{5} {4,5}
{4}

∅ {5}

x5

state information: eligible vertices



Relaxed BDD: merge non-

equivalent nodes when the 

given width is exceeded

Node Merging

100

r 

{3,4}

x1

x2

x3

x4

{1,2,3,4,5}

: 0

: 1

{2,3,4,5}

{3,4}

{5}

{3,4,5}

{4,5}

3

4

2

5

1

{4}
∅

{5}

∅

{5}

x5

∅

Theorem: This procedure 

generates an exact BDD

[Bergman et al., 2012]

state information: eligible vertices



Relaxed BDD
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x1

x2

x3

x4

x5

r r 

{5} {4,5}{4}∅
{5}

{3,4}

{1,2,3,4,5}

{2,3,4,5}

{3,4} {3,4,5}{5}

3

4

2

5

1Exact BDD Relaxed BDD (width ≤ 3): 0

: 1



Relaxed BDD
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x1

x2

x3

x4

x5

r r 
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{1,2,3,4,5}

{2,3,4,5}

{3,4} {3,4,5}{5}
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4
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1Exact BDD Relaxed BDD (width ≤ 3)

∅
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: 0
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Relaxed BDD
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x1

x2

x3

x4

x5

r r 
3

4

2

5

1Exact BDD Relaxed BDD (width ≤ 3)

(0,0,0,1,0)

r 

: 0

: 1



Relaxed BDD
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x1

x2

x3

x4

x5

r r 
3

4

2

5

1Exact BDD Relaxed BDD (width ≤ 3)

(1,0,0,0,1)

: 0

: 1



Evaluate Objective Function
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x1

x2

x3

x4

x5

r r 
3

4

2

5

1Exact BDD Relaxed BDD (width ≤ 3)5

8 6

2

4

max f(x) = 12 max f(x) = 13

: 0
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Node merging heuristics

Suppose layer j has nodes Lj with |Lj| > W (max width)

Which subsets of non-equivalent nodes to merge?

• Random

– select random subset of nodes to merge

• Minimum Longest Path (minLP)

– sort nodes by increasing longest path value from r

– merge the first |Lj| – W +1 nodes (i.e., keep best W nodes)

• Minimum State Size (minSize)

– sort nodes by decreasing state size

– merge first 2 nodes until |Lj| ≤ W (larger states are more 

likely to have vertices in common and may be more similar)
106



Variable Ordering

• Order of variables greatly impacts BDD size

– also influences bound from relaxed BDD (see next)

• Finding ‘optimal ordering’ is NP-hard

• Insights from independent set as case study

– formal bounds on BDD size

– measure strength of relaxation w.r.t. ordering

107



Exact BDD orderings for Paths

108



Many Random Orderings

109

For each random ordering, plot the exact BDD width 

and the bound from width-10 BDD relaxation

Better orderings

give stronger bounds



Formal Results for Independent Set

110

(The proof for general graphs is based on a maximal path 

decomposition of the graph)

Graph Class Bound on Width

Paths 1

Cliques 1

Interval Graphs n/2

Trees n/2

General Graphs Fibonacci Numbers



Variable Ordering for Relaxed BDDs

• Random

– select random variable ordering

• Minimum number of states (minState)

– Given current layer j with node Lj

– Select vertex that appears in fewest number of states of Lj

(dynamic ordering; minimizes the size of the next layer)

• Maximal Path Decomposition (MPD)

– Greedily compute a maximal path decomposition 

– Order the vertices by the order in which they appear in the 

paths (static ordering; provides bound on the width)
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Impact of node merging and ordering

Experimental setup:

• 180 randomly generated instances

• Erdos-Renyi model G(n,p)

– graph on n vertices

– edge exists between pair of vertices with probability p

– n = 200, p ϵ { 0.1, 0.2, …, 0.9 } (20 instances per p)

• Maximum BDD width W=10
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Impact of node merging heuristics

113

• Variable ordering: maximal path decomposition (MPD)

• Each data point is average over 20 instances

• For random, line segment indicates range over 5 instances



Impact of variable ordering heuristics

114

• Node merging heuristic: minLP

• Each data point is average over 20 instances

• For random, line segment indicates range over 5 instances



Experimental Evaluation

• Goals

– Measure impact of maximum width on strength of bound

– Compare BDD bounds to Linear Programming bounds

• LP Settings

– LP model uses Clique Cover formulation

– LP cuts from IBM ILOG CPLEX 12.4

– root node relaxation, no presolve, barrier method

• BDD settings

– variable ordering minState, node merging minLP

• Time Limit 3,600s

• Random + DIMACS clique instances
115



Impact of width on relaxation

brock_200-2 instance 116

maximum width

upper bound

maximum width

time (s)



Bound quality versus density: Random

117Each data point is geometric mean over 20 instances



Bound quality versus density: DIMACS

118Each data point is geometric mean over 20 instances



Bound quality in more detail
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• Random instances

• BDD bounds obtained in 5% 

of LP time

LP+cuts bound / optimum
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• DIMACS instances

• BDD bounds obtained in less 

time than LP except for 

sparsest



Restricted MDDs

• Relaxed MDDs find upper bounds for independent set 

problem

• Can we use MDDs to find lower bounds as well (i.e., 

good feasible solutions)?

• Restricted MDDs represent a subset of feasible 

solutions

– we require that every r-t path corresponds to a feasible 

solution

– but not all solutions need to be represented

• Goal: Use restricted MDDs as a heuristic to find good 

feasible solutions
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Creating Restricted MDDs

Using an exact top-down compilation method, we can 

create a limited-width restricted MDD by

1. merging nodes, or

2. deleting nodes

while ensuring that no non-solutions are introduced

121



Node merging by example

122

Restricted BDD (width ≤ 3)
: 0

: 1

x1
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x3
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{5} {4,5}{4}∅
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Node merging by example
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Restricted BDD (width ≤ 3)
: 0

: 1

x1

x2

x3
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Node deletion by example
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Restricted MDD (width ≤ 3)
: 0

: 1

x1

x2

x3

r 

{5} {4,5}{4}∅

{3,4}

{1,2,3,4,5}

{2,3,4,5}

{3,4} {3,4,5}{5}

3

4

2

5

1

In practice, node deletion superior to node merging

(similar or better bounds, but much faster)



Node deletion heuristics

Similar to node merging heuristics for MDD relaxations:

• Random

• Minimum Longest Path (minLP)

– sort nodes by increasing longest path value from r

– delete the first |Lj| – W +1 nodes (i.e., keep best W nodes)

• Minimum State Size (minState)

125



Experimental Evalution

• Compare with Integer Programming (CPLEX)

– LP relaxation + cutting planes  

– Root node solution

• DIMACS instance set

• MDDs with varying maximum width
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IP versus BDD heuristic

127Each data point is geometric mean over 20 instances



More Applications

Methods for MDD relaxations and restrictions can easily 

be extended to other problems

• Knapsack problem, Set covering, Set packing, Bin packing (also 

multi-dimensional),…

• Key is the state representation

One more example: Set covering

128



Set Covering Problem

• Given set S={1,…,n} and subsets C1,...,Cm of S

• Find a subset X of S with minimum cardinality 

such that |Ci ∩ X | ≥ 1 for all i=1,…,m

min ∑j xj

s.t. ∑j in Ci xj ≥ 1 for all i=1,…,m

x1,...,xn binary
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Set covering example
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minimize x1 + x2 + x3 + x4 + x5 + x6

s.t. x1 + x2 + x3 ≥ 1

x1 + x4 + x5 ≥ 1

x2 + x4 + x6 ≥ 1

x1

x2

For BDD we need

• State information
– set of uncovered constraints

• Merging rule
– for relaxation: intersection

– for restriction: union 

(1)

(2)

(3)

{1,2,3} 

{3} {1,2,3} 

{2} {1,2,3} {3} Ø



∅ {2}  

Building relaxed BDD for set covering
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Relaxed BDD (width ≤ 3) x1

x2

x3

x4

x5

x6

x1 + x2 + x3 ≥ 1    (1)

x1 + x4 + x5 ≥ 1    (2)

x2 + x4 + x6 ≥ 1    (3)

{3}                           {1,2,3}{3}

Merging rule

• for relaxation: intersection

• (for restriction: union)

{1,2,3} 

{3} {1,2,3} 



Building relaxed BDD for set covering
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Relaxed BDD (width ≤ 3) x1

x2

x3

x4

x5

x6

x1 + x2 + x3 ≥ 1    (1)

x1 + x4 + x5 ≥ 1    (2)

x2 + x4 + x6 ≥ 1    (3)

∅ ∅ {3}        {3}            {2}    {2}

Merging rule

• for relaxation: intersection

• (for restriction: union)

{3} {2}Ø

{3} {1,2,3} 

{1,2,3} 



Building relaxed BDD for set covering
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Relaxed BDD (width ≤ 3) x1

x2

x3

x4

x5

x6

x1 + x2 + x3 ≥ 1    (1)

x1 + x4 + x5 ≥ 1    (2)

x2 + x4 + x6 ≥ 1    (3)

Merging rule

• for relaxation: intersection

• (for restriction: union)

Edge weights equal to objective

coefficients: shortest path gives 

lower bound



Tightening the Lower Bound

• Value extraction method

– Given: an MDD relaxation, M  

– Given: a valid lower bound, v 

– Extract all paths in M that correspond to solutions 

with objective function value equal to v in the form 

of another MDD M|z=v

• Creating M|z=v  can be done efficiently

• Apply MDD-based CP to M|z=v in order to either

– Increase v to v+1 (if no solution exists)

– Find a feasible (and optimal) solution
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Experimental Results

• Investigate whether relaxation MDDs are able 

to capture and exploit problem structure

– We consider structured set covering problems

• Purest structure: all constraints are defined on 

consecutive variables

– TU constraint matrix; easy for IP

– Exact MDD has bounded width; also easy for MDD
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Instance Generation

• We generated random instances

– Fix number of variables per constraint, k

– Vary the bandwidth b

– Randomly assign a 0 to b – k ones in the bandwidth

• Destroys both the TU property for IP and the 

bounded width property for MDD
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Computational Results

• 250 variables, k = 20, b ∈ {22,…,44}, 20 instances for 

each bandwidth

• Compare 3 different solution methods

– Pure-IP (CPLEX)

– Pure-MDD (Value Extraction)

– Hybrid (1/10 solution time given to pure-MDD and then pass 

bound to CPLEX)
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Number of Instances Solved (1 min.)
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Average Ending Lower Bound (1 min)

139



140

Larger Instances

500 variables, 5 instances, k = 20, b∈{22,…,25}

b = 22 b = 23

nr instances solved nr instances solved

timetime



Restricted BDDs

• Compare with Integer Programming (CPLEX)

– Heuristic solution found at the root node

– Also compute LP relaxation to measure the gap

• Experimental setup

– As before, randomly generated with increasing bandwidth

– n=500 variables, k=75 number of ones per constraints

– bandwidth is multiple of k: b ∈ {1.1k, 1.2k,…,2.6k}

– 30 instances per triple (n,k,b)

– randomly generated weights

• Maximum BDD width 500

• Compare BDD-gap with IP-gap (relative to LP)
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Unweighted instances
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BDD reduces optimality gap

from 40% to 30% w.r.t. IP

increasing bandwidth
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Weighted instances
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Relative strength of BDD

decreases for larger bandwidth

increasing bandwidth
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Summary for MDD-Optimization

• Limited-width MDDs can provide useful bounds 

for discrete optimization

– The maximum width provides a natural trade-off 

between computational efficiency and strength

– Both lower and upper bounds

– Generic discrete relaxation and restriction method 

for MIP-style problems

• Successfully applied to number of problems

– Independent Set Problem, Set Covering Problem, 

Set Packing Problem, Bin Packing,…
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Exercises

5. Consider the following CSP

4x1 + 2x2 + x3 + x4 + 2x5 + 4x6 = 7

x1, x2,…, x6 ϵ {0,1}

a) Draw an exact BDD for this problem using the 

variable ordering x1, x2, x3, x4, x5, x6

b) Draw an exact BDD for this problem using the 

variable ordering x1, x6, x2, x5, x3, x4

c) Which of the two orderings yields the smallest 

width?
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Exercises

6. Consider the following set covering instance:

146

minimize 3x1 + 2x2 + x3 + 4x4 + 2x5

s.t. x1 + x2 + x3 ≥ 1

x1 + x4 + x5 ≥ 1

x2 + x4 ≥ 1

Construct a restricted BDD with maximum width 3.

Does it yield the optimal solution?



Open issues

• Extend application to CP

– Which other global constraints are suitable?

– Can we develop search heuristics based on the MDD?

– Can we more efficiently store and manipulate approximate 

MDDs? (Implementation issues)

– Can we obtain a tighter integration with CP domains?

• MDD technology

– Variable ordering is crucial for MDDs. What can we do if the 

ordering is not clear from the problem statement?

– How should we handle constraints that partially overlap on 

the variables? Build one large MDD or have partial MDDs 

communicate?
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Open issues (cont’d)

• Formal characterization

– Can MDDs be used to identify tractable classes of CSPs?

– Can we identify classes of global constraints for which 

establishing MDD consistency is hard/easy?

– Can MDDs be used to prove approximation guarantees?

– Can we exploit a connection between MDDs and tight LP 

representations of the solution space?

• Optimization

– Approximate MDDs can provide bounds for any nonlinear 

(separable) objective function. Demonstrate the 

performance on an actual application.
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Open issues (cont’d)

• Beyond classical CP 

– How can MDDs be helpful in presence of uncertainty?      

E.g., can we use approximate MDDs to represent policy 

trees for stochastic optimization?          [Cire, Coban, v.H., 2012]

– Can we utilize approximate MDDs for SAT?

– Can MDDs help generate nogoods, e.g., in lazy clause 

generation? (We have done this for disjunctive scheduling)

– Can we exploit a tighter integration of MDDs in MIP solvers?

• Applications

– So far we have looked mostly at generic problems. Are there 

specific applications for which MDDs work particularly well? 

(Bioinformatics?)
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Summary

What can MDDs do for discrete optimization?

• Compact representation of all solutions to a problem

• Limit on size gives approximation

• Control strength of approximation by size limit

MDDs for Constraint Programming and Scheduling

• MDD propagation natural generalization of domain propagation

• Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)

• MDDs provide discrete relaxations

• Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated 

methods, theory, applications, …
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