

MDD Filtering for Sequence Constraints

Andre Cire and Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University

Outline

- Motivation and background
- MDD filtering for Sequence
- Experimental results
- Conclusions

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

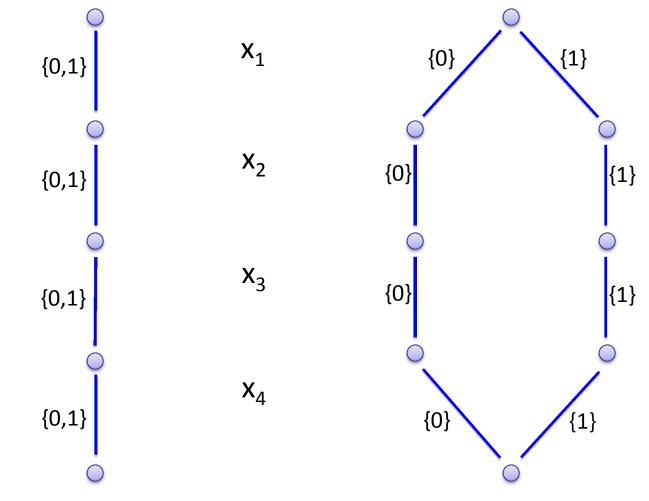
Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$\begin{array}{c} x_{1} \in \{1,2\}, \, x_{2} \in \{1,2,3\}, \, x_{3} \in \{2,3\} \\ x_{1} < x_{2} & x_{2} \in \{2,3\} \\ all different(x_{1}, x_{2}, x_{3}) & x_{1} \in \{1\} \end{array}$$

Illustrative Example

 $AllEqual(x_1, x_2, x_3, x_4)$, all x_i binary



4

domain representation, size 2⁴

MDD representation, size 2

Drawback of domain propagation

- All structural relationships among variables are projected onto the domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)
- We can communicate more information between constraint using MDDs [Andersen et al. 2007]
- Explicit representation of more refined potential solution space
- Limited width defines relaxation MDD

MDD-based Constraint Programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

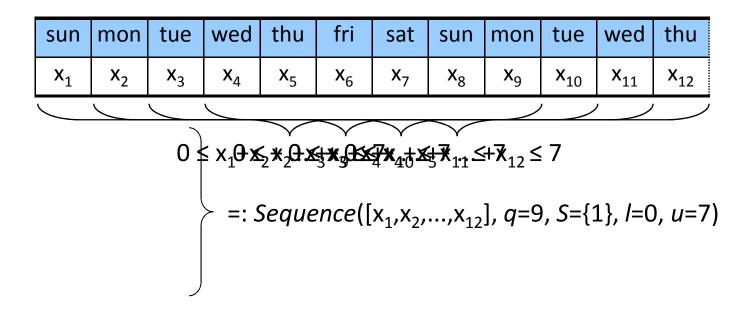
Specific MDD propagation algorithms

- Linear equalities and inequalities
- *Alldifferent* constraints
- Element constraints
- Among constraints
- Disjunctive scheduling constraints [Hoda et al., 2

- [Hadzic et al., 2008] [Hoda et al., 2010]
- [Andersen et al., 2007]
- [Hoda et al., 2010]
- [Hoda et al., 2010]
- [Hoda et al., 2010] [Cire & v.H., 2012]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]
- Sequence constraints (combination of Amongs)

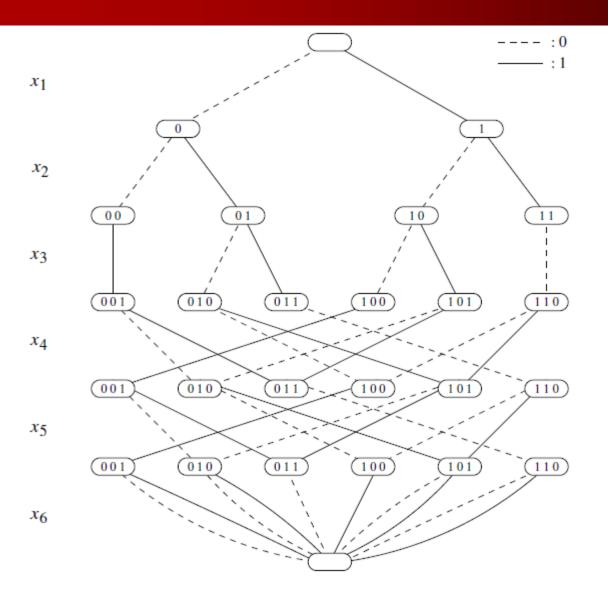
Sequence Constraint

Employee must work at most 7 days every 9 consecutive days



 $\begin{array}{ll} Sequence(X, q, S, l, u) := & \bigwedge_{|X'|=q} & l \leq \sum_{x \in X'} (x \in S) \leq u \\ & \downarrow \\ & & \downarrow \\ & & \\ & & Among(X, S, l, u) \end{array}$

MDD Representation for Sequence



 Equivalent to the DFA representation of Sequence for domain propagation

[v.H. et al., 2006, 2009]

• Size $O(n2^q)$

Exact MDD for *Sequence*(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

9

Carnegie Mello

SCHOOL OF BUSINESS

MDD Filtering for Sequence

Goal: Given an arbitrary MDD and a *Sequence* constraint, remove *all* inconsistent edges from the MDD (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for *Sequence* on an arbitrary MDD is NP-hard (even if the MDD order follows the sequence of variables *X*) Proof: Reduction from 3-SAT

Next goal: Develop a *partial* filtering algorithm, that does not necessarily achieve MDD consistency

Sequence Decomposition

- Sequence(X, q, S, l, u) with $X = x_1, x_2, ..., x_n$
- Introduce a 'cumulative' variable y_i representing the sum of the first *i* variables in X

$$y_0 = 0$$

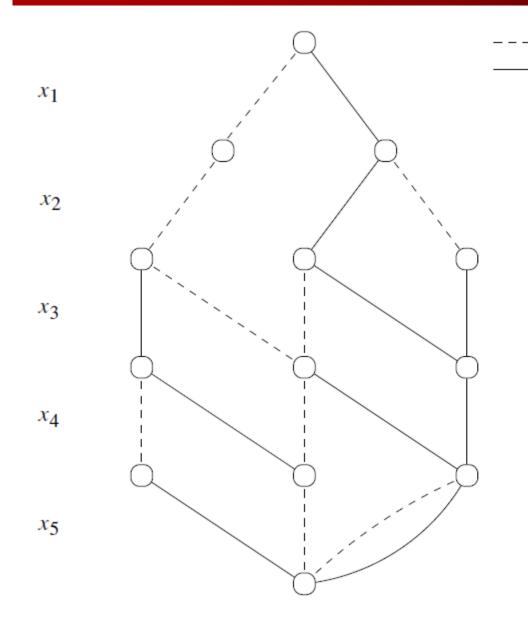
 $y_i = y_{i-1} + (x_i \in S)$ for $i=1..n$

• Then the sub-constraint on $[x_{i+1}, ..., x_{i+q}]$ is equivalent to

$$l \le y_{i+q} - y_i$$

$$y_{i+q} - y_i \le u \qquad \text{for } i = 0..n-q$$

• [Brand et al., 2007] show that bounds reasoning on this decomposition suffices to reach Domain consistency for *Sequence* (in poly-time)



Sequence(X, q=3, $S=\{1\}$, l=1, u=2)

Approach

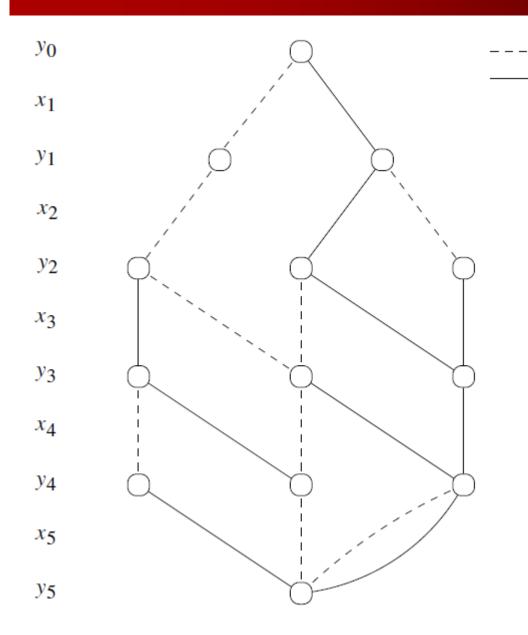
: 0

: 1

- The auxiliary variables y_i can be naturally represented at the nodes of the MDD
- We can now actively *filter* this node information (not only the edges)

- :0

- :1

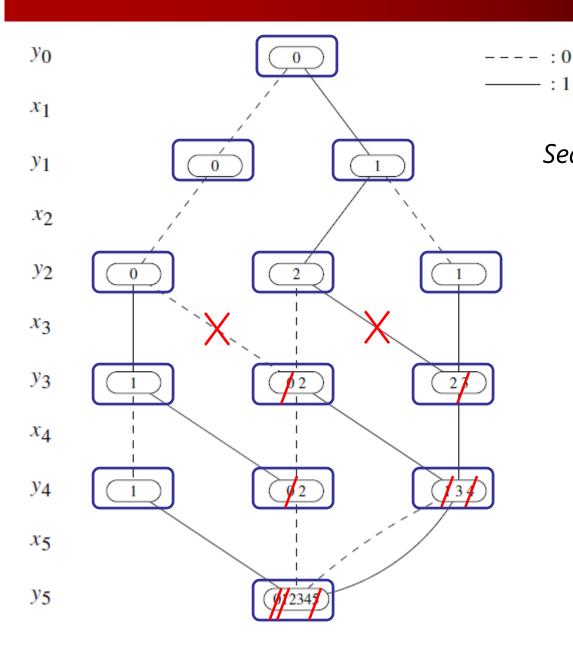


Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

 $y_{i} = y_{i-1} + x_{i}$ $1 \le y_{3} - y_{0} \le 2$ $1 \le y_{4} - y_{1} \le 2$ $1 \le y_{5} - y_{2} \le 2$

Carnegie Mello

SCHOOL OF BUSINESS



Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

 $y_i = y_{i-1} + x_i$

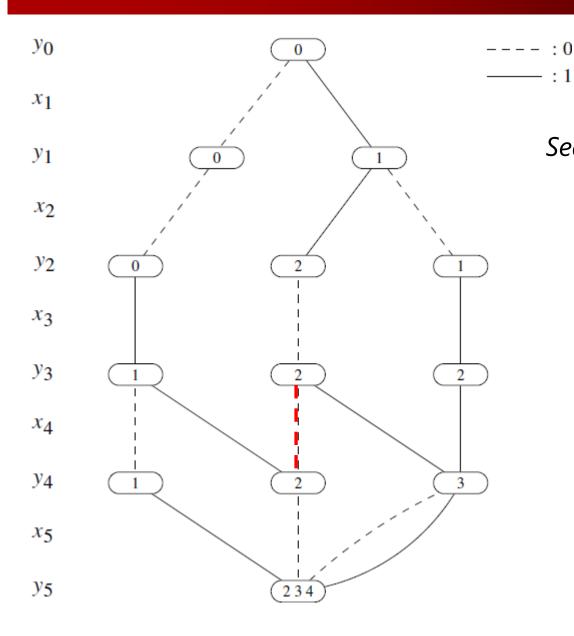
- :1

$$1 \le y_3 - y_0 \le 2$$
$$1 \le y_4 - y_1 \le 2$$
$$1 \le y_5 - y_2 \le 2$$

14

Carnegie Mellon

SCHOOL OF BUSINESS



Sequence($X, q=3, S=\{1\}, l=1, u=2$)

 $y_i = y_{i-1} + x_i$ $1 \le y_3 - y_0 \le 2$ $1 \le y_4 - y_1 \le 2$ $1 \le y_5 - y_2 \le 2$

This procedure does not guarantee MDD consistency

Carnegie Mello

SCHOOL OF BUSINES

Analysis of Algorithm

- Initial population of node domains (y variables)
 - linear in MDD size
- Analysis of each state in layer k
 - maintain list of ancestors from layer k-q
 - direct implementation gives $O(qW^2)$ operations per state (W is maximum width)
 - need only maintain min and max value over previous q layers: O(Wq)
- One top-down and one bottom-up pass

Experimental Results

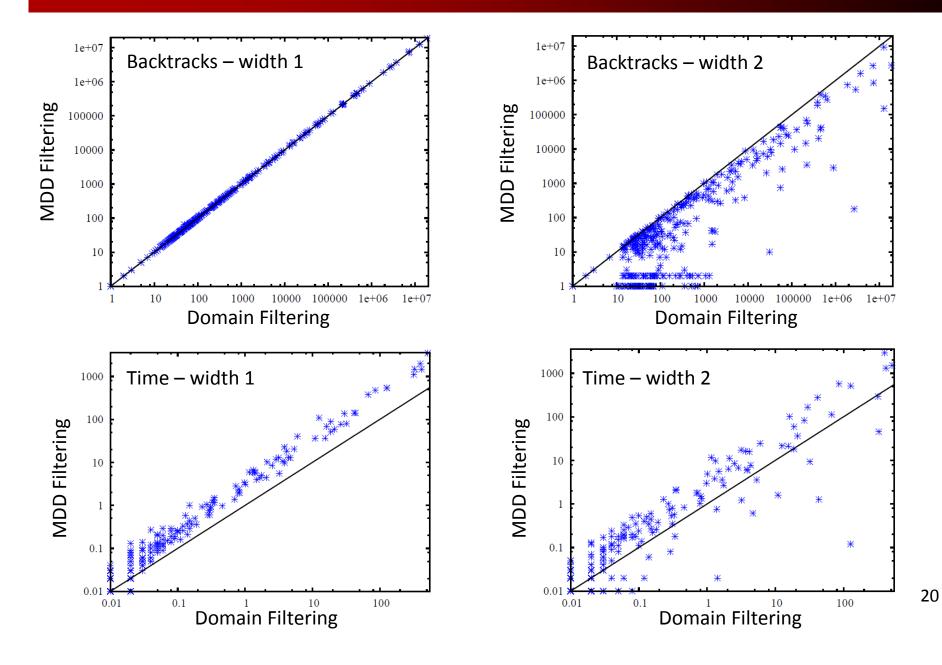
Experimental Setup

- Decomposition-based filtering algorithm
 - Implemented as global constraint in IBM ILOG CPLEX/CP Optimizer 12.3
- Evaluation
 - Compare MDD filtering with Domain filtering
 - Domain filter based on the same decomposition (achieved domain consistency for almost all our instances)
 - Random instances and structured shift scheduling instances
- All methods apply the same fixed search strategy
 - lexicographic variable and value ordering
 - find first solution or prove that none exists

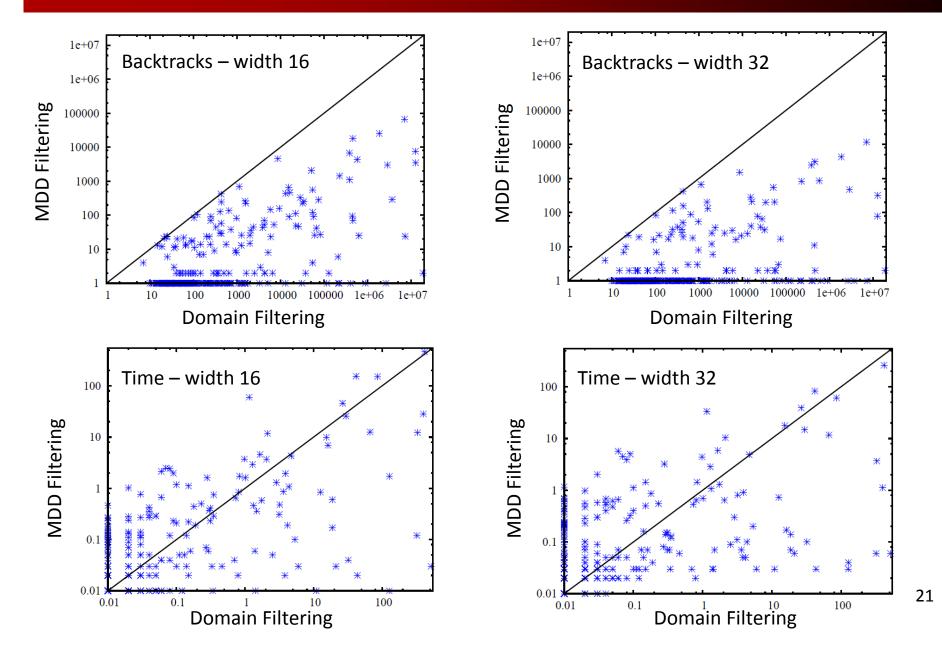
Random instances

- Randomly generated instances
 - n=20-48 variables
 - domain size between 10 and 30
 - 1, 2, 5, 7, or 10 Sequence constraints
 - *q* random from [2..*n*/2]
 - u l random from 0 to q-1
 - 360 instances
- Vary maximum width of MDD
 - widths 1 up to 32

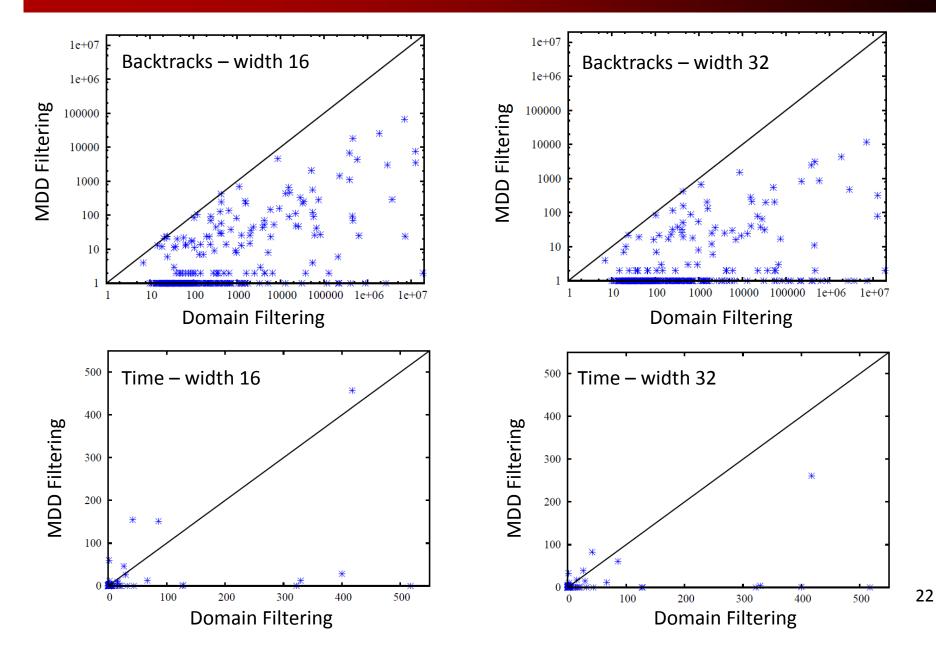
Random instances results



Random instances results (cont'd)



Random instances results (cont'd)



Shift scheduling instances

- Shift scheduling problem for n=40, 50, 60, 70, 80 days
- Shifts: day (D), evening (E), night (N), off (O)
- Problem type P-I
 - work at least 22 day or evening shifts every 30 days

Sequence(*X*, *q*=30, *S*= {D, E}, *l*=22, *u*=30)

- have between 1 and 4 days off every 7 consecutive days

Sequence(*X*, *q*=7, *S*={O}, *l*=1, *u*=4)

- Problem type P-II
 - Sequence(X, q=30, S={D, E}, l=23, u=30)
 - Sequence($X, q=5, S=\{N\}, l=1, u=2$)

MDD Filter versus Domain Filter

Instance		Domain filtering		MDD - width 1		MDD - wi	dth 2	MDD - width 8	
	n	backtracks	time	backtracks	time	backtracks	time	backtracks	time
Type P-I	40	17,054	0.36	17,054	0.61	1,213	0.07	0	0.00
	50	17,054	0.42	17,054	0.75	1,213	0.09	0	0.00
	60	17,054	0.54	17,054	0.90	1,213	0.11	0	0.01
	70	17,054	0.58	17,054	1.04	1,213	0.12	0	0.01
	80	17,054	0.66	17,054	1.26	1,213	0.15	0	0.01
Type P-II	40	126,406	2.00	126,406	4.66	852	0.08	0	0.00
	50	126,406	2.36	126,406	5.90	852	0.09	0	0.00
	60	126,406	2.86	126,406	7.43	852	0.11	0	0.00
	70	126,406	3.04	126,406	8.38	852	0.13	0	0.01
	80	126,406	3.48	126,406	9.46	852	0.15	0	0.01

Summary

- We studied MDD propagation for *Sequence* constraints
- Complete MDD filtering for *Sequence* is NP-hard
- Partial MDD filtering based on cumulative decomposition can be quite effective
 - represent auxiliary variables at nodes
 - actively filter node information
- Large savings possible w.r.t. Domain propagation
- MDD propagation can be a powerful mechanism for solving Constraint Programming problems