

MDD Filtering for Sequence Constraints

Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University

Outline

- Motivation and background
- Partial MDD filtering
- Hardness of complete MDD filtering
- Experimental results
- Conclusions

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$\begin{array}{c} x_{1} \in \{1,2\}, \, x_{2} \in \{1,2,3\}, \, x_{3} \in \{2,3\} \\ x_{1} < x_{2} & x_{2} \in \{2,3\} \\ all different(x_{1}, x_{2}, x_{3}) & x_{1} \in \{1\} \end{array}$$

Drawback of domain propagation

Carnegie Mellon TEDEDET SCHOOL OF BUSINESS

Observations:

- Communication between constraints only via variable domains
- Information can only be expressed as a domain change
- Other (structural) information that may be learned from a constraint is lost: it must be projected onto variable domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)

This drawback can be addressed by communicating more expressive information, using MDDs [Andersen et al. 2007]

- Explicit representation of more refined potential solution space
- Limited-width defines relaxation MDD

MDD-based constraint programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

- Linear equalities and inequalities
- Alldifferent constraints
- Element constraints
- Among constraints
- Sequential scheduling constraints [Hoda et al., 2010]
- Sequence constraints (combination of Amongs) [V.H., 2011]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]

[Hadzic et al., 2008] [Hoda et al., 2010]

[Andersen et al., 2007]

[Hoda et al., 2010]

[Hoda et al., 2010]

[Cire & v.H., 2011]

Sequence Constraint

Employee must work at most 7 days every 9 consecutive days

 $\begin{array}{ll} Sequence(X, q, S, l, u) := & \bigwedge_{|X'|=q} & l \leq \sum_{x \in X'} (x \in S) \leq u \\ & \downarrow \\ & & \downarrow \\ & & \\ & & Among(X, S, l, u) \end{array}$

MDD Representation for Sequence

 Equivalent to the DFA representation of Sequence for domain propagation

[v.H. et al., 2006, 2009]

• Size $O(n2^q)$

Exact MDD for *Sequence*(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

8

Carnegie Mello

SCHOOL OF BUSINESS

MDD Filtering for Sequence

Goal: Given an arbitrary MDD and a *Sequence* constraint, remove *all* inconsistent edges from the MDD (i.e., MDD-consistency)

(Assumption: MDD order follows the sequence of variables X)

Can this be done in polynomial time?

- The sub-sequence constraints impose a strong structure (i.e., consecutive-ones LP formulation)
- Exact MDD representation is polynomial in *n* (i.e., just fix *q*)
- There are several efficient *domain* filtering algorithms for *Sequence*, some of which have a dynamic programming flavor
- Several existing domain filtering algorithms only reason on the bounds of the variables, suggesting that intervals may suffice

Sequence Decomposition

- Sequence(X, q, S, l, u) with $X = x_1, x_2, ..., x_n$
- Introduce a 'cumulative' variable y_i representing the sum of the first *i* variables in X

$$y_0 = 0$$

 $y_i = y_{i-1} + (x_i \in S)$ for $i=1..n$

• Then the sub-constraint on $[x_{i+1}, ..., x_{i+q}]$ is equivalent to

$$l \le y_{i+q} - y_i$$

$$y_{i+q} - y_i \le u \qquad \text{for } i = 0..n-q$$

• [Brand et al., 2007] show that bounds reasoning on this decomposition suffices to reach domain consistency for *Sequence* (in poly-time)

Sequence($X, q=3, S=\{1\}, l=1, u=2$)

Approach

: 0

: 1

- The auxiliary variables y_i can be naturally represented at the nodes of the MDD
- We can now actively *filter* this node information (not only the edges)

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

- :1

 $y_i = y_{i-1} + x_i$ $1 \le y_3 - y_0 \le 2$ $1 \le y_4 - y_1 \le 2$ $1 \le y_5 - y_2 \le 2$ Carnegie Mello

SCHOOL OF BUSINESS

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

- :1

 $y_i = y_{i-1} + x_i$ $1 \le y_3 - y_0 \le 2$ $1 \le y_4 - y_1 \le 2$ $1 \le y_5 - y_2 \le 2$ Carnegie Mello

SCHOOL OF BUSINESS

Sequence(*X*, *q*=3, *S*={1}, *l*=1, *u*=2)

 $y_{i} = y_{i-1} + x_{i}$ $1 \le y_{3} - y_{0} \le 2$ $1 \le y_{4} - y_{1} \le 2$ $1 \le y_{5} - y_{2} \le 2$

This procedure does not guarantee MDD consistency

Carnegie Mello

SCHOOL OF BUSINES

Hardness of MDD Consistency

Result

Theorem: Establishing MDD consistency for *Sequence* on an arbitrary MDD is NP-hard

Proof structure:

- Given 3-SAT problem (NP-complete)
- We will construct a polynomial-size MDD such that a particular *Sequence* constraint will have a solution in the MDD if and only if the 3-SAT instance is satisfiable
- Example 3-SAT problem

$$c_1 = (x_1 \lor \overline{x}_3 \lor x_4)$$
$$c_2 = (x_2 \lor x_3 \lor \overline{x}_4)$$

Single clause representation

 $c_1 = (x_1 \lor \overline{x}_3 \lor x_4)$

Group clauses together

- Literal x_j in clause c_i represented by variable y_{ij}
- MDD size O(6(2mn+1))
- How to ensure that a variable takes the same value in each clause?

Impose Sequence Constraint

Sequence($Y, q=2n, S=\{1\}, l=n, u=n$)

- Start from a *positive* literal: subsequence always contains *n* times the value 1 (namely, for each variable it contains both literals)
- Start from a *negative* literal: the corresponding positive literal in the next clause must take the opposite value (all other variables sum up to n-1)
- Therefore, variables take the same value in each clause
- Solution to Sequence in this MDD is equivalent to 3-SAT solution

Preliminary Experimental Results

Experimental Setup

- Decomposition-based filtering algorithm
 - implemented in MDD solver of [Hoda, PhD 2010]
- Evaluation
 - compare Sequence MDD filter with Among MDD filter
 (the Among MDD filter is also implemented in [Hoda, PhD 2010])
 - compare Sequence MDD filter with Sequence domain filter
 (the domain filter is based on the same decomposition)
- All methods use the same search strategy
 - variable selection: smallest domain first
 - value selection: lexicographic ordering

MDD Sequence versus Among

- Randomly generated instances
 - 50 variables
 - two Sequence constraints
 - $-q = 14^{*}$
 - u l = 1 (select l uniform-randomly from [1,*n*-1])
 - 100 instances
- Vary maximum width of MDD
 - widths 1, 4, 8

* For $q \le 7$ Among and Sequence performed similarly

MDD Sequence versus Among

MDD Filter versus Domain Filter

- Shift scheduling problem for n=40, 50, 60, 70, 80 days
- Shifts: day (D), evening (E), night (N), off (O)
- Problem type P-I
 - work at least 22 day or evening shifts every 30 days

Sequence(*X*, *q*=30, *S*= {D, E}, *l*=22, *u*=30)

- have between 1 and 4 days off every 7 consecutive days

Sequence(*X*, *q*=7, *S*={O}, *l*=1, *u*=4)

- Problem type P-II
 - Sequence(X, q=30, S={D, E}, l=23, u=30)
 - Sequence($X, q=5, S=\{N\}, l=1, u=2$)

MDD Filter versus Domain Filter

instance		domain propagator		$egin{array}{c} \mathrm{MDD} \ \mathrm{width} \ 1 \end{array}$		$egin{array}{c} \mathrm{MDD} \ \mathrm{width} \ 4 \end{array}$		$egin{array}{c} \mathrm{MDD} \ \mathrm{width} \ 8 \end{array}$		MDD width 16	
	n	BT	CPU	BT	CPU	BT	CPU	BT	CPU	BT	CPU
P-I	40 50 60 70 80	$ \begin{array}{r} 121,767\\ 121,777\\ 121,782\\ 121,787\\ 121,787\\ 121,792 \end{array} $	$ \begin{array}{r} 4.63 \\ 5.67 \\ 6.51 \\ 6.99 \\ 7.48 \end{array} $	34,10834,10834,10834,10834,108	$\begin{array}{r} 251.06 \\ 487.25 \\ 796.21 \\ 1,110.88 \\ 1,492.33 \end{array}$	75 75 75 75 75	$1.67 \\ 3.06 \\ 5.00 \\ 6.96 \\ 9.38$	28 29 30 28 28	$ \begin{array}{r} 0.99\\ 1.86\\ 3.09\\ 4.30\\ 5.97 \end{array} $	28 29 30 28 28	1.00 1.90 3.12 4.33 5.88
P-II	40 50 60 70 80	$116,548 \\116,548 \\116,548 \\116,548 \\116,548 \\116,548 \\116,548 \\$	3.52 3.98 4.56 4.95 5.08	233,096	$1,492.93 \\ >1,600 \\ >1,600 \\ >1,600 \\ >1,600 \\ >1,600 \\ >1,600$	71 69 65 67 73	1.63 2.77 4.38 6.32 8.47	20 32 36 36 32 32 32	$ \begin{array}{r} 1.17 \\ 2.36 \\ 3.56 \\ 4.71 \\ 6.36 \end{array} $	20 36 36 36 36 36	$ \begin{array}{r} 1.29 \\ 2.40 \\ 3.83 \\ 5.44 \\ 7.24 \end{array} $

Conclusions

- Complete MDD filtering for *Sequence* is NP-hard
- Partial MDD filtering based on cumulative decomposition can be quite effective
 - represent auxiliary variables at nodes
 - actively filter node information
- Preliminary experimental results are promising
- Future/current work: better implementation, in ILOG CP Optimizer