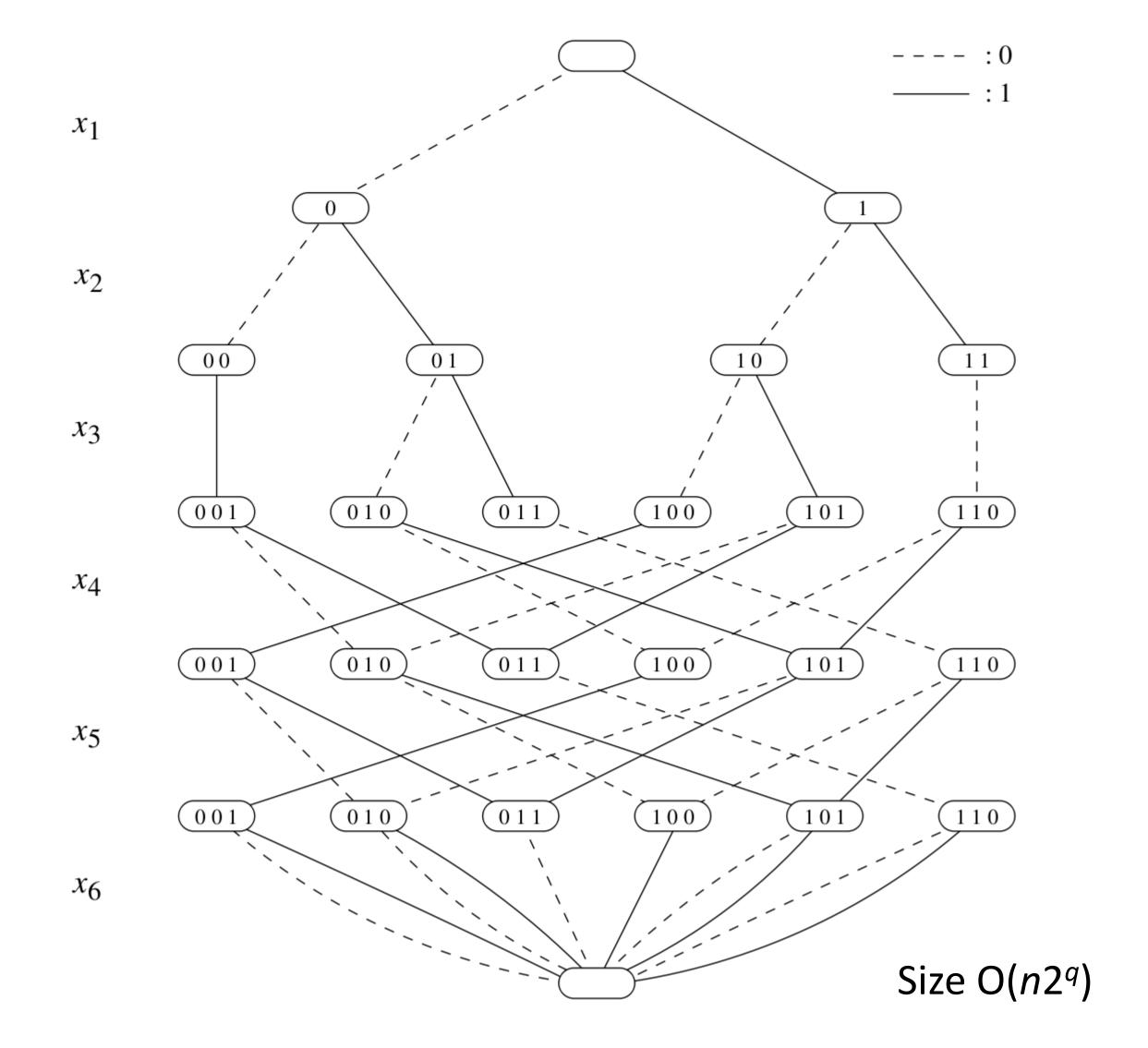
MDD Propagation for Sequence Constraints

Andre A. Cire and Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University


Sequence constraint

Exact MDD Representation

Example: Employee must work between 4 and 7 days every 9 consecutive days

sun	mon	tue	wed	thu	fri	sat	sun	mon	tue	wed	thu
x ₁	x ₂	Х ₃	x ₄	X ₅	Х ₆	Х ₇	Х ₈	x ₉	X ₁₀	x ₁₁	x ₁₂

Exact MDD for *Sequence*(X, q=3, S={1}, *I*=1, *u*=2)

 $4 \le x_1 + x_2 + \dots + x_9 \le 7$ \land $4 \le x_2 + x_3 + \dots + x_{10} \le 7$ \land $4 \le x_3 + x_4 + \dots + x_{11} \le 7 \land$ $4 \le x_4 + x_5 + \dots + x_{12} \le 7$

=: Sequence([x₁,x₂,...,x₁₂], q=9, S={1}, I=4, u=7)

Sequence(X, q, S, l, u) := $\bigwedge l \leq \sum_{x \in X'} (x \in S) \leq u$ |X'|=q

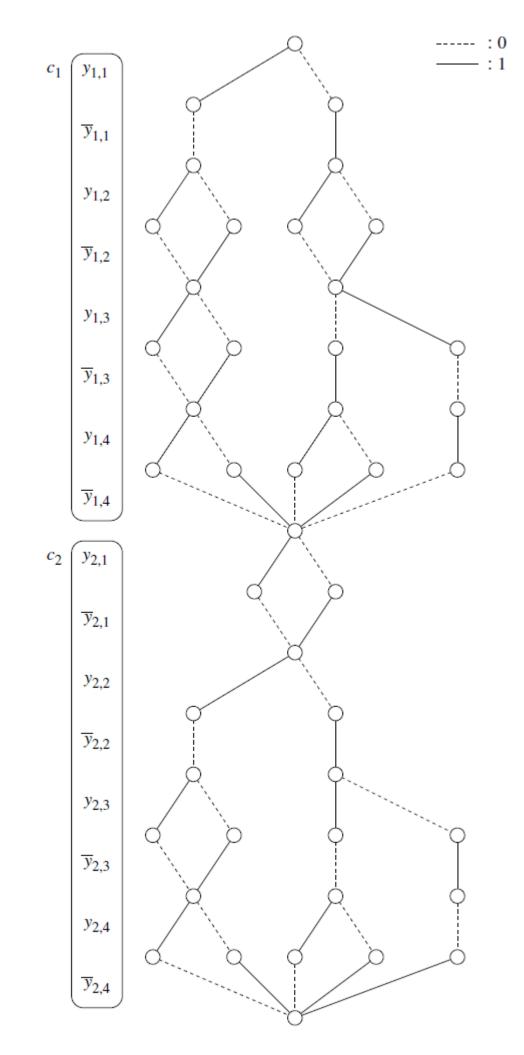
MDD-Based CP

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation

Partial MDD Propagation

Based on decomposition:

- Sequence(X, q, S, l, u) with $X = x_1, x_2, ..., x_n$
- Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
- Node refinement: Split nodes to separate edge information


Search

– As in classical CP, but can be guided by MDD

Hardness of MDD Consistency

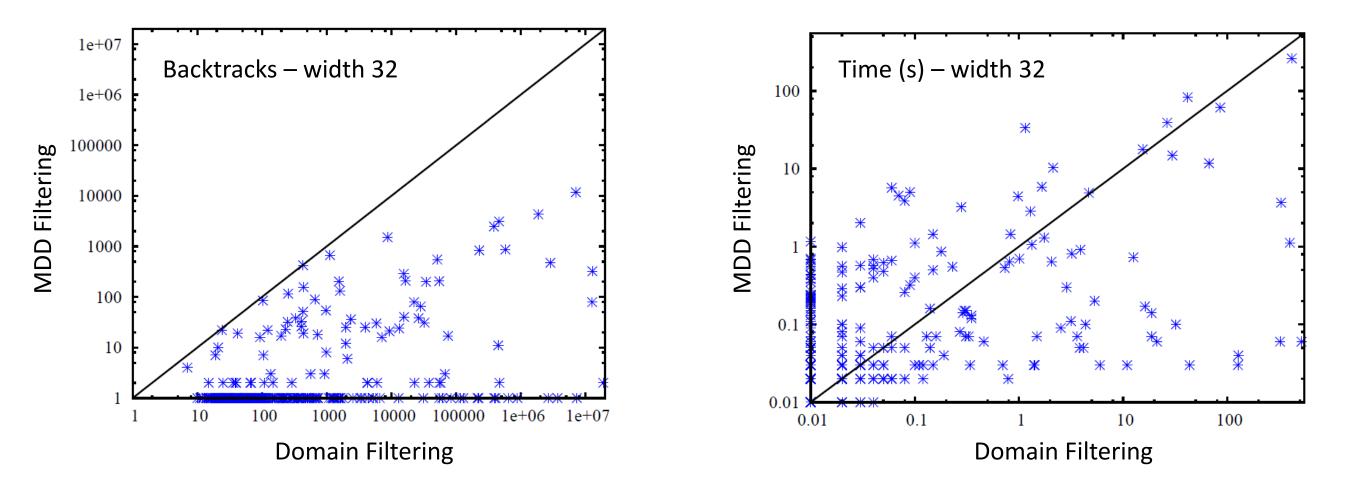
Goal: Given an arbitrary MDD and a *Sequence* constraint, remove *all* inconsistent edges from the MDD

Theorem: Establishing MDD consistency for *Sequence* on an arbitrary MDD is NP-hard

Proof: Reduction from 3-SAT

Introduce a 'cumulative' variable y_i representing the sum of the first *i* variables in X

> $y_0 = 0$ $y_i = y_{i-1} + (x_i \in S)$ for i=1..n


• Then the sub-constraint on $[x_{i+1}, ..., x_{i+q}]$ is equivalent to

 $l \leq y_{i+q} - y_i$ $y_{i+q} - y_i \le u$ for i = 0..n-q

Variables *y* represented at the *nodes* of the MDD lacksquare

Experimental Results

Random instances

- Literal x_i in clause c_i represented by variable y_{ii}
- MDD size *O*(6(2*mn*+1))
- Ensure that a variable takes the same value in each clause:

Sequence(Y, q=2n, $S=\{1\}$, l=n, u=n)

Example: $c_1 = (x_1 \lor \overline{x}_3 \lor x_4)$ $c_2 = (x_2 \vee x_3 \vee \overline{x}_4)$

Shift scheduling problems

Instance		Domain filtering		MDD - width 1		MDD - width 2		MDD - width 8	
	n	backtracks	time	backtracks	time	backtracks	time	backtracks	time
Type P-I	40	17,054	0.36	17,054	0.61	1,213	0.07	0	0.00
	50	17,054	0.42	17,054	0.75	1,213	0.09	0	0.00
	60	17,054	0.54	17,054	0.90	1,213	0.11	0	0.01
	70	17,054	0.58	17,054	1.04	1,213	0.12	0	0.01
	80	17,054	0.66	17,054	1.26	1,213	0.15	0	0.01
Type P-II	40	126,406	2.00	126,406	4.66	852	0.08	0	0.00
	50	126,406	2.36	126,406	5.90	852	0.09	0	0.00
	60	126,406	2.86	126,406	7.43	852	0.11	0	0.00
	70	126,406	3.04	126,406	8.38	852	0.13	0	0.01
	80	126,406	3.48	126,406	9.46	852	0.15	0	0.01