

Decision Diagrams for Discrete Optimization

Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University

based on joint work with David Bergman, Andre A. Cire, Sam Hoda, and John N. Hooker

Outline

- Motivation and background
 - multi-valued decision diagrams (MDDs)
- Constraint Programming with MDDs
- MDDs as bounding mechanism
 - Relaxations
 - Restrictions
- Conclusions

Decision Diagrams $\xrightarrow{--\Rightarrow:0} \xrightarrow{\times 1} \xrightarrow{\times 1} \xrightarrow{\times 1} \xrightarrow{\times 2} \xrightarrow{\times 3} \xrightarrow{f} \xrightarrow{1} \xrightarrow{\times 2} \xrightarrow{\times 3} \xrightarrow{f} \xrightarrow{1} \xrightarrow{\times 3} \xrightarrow$

 $f(x1, x2, x3) = (\neg x1 \land \neg x2 \land \neg x3) \lor (x1 \land x2) \lor (x2 \land x3)$

- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- Main operation: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

x1

x2

хЗ

0

xЗ

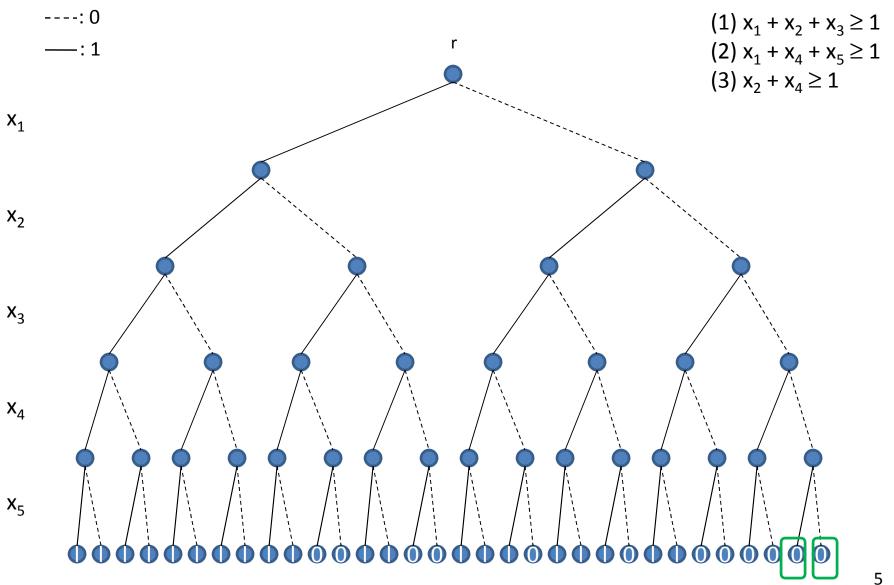
x2

0

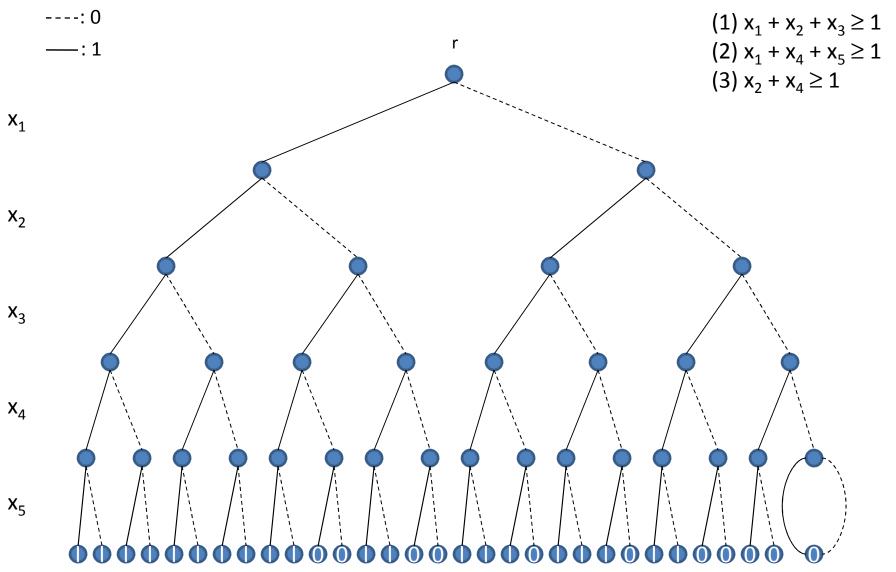
Brief background

- Original application areas: circuit design, verification
- Usually reduced ordered BDDs/MDDs are applied
 - fixed variable ordering
 - minimal exact representation
- Recent interest from optimization community
 - cut generation [Becker et al., 2005]
 - 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
 - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
- Interesting variant
 - approximate MDDs

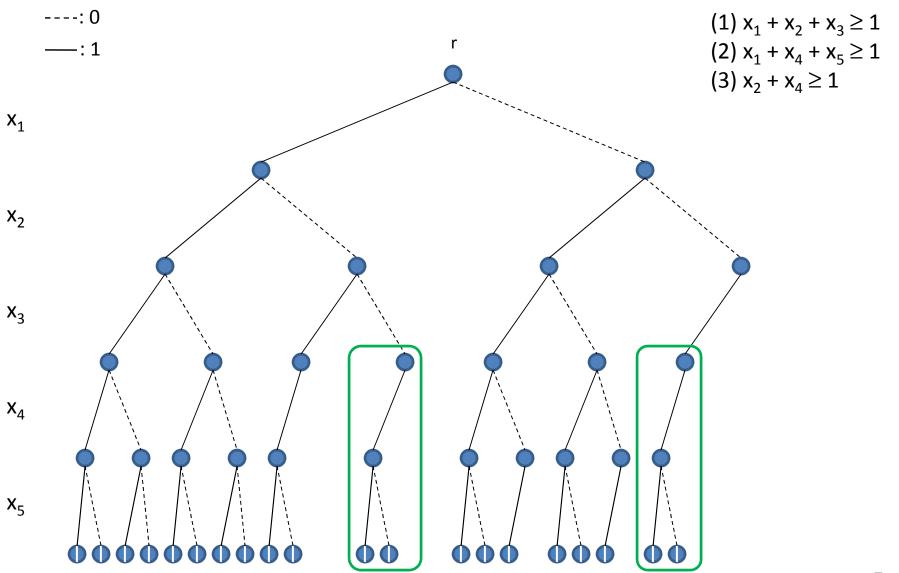
[H.R. Andersen, T. Hadzic, J.N. Hooker, & P. Tiedemann, CP 2007]



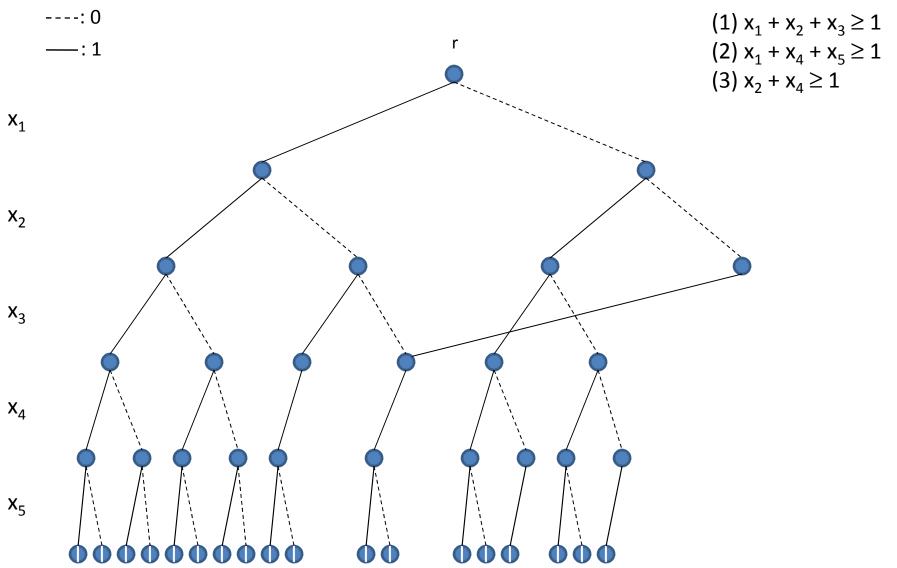
Carnegie Mellor



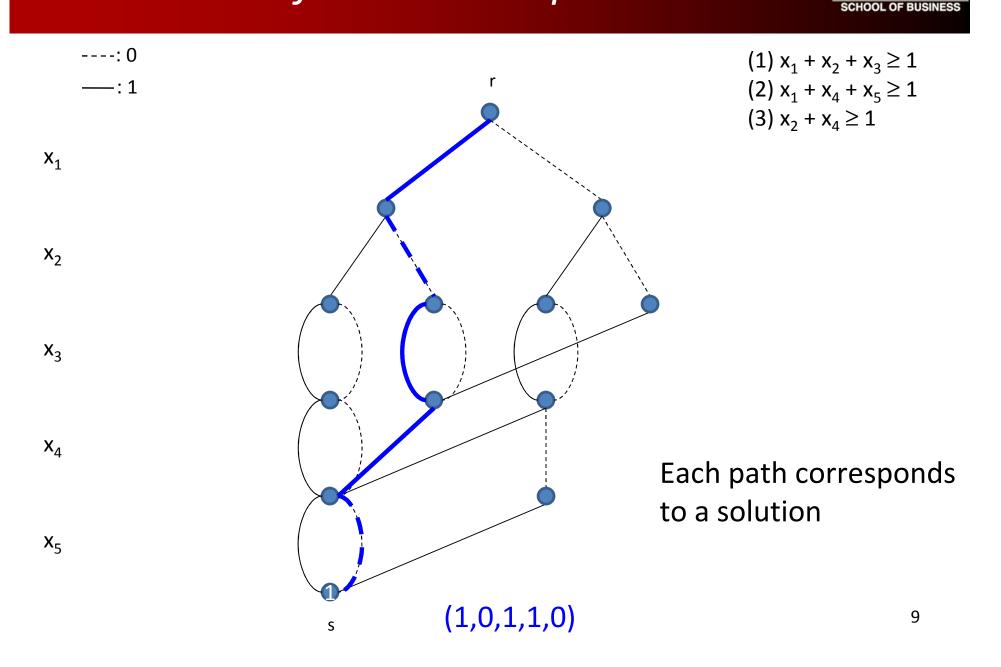
Carnegie Mellor



Carnegie Mellor



Carnegie Mellor



Carnegie Mello

- Exact MDDs can be of exponential size in general
- Can we limit the size of the MDD and still have a meaningful representation?
 - Yes, first proposed by Andersen et al. [2007] :
 Limit the *width* of the MDD (the maximum number of nodes on any layer)
- This talk: applications to CP and IP

MDDs for Constraint Programming

Hoda, v.H., and Hooker. A Systematic Approach to MDD-Based Constraint Programming. In *Proceedings of CP*. LNCS 6308, pp. 266-280. Springer, 2010.

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$x_1 > x_2$$

 $x_1 + x_2 = x_3$
alldifferent(x_1, x_2, x_3, x_4)

$$x_1^{} \in \{2\}, x_2^{} \in \{1\}, x_3^{} \in \{3\}, x_4^{} \in \{0\}$$

Drawback of domain propagation

Carnegie Mellon ECODOE BUSINESS

Observations:

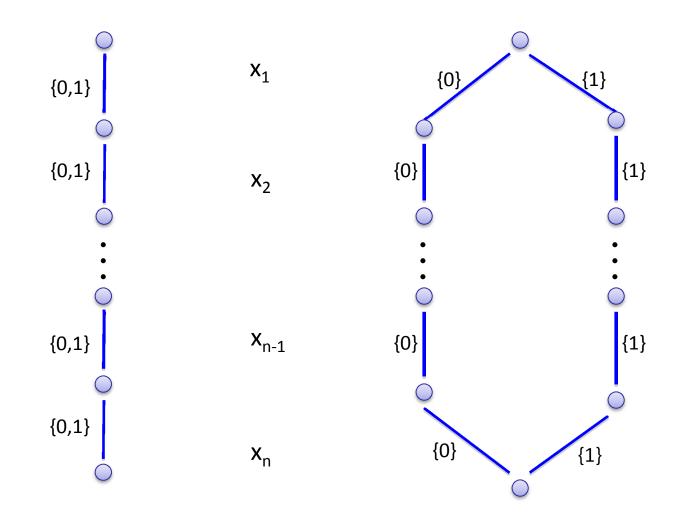
- Communication between constraints only via variable domains
- Information can only be expressed as a domain change
- Other (structural) information that may be learned from a constraint is lost: it must be projected onto variable domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)

This drawback can be addressed by communicating more expressive information, using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential solution space

Illustrative Example

AllEqual($x_1, x_2, ..., x_n$), all x_i binary



domain representation, size 2ⁿ

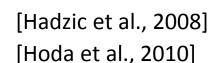
MDD representation, size 2

MDD-based constraint programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

- Linear equalities and inequalities
- Alldifferent constraints
- Element constraints
- Among constraints
- Sequential scheduling constraints [Hoda et al., 2010]
- Sequence constraints (combination of Amongs)
 [v.H., 2011]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]



[Andersen et al., 2007]

[Hoda et al., 2010]

[Hoda et al., 2010]

[Cire & v.H., 2011]

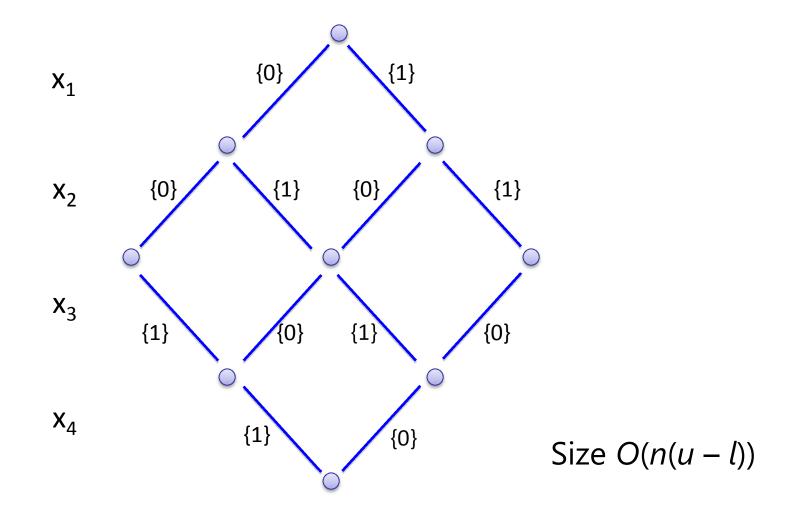
 Given a set of variables X, and a set of values S, a lower bound l and upper bound u,

Among(X, S, l, u) :=
$$l \leq \sum_{x \in X} (x \in S) \leq u$$

"among the variables in X, at least *l* and at most *u* take a value from the set *S*"

- <u>Example</u>: X represents 7-day shift schedule for an employee that must work either 1 or 2 night shifts: *Among(X,* {night}, 1, 2)
- (WLOG assume that X are binary and S = {1})

Example: MDD for Among



Exact MDD for *Among*({x₁,x₂,x₃,x₄},{1},2,2)

MDD Filtering for Among

Goal: Given an arbitrary MDD and an *Among* constraint, remove *all* inconsistent edges from the MDD

(establish "MDD-consistency")

Approach:

- Compute path lengths from the root and from the sink to each node in the MDD
- Remove edges that are not on a path with length between lower and upper bound
- Complete (MDD-consistent) version
 - Maintain all path lengths; quadratic time
- Partial version (does not remove all inconsistent edges)
 - Maintain and check bounds (longest and shortest paths); linear time

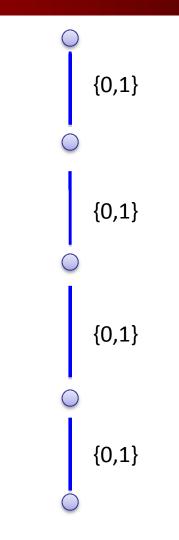
Node refinement for Among

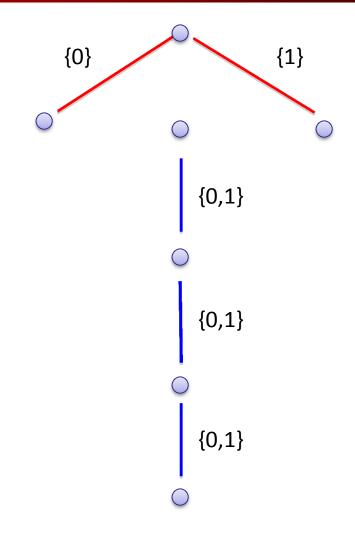
For each layer in MDD, we first apply edge filter, and then try to refine

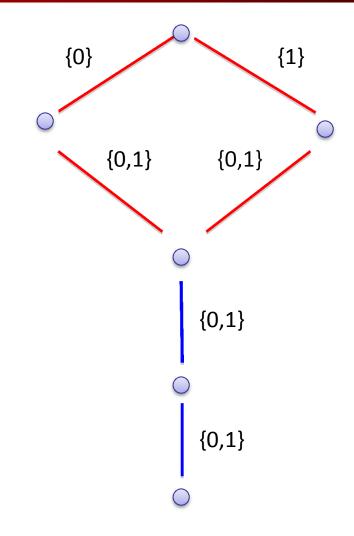
- consider incoming edges for each node
- split the node if there exist incoming edges that are not equivalent (w.r.t. path length)

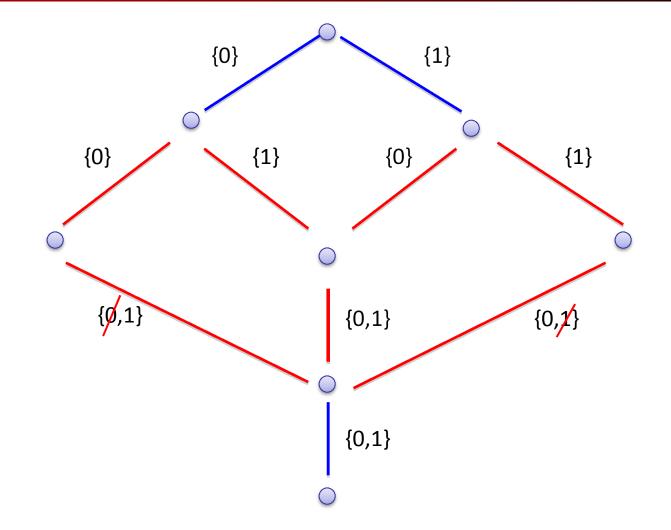
Example:

We will propagate Among({x₁,x₂,x₃,x₄},{1},2,2) through a BDD of maximum width 3





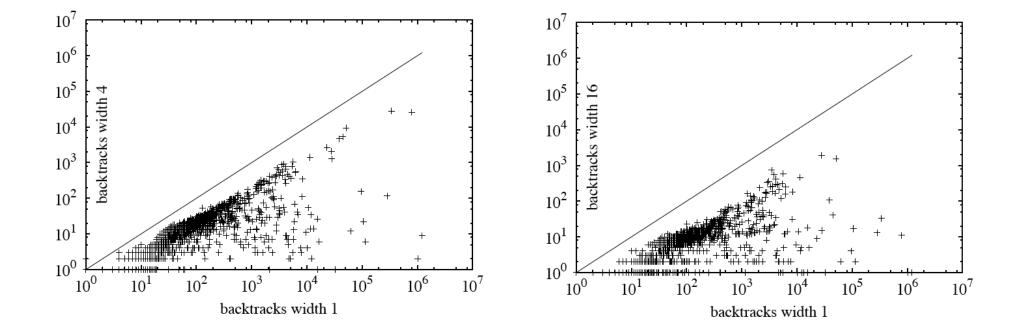




Experiments

- Multiple among constraints
 - 50 binary variables total
 - 5 variables per among constraint, indices chosen from normal distribution with uniform-random mean in [1..50] and stdev 2.5, modulo 50
 - Classes: 5 to 200 among constraints (step 5), 100 instances per class
- Nurse rostering instances (horizon *n* days)
 - Work 4-5 days per week
 - Max A days every B days
 - Min C days every D days
 - Three problem classes
- Compare width 1 (traditional domains) with increasing widths

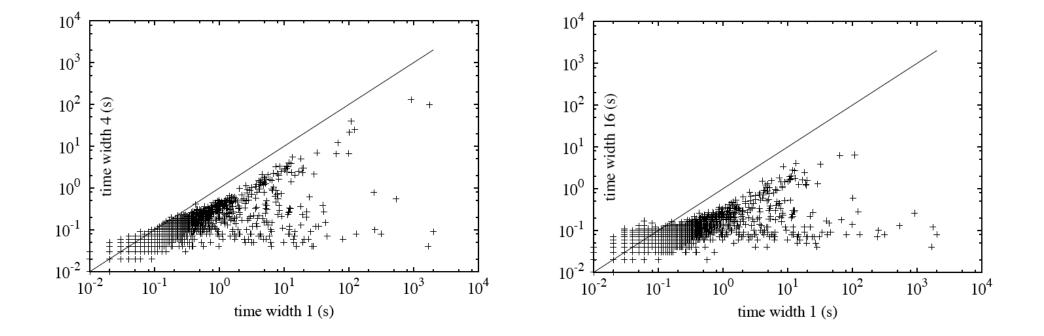
Multiple Amongs: Search tree size



width 1 vs 4

width 1 vs 16

Multiple Amongs: Running Time



width 1 vs 4

width 1 vs 16

Nurse rostering problems

		Width 1		Width 4		Width 32	
	Size	BT	CPU	BT	CPU	BT	CPU
Class 1	40	61,225	55.63	8,138	12.64	3	0.09
	80	175,175	442.29	5,025	44.63	11	0.72
Class 2	40	179,743	173.45	17,923	32.59	4	0.07
	80	179,743	459.01	8,747	80.62	2	0.32
Class 3	40	91,141	84.43	5,148	9.11	7	0.18
	80	882,640	2,391.01	33,379	235.17	55	3.27

Summary for MDD-based CP

- MDDs provide substantial advantage over traditional domains for filtering multiple *Among* constraints
 - Strength of MDD can be controlled by the width
 - Wider MDDs yield greater speedups
 - Huge reduction in the amount of backtracking and solution time
- Intensive processing at search nodes can pay off when more structural information is communicated between constraints

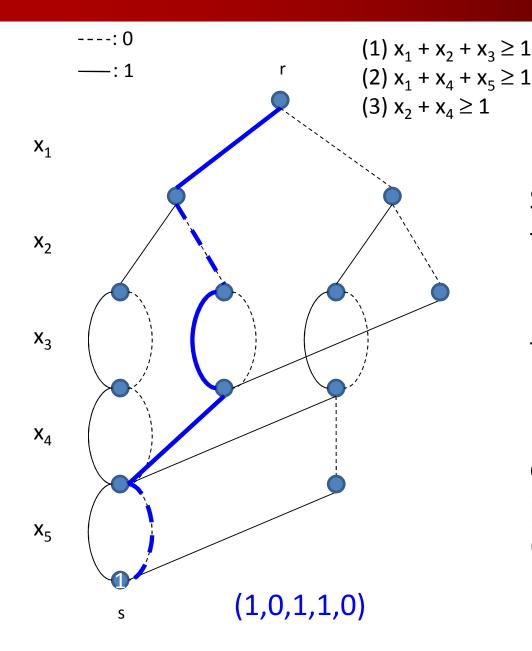
Relaxation MDDs

Bergman, v.H., and Hooker. Manipulating MDD Relaxations for Combinatorial Optimization. In *Proceedings of CPAIOR*, LNCS 6697, pp. 20-35. Springer, 2011.
Bergman, Cire, v.H., and Hooker. Bounds for Discrete Optimization Problems via Multivalued Decision Diagrams. Working paper, 2011.

Motivation and outline

- Limited width MDDs provide a (discrete) relaxation to the solution space
- Can we exploit MDDs to obtain bounds for discrete optimization problems?

Handling objective functions



Carnegie Mellon SCHOOL OF BUSINESS

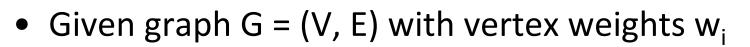
Suppose we have an objective function of the form $\min \sum_{i} f_{i}(x_{i})$ for arbitrary functions f_i

In an exact MDD, the optimum can be found by a shortest r-s path computation (edge weights are $f_i(x_i)$)

Approach

- Construct the relaxation MDD using a top-down compilation method
- Find shortest path \rightarrow provides bound B
- Extension to an exact method
 - 1. Isolate all paths of length B, and verify if any of these paths is feasible^{*}
 - 2. if not feasible, set B := B + 1 and go to 1
 - 3. otherwise, we found the optimal solution
- * Feasibility can be checked using MDD-based CP

Case Study: Independent Set Problem

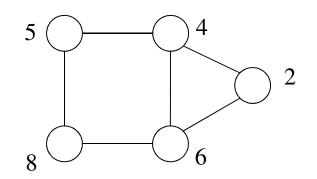


• Find a subset of vertices S with maximum total weight such that no edge exists between any two vertices in S

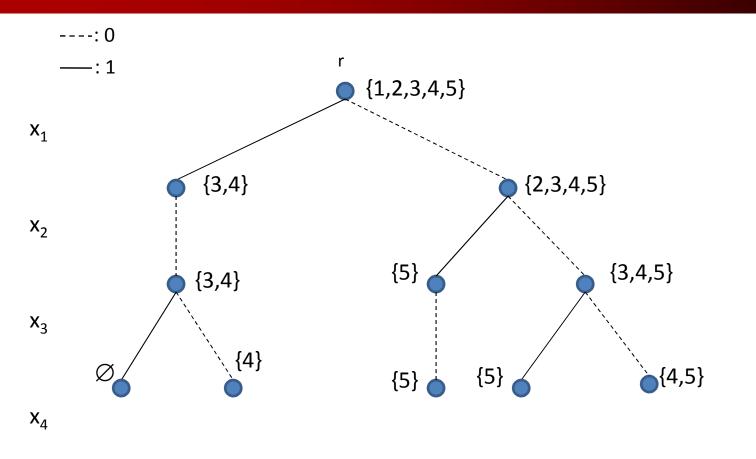
max
$$\sum_{i} w_{i} x_{i}$$

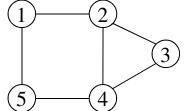
s.t. $x_i + x_j \le 1$ for all (i,j) in E

x_i binary for all i in V



Exact top-down compilation



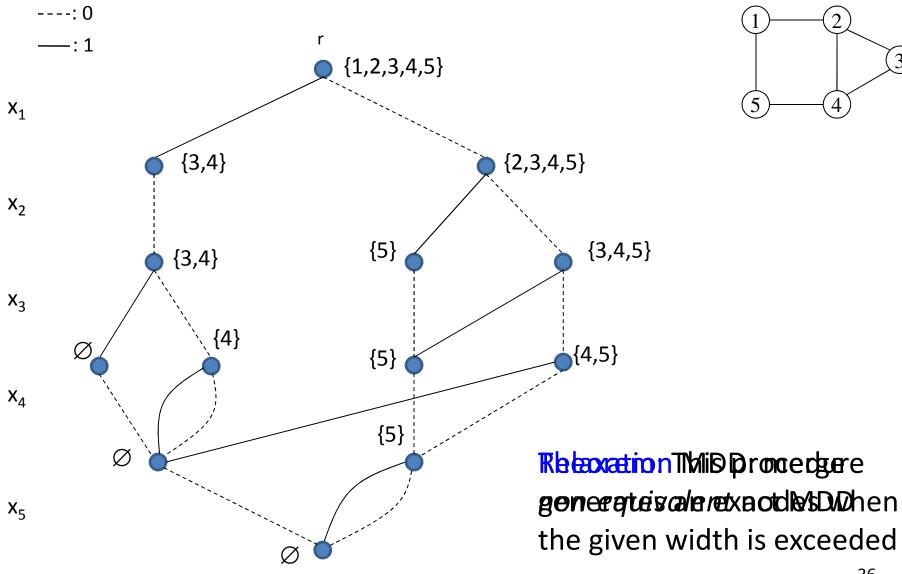


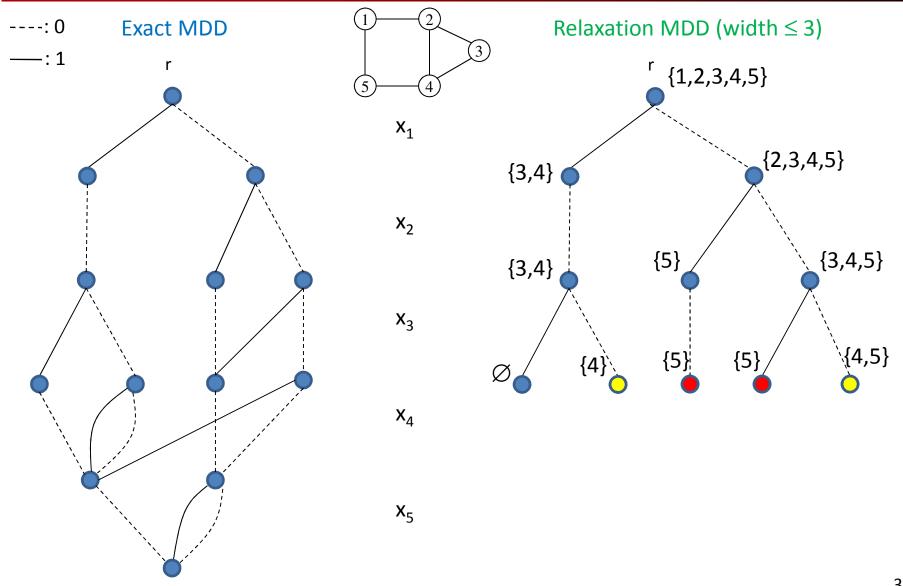
Merge equivalent nodes

X₅

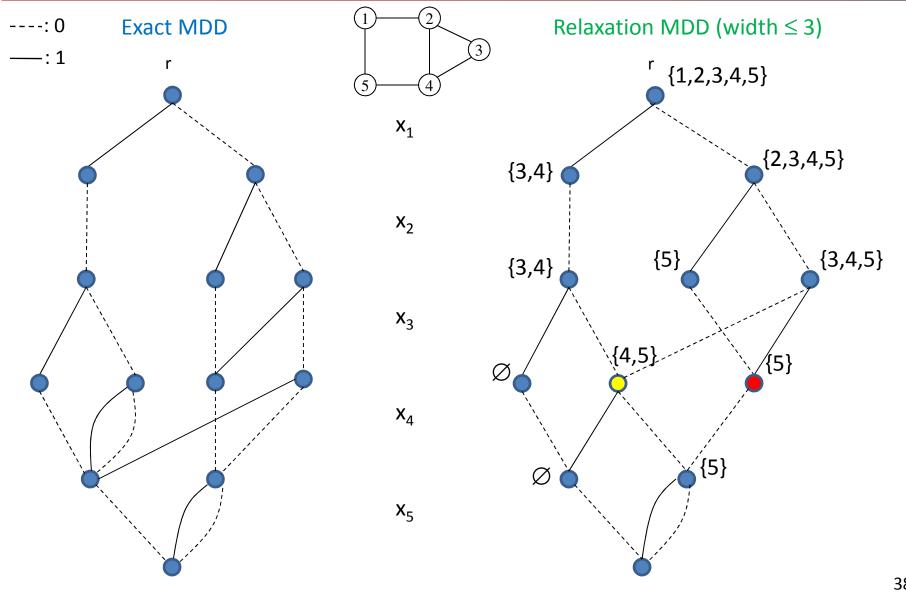
{vertices that can still be included}

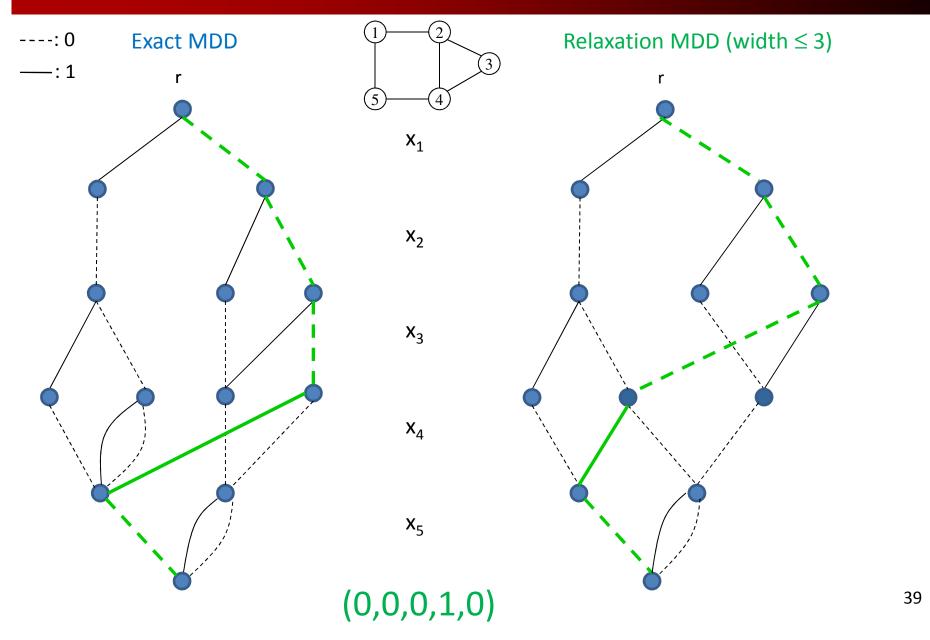
Node Merging

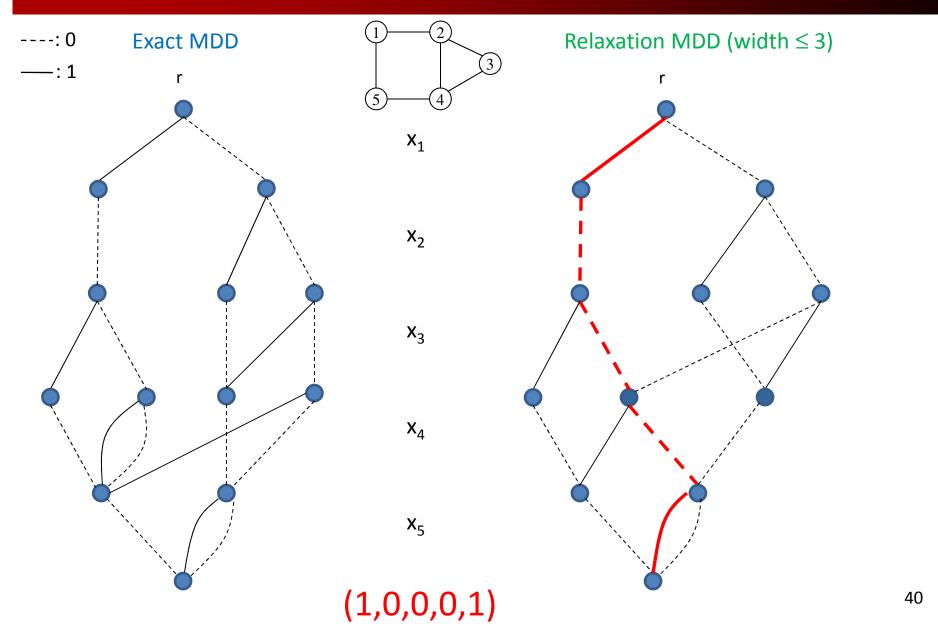




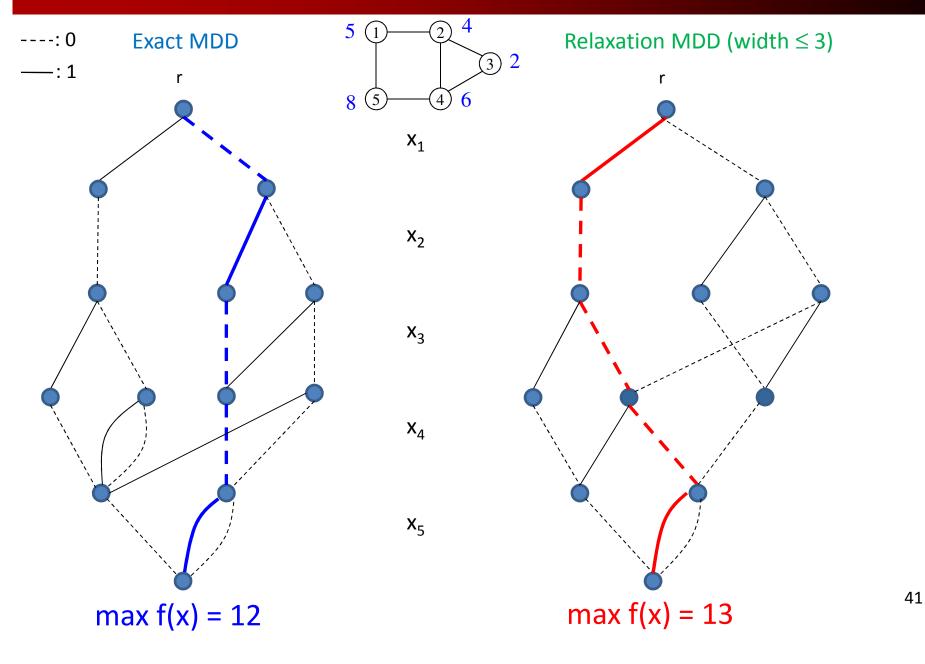
37







Evaluate Objective Function



Tightening the Upper Bound

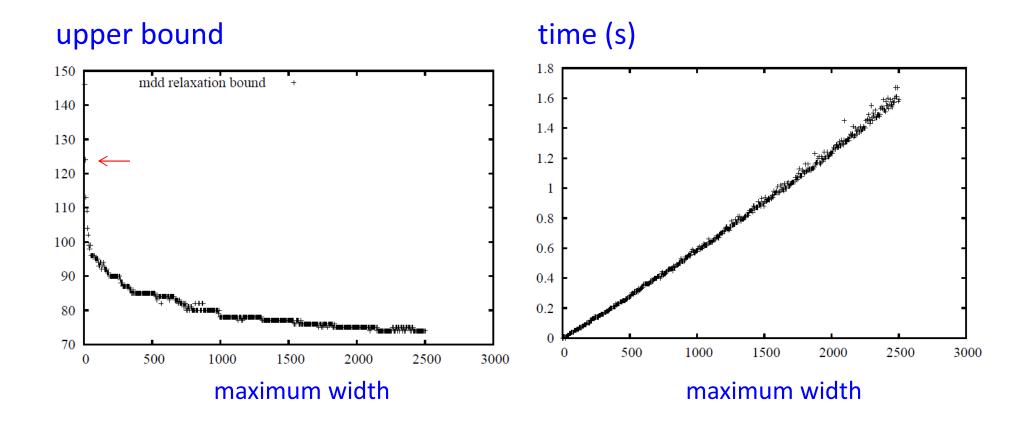
- Value extraction method
 - Given: an MDD relaxation, M
 - Given: a valid upper bound, v
 - Extract all paths in M that correspond to solutions with objective function value equal to v in the form of another MDD M |_{z=v}
- Creating $M|_{z=v}$ can be done efficiently
- Apply MDD-based CP to $M|_{z=v}$ in order to either
 - Decrease v to v-1 (if no solution exists)
 - Find a feasible (and optimal) solution

Experimental Results

- Impact of maximum width on strength of bound (and running time)
- Evaluate value extraction method
- Compare MDD bounds to LP bounds

• DIMACS clique instances (unweighted graphs)

Impact of width on relaxation



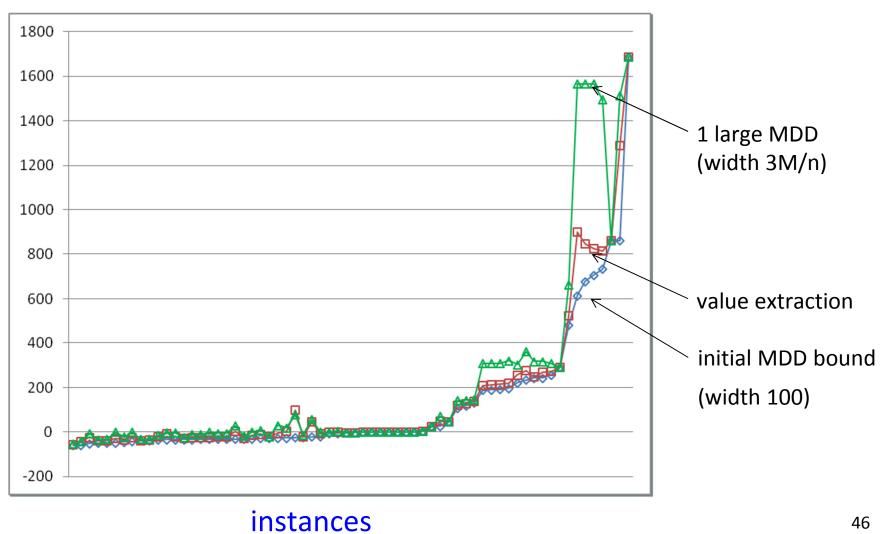
brock_200-2 instance

Compare MDD and LP bounds

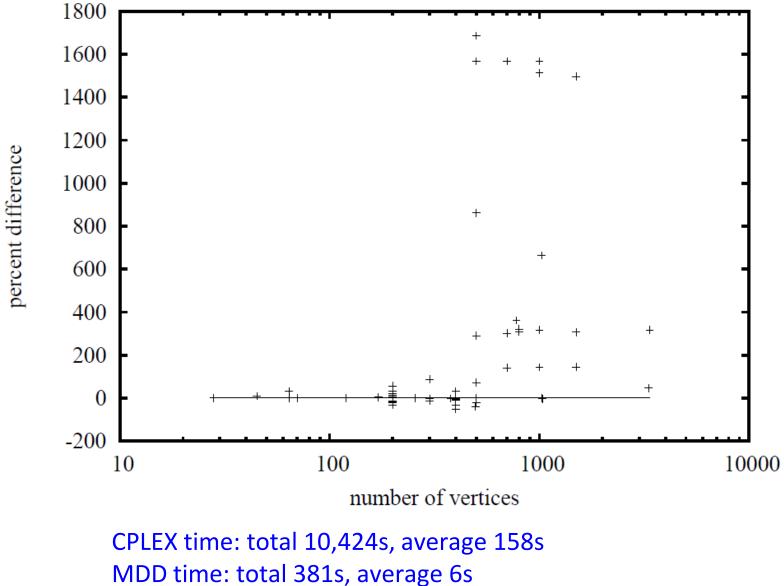
- CPLEX root node relaxation
 - no primal heuristics, no presolve
 - maximum 5 minutes
- MDD bound version 1
 - maximum width 100
 - apply value extraction for the same time as CPLEX
- MDD bound version 2
 - maximum width 3,000,000/n (fill memory)
 - no value extraction

MDD versus LP (CPLEX)

% difference, i.e., $100 \cdot (z_{LP} - z_{MDD})/z_{MDD}$



Large MDD versus LP (CPLEX)



47

Restriction MDDs

Definition

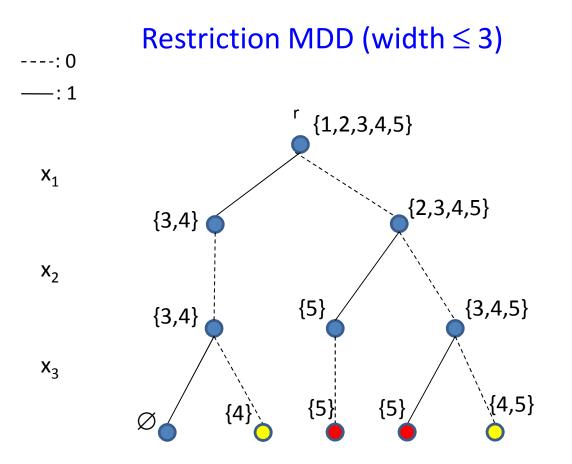
- Restriction MDDs represent a subset of feasible solutions
 - we require that every r-s path corresponds to a feasible solution
 - but not all solutions need to be represented
- Goal: Use restriction MDDs as a heuristic to find good feasible solutions

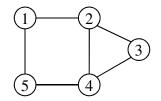
Using an exact top-down compilation method, we can create a limited-width restriction MDD by

- 1. merging nodes, or
- 2. deleting nodes

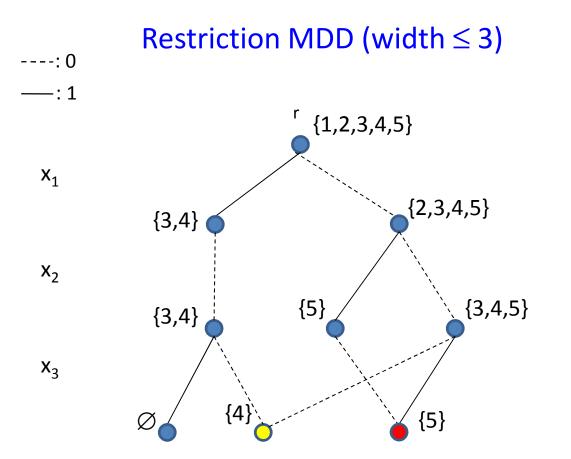
while ensuring that no solution is lost

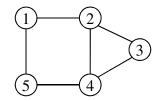
Node merging by example





Node merging by example





Node merging heuristics

• Random

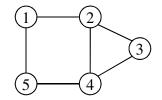
- select two nodes $\{u_1, u_2\}$ uniformly at random
- Objective-driven
 - select two nodes $\{u_1, u_2\}$ such that

 $f(u_1), f(u_2) \le f(v)$ for all nodes $v \ne u_1, u_2$ in the layer

- Similarity
 - select two nodes {u₁, u₂} that are 'closest'
 - problem dependent (or based on semantics)

Node deletion by example

Restriction MDD (width \leq 3) ----: 0 {1,2,3,4,5} X_1 {2,3,4,5} {3,4} \mathbf{X}_{2} {5} {3,4,5} {3,4} X_3 {4,5} {4}`<u>`</u> {5}`` Ø



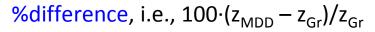
Node deletion heuristics

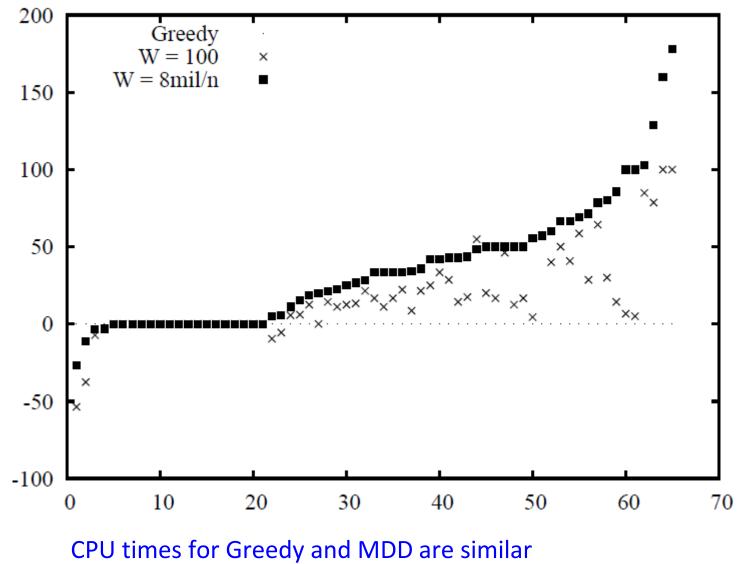
- Random
 - select node u uniformly at random
- Objective-driven
 - select node u such that
 - $f(u) \le f(v)$ for all nodes $v \ne u$ in the layer
- Information-driven
 - problem specific

Experimental Results

- Comparison to greedy heuristic
 - select vertex v with smallest degree and add it to independent set
 - remove v and its neighbors and repeat
- MDD version 1: maximum width 100
- MDD version 2: maximum width 8,000,000/n

Greedy versus MDD





Conclusions

- Limited-width MDDs can be a very useful tool for discrete optimization
 - The maximum width provides a natural trade-off between computational efficiency and strength
 - Powerful inference mechanism for constraint propagation
 - Generic discrete relaxation and restriction method for MIP-style problems
- Many open questions
 - MDD variable ordering, interaction with search, formal characterizations, ...