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Disjunctive Scheduling

� Sequencing and scheduling of activities on a resource

� Activities

� Processing time: pi
� Release time: ri
� Deadline: di

� Resource

� Nonpreemptive

� Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4
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Extensions

� Precedence relations between activities

� Sequence-dependent setup times

� Variety of objective functions

� Makespan

� Sum of setup-times

� Tardiness / number of late jobs

� …
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Current Literature

� Active research spread across communities

� Operations Research

� Artificial Intelligence

� Our focus: Constraint-based Scheduling
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Constraint-Based Scheduling

� Constraints in a model capture richer structures, e.g.

disjunctive(s, p)

which enforces

�� + �� ≤ �� ∨ �� + �� ≤ �� ,  for	all	�, �, � ≠ �

� Specialized inference techniques for each constraint

� Separation between model and solution approach
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Constraint-Based Scheduling

� Inference for disjunctive scheduling

� Precedence relations

� Time intervals that an activity can be processed

� Sophisticated techniques include:

� Edge-Finding

� Not-first / not-last rules

Activity 1

Activity 2

Activity 3

0 1 2 3 4

Examples: 1≪3
s3 ≥ 3
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Constraint-Based Scheduling

� Extensible, flexible scheduling systems

� Successful in many real-world applications

� Challenges arise in presence of

� Sequence-dependent setup times

� Complex objective functions

� New inference techniques based on Multivalued Decision 
Diagrams to tackle these challenges
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Multivalued Decision Diagrams

� Ordered Acyclic Digraph

� Layers: variables

� Arc labels: variable assignments

� Paths from r to t: feasible solutions

� Compact representation of the search tree 
for a problem.

�� + �� ≤ 1,

�� ≠ ��, 	��≠ ��, 	��≠ ��,

��, ��, �� ∈ 0,1,2,3 .
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Multivalued Decision Diagrams

� Consider any separable objective 
function, e.g.

� � = 4�� + 3 ! + ��
�

� Appropriate arc weights: 
shortest path minimizes f(x)
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MDD for Disjunctive Scheduling

π1

π2

π3

{2}

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3

{1}

{3}

{3} {2}

Path {1} – {3} – {2}

0 ≤ start1 ≤ 1
6 ≤ start2 ≤ 7
3 ≤ start3 ≤ 5

� Every solution can be written as a permutation π
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Permutation Model

Our two main considerations:

� Compilation
� How to translate a disjunctive instance to an MDD

� Inference techniques

� Types of inference we can obtain from MDD
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Compilation

Theorem: Constructing the exact MDD for a Disjunctive Instance is 
an NP-Hard problem

Nevertheless, some interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ � if   � − � ≥ $ for cities i, j 

Corollary:  The exact MDD for the TSP above has O(n2k) nodes
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Compilation

� Even in restricted cases, MDDs can grow exponentially

� We are still interested in general cases for inference 
purposes

� Alternative: Relaxed MDDs

� Limit on the width of the graph

� Filter and Refinement [Andersen et al. CP2007], [Hoda et al. CP2010]
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{1,2,3}

Filter and Refinement 

� Start with a relaxed MDD

� Contains all feasible paths

� Filter infeasible arc values

� Top-down/Bottom-up passes

π1

π2

π3

t

r

{1,2,3}

{1,2,3}

{1,2}
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Filter and Refinement 

� Start with a relaxed MDD

� Contains all feasible paths

� Filter infeasible arc values

� Top-down/Bottom-up passes

� Refinement

� Add nodes to improve relaxation

� Usually heuristics

π1

π2

π3

t

r

{1,2,3}

{1,2}

{1,2,3}

{1}

{1,3}{2,3}

{2}
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Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{1,2,3,4,5}

� Filter based on a state
information at each node

� Example: 

Filtering arc (u,v)

π1

π2

π3

π4

…
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Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{1,2,4,5}

� All-paths state:  Au

� Labels belonging to all paths from 
node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

• Introduced for Alldifferent constraint in  
[Andersen et al 2007])

{1,2,3,4,5}

π1

π2

π3

π4

…
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Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5}

� Some-paths state:  Su
� Labels belonging to some path from 

node r to node u

� Su = {1,2,3}

� Identification of Hall sets

� Thus eliminate {1,2,3} from (u,v)

� Introduced for Alldifferent constraint in 
[Andersen et al 2007])

{1,2,4,5}

π1

π2

π3

π4

…
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Filter: Top-Down Example

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5} π4

� Earliest Completion Time:  Eu

� Minimum completion time of all paths 

from root to node u

� Similarly: Latest Completion Time

…
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Filter: Top-Down Example

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}

{2}

{4,5} π4

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

� Eu = 7

� Eliminate 4 from (u,v)
{5}

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

…
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MDDs and Precedence Relations

Theorem: Given the exact MDD M,  we can deduce all implied 
precedences in polynomial time in the size of M

r

v

t

i

j

� For a node v,

� *+
↓ : all-paths from root to v

� *+
↑ : all-paths from terminal to v

� Precedence relation � ≪ � holds if and only if

for all nodes u in M

� Same technique applies to relaxed MDD
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Communicate Precedence Relations

1. Provide precedences inferred from the MDD to CP

� Update time variables

� Other inference techniques may utilize them

2. We can filter the relaxed MDD using precedence 
relations inferred from other (CP) techniques

� Precedences deduced by this method might not be 
dominated by other techniques, even for small widths.
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Experimental Results

� Implemented in Ilog CP Optimizer (CPO)

� State-of-the-art constraint based scheduling solver

� Uses a portfolio of inference techniques and LP relaxation

� Two versions considered

� Standalone MDD

� Ilog CPO + MDD (but partial integration!)

� Instances from TSP with Time Windows

� minimize sum of setup times / minimize makespan
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Instances Dumas

CPO MDD CPO+MDD

Instance Backtracks Time Backtracks Time Backtracks Time

n20w100.002 1,382,397 95.71 190,101 76.41 131,039 59.58

n20w60.004 151,301 15.41 85,245 26.65 21,743 7.81

n20w80.001 19,060 1.31 5,076 1.15 1,073 0.20

n20w80.005 61,823 5.46 22,369 8.76 7,638 3.00

n40w40.001 210,682 26.53 22,367 7.33 6,142 2.91

n40w40.003 152,855 14.71 27,483 20.92 800 0.14

n40w40.004 480,970 50.81 28,334 10.34 5,986 3.64

n60w20.001 908,606 199.26 31,182 10.10 17,637 7.46

n60w20.002 84,074 14.13 1,657 0.14 728 0.12

n60w20.003 22,296,012 +∞ 134,755 105.85 55,311 39.43

n60w20.004 2,685,255 408.34 5,855 3.78 1,567 0.94

n60w20.005 19,520 9.32 2,580 0.33 1,039 0.08

MDDs have maximum width 16minimize sum of setup times 
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Combined CP+MDD

CPO

Backtracks

M
D
D
 +
 C
P
O

CPO

Time (s)

M
D
D
 +
 C
P
O

85 instances from Dumas and Ascheuer (AFG)
MDDs have maximum width 16
Dynamic search strategy
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Conclusions

� The Permutation Model

� Natural MDD representation

� Strong relation to precedence graph

� High-level communication between MDD and other inference 
mechanisms

� Practical perspective

� Easy to implement in current constraint solvers

� Observed orders of magnitude improvement
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