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Motivation
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� Constraint-based scheduling: Exploit subproblem structure

� High-level, structured constraints (disjunctive, cumulative…)

� Sophisticated inference techniques

� Process constraints one at a time

� … but how to pool the results of constraint processing?

� Constraint store - Shared data structure that accumulates 
implications of each constraint



Motivation
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� In practice: constraint store is the domain store

� Implications are of the form 

												�� ≤ �, �� ≥ �, or		�� ≠ � for  � ∈ �
����(��)

� Propagation: reduce domains as much as possible

� Domain store is a natural relaxation, but may be too weak
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alldiff(��, ��, ��),

�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.

Problem is infeasible

1. Propagation of alldiff
- No inference.

2. Propagation of sum
- No inference.

Domains remain unchanged!

• Common solution: new global constraint

– cost-alldiff, cost-sum-weighted-alldiff, etc …



Motivation
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� Other alternative: a richer constraint store

� Proposal: Relaxed Multivalued Decision Diagrams (MDDs)

� Initial framework by Andersen et al (CP2007).

� Fundamental questions

� How to effectively process MDDs for particular constraints?

� When does it perform better than domain store?

� ...

� Our goal: application to constraint-based scheduling



Relaxed MDDs

6

� Compact representation of a search tree

� Ordered Acyclic Digraph

� Layers: variables

� Arc labels: variable assignments

� Paths from r to t: solutions to the problem
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� Compact representation of a search tree

� Ordered Acyclic Digraph

� Layers: variables

� Arc labels: variable assignments

� Paths from r to t: solutions to the problem

� Example:  x1=1, x2=9, x3=10
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� Relaxed

� It encodes all feasible solutions

� It may encode infeasible solutions
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Relaxed MDDs
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� Relaxation is adjustable

� Controlled by the width of the graph
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� Constraint processing 

� Refine the MDD representation by removing / adding arcs

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.
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1. Propagation of alldiff
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� Constraint processing 

� Refine the MDD representation by removing / adding arcs

alldiff(��, ��, ��),
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� Constraint processing 

� Refine the MDD representation by removing / adding arcs

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.
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1. Propagation of alldiff

2. Propagation of sum
- Detects infeasibility!



Relaxed MDDs and Scheduling
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� Focus: disjunctive scheduling

� Highlight of CP, widespread application

� Still has particular deficiencies

� MDD constraint processing for disjunctive scheduling



Disjunctive Scheduling

� Sequencing and scheduling of activities on a resource

� Activities

� Processing time: pi
� Release time: ri
� Deadline: di

� Resource

� Nonpreemptive

� Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4
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Common Side Constraints

� Precedence relations between activities

� Sequence-dependent setup times

� Induced by objective function

� Makespan

� Sum of setup times

� Sum of completion times

� Tardiness / number of late jobs

� …
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Inference

� Inference for disjunctive scheduling
� Precedence relations

� Time intervals that an activity can be processed

� Sophisticated techniques include:
� Edge-Finding

� Not-first / not-last rules

� Challenges arise in presence of
� Sequence-dependent setup times

� Complex objective functions
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MDDs for Disjunctive Scheduling

Our two three main considerations:

� Representation
� How to represent solutions of disjunctive scheduling in an MDD?

� Construction
� How to construct  this relaxed MDD?

� Inference techniques
� What can we infer using the relaxed MDD?
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MDD Representation

� Natural representation as MDDs

� Every solution can be written as a permutation π

π
1
, π

2
, π

3
, …, π

n 
:  activity sequencing in the resource

� Schedule is implied by a sequence, e.g.:

� �! "#
	≥ � �! "#$%

+ &"#$%
							� = 2,… , �
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MDD Representation

r

π1 : first activity

π2 : second activity

πn : n-th activity

t

… … …
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MDD Representation

π1

π2

π3

{2}

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3

{1}

{3}

{3} {2}

Path {1} – {3} – {2}

0 ≤ start1 ≤ 1
6 ≤ start2 ≤ 7
3 ≤ start3 ≤ 5
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MDD Construction

� In general, MDDs can grow exponentially

� Polynomial-width for particular scheduling problems

� We fix a maximum width W

� Apply a variation of filter and refinement technique
� Andersen et al. (CP2007), Hoda et al. (CP2010)
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{1,2,3}

Filter and Refinement 

� Start with a width-1 MDD

� Straightforward MDD relaxation

� Filter infeasible arc values

� Top-down/Bottom-up passes
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Filter and Refinement 

� Start with a width-1 MDD

� Straightforward MDD relaxation

� Filter infeasible arc values

� Top-down/Bottom-up passes

� Refinement

� Add nodes to improve relaxation
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Filter and Refinement 

� Start with a width-1 MDD

� Straightforward MDD relaxation

� Filter infeasible arc values

� Top-down/Bottom-up passes

� Refinement

� Add nodes to improve relaxation

� Repeat filtering/refinement until 
certain conditions are met
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Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5}

� Filter based on a state
information at each node

� Example: 

Filtering arcs (u,v)

π1

π2

π3

π4

…
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Filter: Top-Down Example

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5} π4

� Earliest Completion Time:  Eu
� Minimum completion time of all 

partial sequences represented by 

paths from root to node u

� Similarly: Latest Completion Time

…
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Filter: Top-Down Example

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5} π4

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

… … … …

� Eu = 7

� Eliminate 4 from (u,v)
{5}

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

… … … …

…
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Filter and Refinement

� Other filters

� Node edge-finding, not-first/not-last rules

� Precedence filtering

� Additional alldiff filters

� …

� Refinement

� Based on earliest completion time of a node
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MDD Inference

Theorem: Given the exact MDD M,  we can deduce all implied 
activity precedences in polynomial time in the size of M

r

v

t

i

j

� For a node v,

� /0
↓ : values in all paths from root to v

� /0
↑ : values in all paths from node v to terminal

� Precedence relation � ≪ 4 holds if and only if

for all nodes u in M

� Same technique applies to relaxed MDD
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Communicate Precedence Relations

1. Provide precedences inferred from the MDD to solver

� Update time variables

� Other inference techniques may utilize them

2. We can filter the relaxed MDD using precedence 
relations inferred from other (CP) techniques

� Precedences deduced by this method might not be 
dominated by other techniques, even for small widths.
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Experimental Results

� Implemented in Ilog CP Optimizer (CPO)

� State-of-the-art constraint based scheduling solver

� Uses a portfolio of inference techniques and LP relaxation

� Random and structured instances

� Different classical objective functions

� Tested integration CPO+MDD
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Makespan
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Random instance
15 jobs
Lex search
MDD width: 16



Makespan
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Random instance
15 jobs
Lex search
MDD width: 16



Sum of Completion Times
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Random instances
12 jobs
Lex search
MDD width: 16



Sum of Completion Times
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Random instances
12 jobs
Lex search
MDD width: 16



TSP with Time Windows
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Dumas instances
Ascheuer instances
20-60 jobs
Lex search
MDD width: 16



TSP with Time Windows
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Dumas instances
Ascheuer instances
20-60 jobs
Lex search
MDD width: 16



Instances Dumas (TSPTW)

CPO CPO+MDD

Instance Cities Backtracks Time (s) Backtracks Time (s)

n40w40.004 40 480,970 50.81 18 0.06

n60w20.001 60 908,606 199.26 50 0.22

n60w20.002 60 84,074 14.13 46 0.16

n60w20.003 60 > 22,296,012 > 3600 99 0.32

n60w20.004 60 2,685,255 408.34 97 0.24

MDDs have maximum width 16minimize sum of setup times 
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Conclusions

� MDD for disjunctive constraints

� Strong relation to precedence graph

� High-level communication between MDD and other inference 
mechanisms

� Practical perspective

� Current experiments suggest it is stronger for sums

� Observed orders of magnitude improvement
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Thank you!
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Compilation

Theorem: Constructing the exact MDD for a Disjunctive Instance is 
an NP-Hard problem

Nevertheless, some interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ 4 if   4 − � ≥ 6 for cities i, j 

Corollary:  The exact MDD for the TSP above has O(n2k) nodes



Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5}

� All-paths state:  Au
� Labels belonging to all paths from 
node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

• Introduced for Alldifferent constraint in  
[Andersen et al 2007]

{3,4,5}

π1

π2

π3

π4

…
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Outline

1. Disjunctive Scheduling

2. Multivalued Decision Diagram (MDD) Representation
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