MDD Propagation for

Disjunctive Scheduling

Andre Augusto Cire

Joint work with Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University

ISMP 2012

Motivation

» Constraint-based scheduling: Exploit subproblem structure
High-level, structured constraints (disjunctive, cumulative...)
Sophisticated inference techniques

Process constraints one at a time

» ... but how to pool the results of constraint processing?

Constraint store - Shared data structure that accumulates
implications of each constraint

Motivation

» In practice: constraint store is the domain store
Implications are of the form
x; <v, x; =2v, or x; # v for v € domain(x;)

Propagation: reduce domains as much as possible

» Domain store is a natural relaxation, but may be too weak

Motivation

Problem is infeasible

alldiff(x, x5, x3), |. Propagation of alldiff
- No inference.
X1 +x2 +X3 < 12,
2. Propagation of sum

X1, %3, %3 € {1,9,10}. - No inference.

Domains remain unchanged!

* Common solution: new global constraint
— cost-alldiff, cost-sum-weighted-alldiff, etc ...

Motivation

» Other alternative: a richer constraint store

» Proposal: Relaxed Multivalued Decision Diagrams (MDDs)
Initial framework by Andersen et al (CP2007).

» Fundamental questions

How to effectively process MDDs for particular constraints?

When does it perform better than domain store?

» Our goal: application to constraint-based scheduling

Relaxed MDDs

alldiff(xxq, x5, x3),
x1+X2 +X3 S 121
X1,X2,X3 (S {1;9)10}

X
» Compact representation of a search tree
{9,10} (9.10} x,
» Ordered Acyclic Digraph
Layers: variables
Arc labels: variable assignments
X3

{1,9,10}
» Paths from r to t: solutions to the problem

Relaxed MDDs

alldiff(xxq, x5, x3),
Xl +x2 +X3 S 12)
X1,X2,X3 (S {1;9)10}

X
» Compact representation of a search tree
{9,10} {9,10} X,
» Ordered Acyclic Digraph
Layers: variables
Arc labels: variable assignments
X3

{1,9,10}
» Paths from r to t: solutions to the problem

Example: x,=1,x,=9, x;=10

Relaxed MDDs

alldiff(xxq, x5, x3),
Xl +x2 +X3 S 12)
X1,X2,X3 (S {1;9)10}

» Relaxed
It encodes all feasible solutions

It may encode infeasible solutions

Relaxed MDDs

» Relaxation is adjustable

Controlled by the width of the graph

Q

{1,9,10}

5

{1,9,10}

{1,9,10}

O

Width | = Domain Store

{1} {9,10}

(9,10} (9,10}

{1,9,10} {1,9,10}

Width 2

10
{1 {9}{ }

Unlimited width: original
problem

Relaxed MDDs

» Constraint processing

Refine the MDD representation by removing / adding arcs

alldiff(xc;, x5, X3),

X1+ xy +x3 <12, X

X1, X2,%3 € {1,9,10}.

|. Propagation of alldiff {9,10} {9,10} X,
X3

{1,9,10}

Relaxed MDDs

» Constraint processing

Refine the MDD representation by removing / adding arcs

alldiff(x1, X, x3),
X1+ %y +x3 <12,
X1, %5, %3 € {1,9,10}.

|. Propagation of alldiff

Relaxed MDDs

» Constraint processing

Refine the MDD representation by removing / adding arcs

alldiff(x1, X, x3),
X1+ %y +x3 <12,
X1, %5, %3 € {1,9,10}.

|. Propagation of alldiff

2. Propagation of sum
- Detects infeasibility!

Relaxed MDDs and Scheduling

» Focus: disjunctive scheduling
Highlight of CP, widespread application

Still has particular deficiencies

» MDD constraint processing for disjunctive scheduling

Disjunctive Scheduling

» Sequencing and scheduling of activities on a resource

» Activities 0 ,) 3

Processing time: p,

Release time: ., Activity | [e—

Deadline: d. Activity 2 E]
Activity 3 E S
» Resource
Nonpreemptive

Process one activity at a time

Common Side Constraints

» Precedence relations between activities

» Sequence-dependent setup times

» Induced by objective function
Makespan
Sum of setup times
Sum of completion times

Tardiness / number of late jobs

Inference

» Inference for disjunctive scheduling
Precedence relations
Time intervals that an activity can be processed

» Sophisticated techniques include:
Edge-Finding
Not-first / not-last rules

» Challenges arise in presence of
Sequence-dependent setup times
Complex objective functions

MDDs for Disjunctive Scheduling

Our two three main considerations:

» Representation
How to represent solutions of disjunctive scheduling in an MDD?

» Construction
How to construct this relaxed MDD?

» Inference techniques
What can we infer using the relaxed MDD?

MDD Representation

» Natural representation as MDDs

» Every solution can be written as a permutation @

T, T, , T, ..., T . activity sequencing in the resource

n.

» Schedule is implied by a sequence, e.g.:

starty, = starty, +pg,_, 1=2,..,n

MDD Representation

x, :first activity

T, : second activity

soe «—(e

o0 0 (

. : n-th activity

MDD Representation

Act r; d, P
T | 0 3 2
2 4 9 2
T, 3 3 8 3
Path {1} — {3} — {2}
T, 0 <start, < |

6 <start,<7
3 <start;<5

20

MDD Construction

» In general, MDDs can grow exponentially

Polynomial-width for particular scheduling problems

» We fix a maximum width W

» Apply a variation of filter and refinement technique
Andersen et al. (CP2007), Hoda et al. (CP2010)

21

Filter and Refinement

» Start with a width-1 MDD
Straightforward MDD relaxation

» Filter infeasible arc values

Top-down/Bottom-up passes

22

®

{1,2,3}

O
(1.23)

O

{1,2,3}

®

%)

3

Filter and Refinement

» Start with a width-1 MDD
Straightforward MDD relaxation

» Filter infeasible arc values

Top-down/Bottom-up passes

» Refinement

Add nodes to improve relaxation

23

Filter and Refinement

» Start with a width-1 MDD
Straightforward MDD relaxation

» Filter infeasible arc values

Top-down/Bottom-up passes

» Refinement

Add nodes to improve relaxation

» Repeat filtering/refinement until
certain conditions are met

24

Filter: Top-Down Example

» Filter based on a state
information at each node

» Example:

Filtering arcs (u,v)

25

Filter: Top-Down Example

» Earliest Completion Time: E

Minimum completion time of all
partial sequences represented by

paths from root to node u

» Similarly: Latest Completion Time

26

Filter: Top-Down Example

Act r, d, o
I 0 3 2
2 3 7 3
3 I 8 3
4 5 6 I
E,=7

Eliminate 4 from (u,v)

27

Filter and Refinement

» Other filters
Node edge-finding, not-first/not-last rules

Precedence filtering
Additional alldiff filters

» Refinement
Based on earliest completion time of a node

28

MDD Inference

Theorem: Given the exact MDD M, we can deduce all implied
activity precedences in polynomial time in the size of M

» For a node v,
A} values in all paths from root to v

A': values in all paths from node v to terminal

» Precedence relation i < j holds if and only if
(7 & Aﬁ) or (1 & AI{:) for all nodes u in M

» Same technique applies to relaxed MDD

29

Communicate Precedence Relations

I. Provide precedences inferred from the MDD to solver
Update time variables
Other inference techniques may utilize them

2. We can filter the relaxed MDD using precedence
relations inferred from other (CP) techniques

» Precedences deduced by this method might not be
dominated by other techniques, even for small widths.

30

Experimental Results

» Implemented in llog CP Optimizer (CPO)
State-of-the-art constraint based scheduling solver
Uses a portfolio of inference techniques and LP relaxation

» Random and structured instances

Different classical objective functions

» Tested integration CPO+MDD

31

Makespan

CPO Fails / MDD Fails

32

100

10

0.1

0.01

1

| Random instance
|5 jobs

1 Lex search

{ MDD width: 16

o)

0.2

0.4

0.6

0.8

1

1.2

Importance of setup times

1.4

1.6

Makespan

CPO Time / MDD Time

33

10 .

0.1

0.01

0.001

0

0.2 04 0.6 0.8

1

1.2 14 1.6

Importance of setup times

Random instance
|5 jobs

Lex search

MDD width: 16

Sum of Completion Times

le+07 |

le+06 |

100000 ¢

MDD Fails

10000 ¢

1000

100

CPO Fails
34

Random instances
12 jobs

Lex search

MDD width: 16

100 1000 10000 100000 1e+06 1e+07

Sum of Completion Times

100

10 |

MDD Time (s)
(-

0.01 0.1 1 10 100
CPO Time (s)

35

Random instances
12 jobs

Lex search

MDD width: 16

MDD Fails

TSP with Time Windows

le408 |
le+07 :
le+06 :
100000 :
10000 :

1000 :

100 :

10 |

36

Dumas instances
Ascheuer instances
20-60 jobs
Lex search
MDD width: 16
X
e I1|0 | x]I.(I'JO | .1I0IOOI 1OCI)OO IlOIOIOO‘O Ilel-ll-06I .1e‘-ll-07l Ilel+08

CPO Fails

TSP with Time Windows

MDD Time (s)

10000 - - | |
' Dumas instances
1000 | Ascheuer instances
_ " 20-60 jobs
_ «| Lex search
100 + 1 MDD width: 16
I X _
L ;_
10 — x % XX %
x X
X
1 | 5]
|)2(XXX
0.1 ¢ « X §
' » X x o
’ X XX X
001 NV OV L . N . o) L
0.01 0.1 1 10 100 1000 10000
CPO Time (s)

37

Instances Dumas (TSPTW)

CPO CPO+MDD
Instance Cities Backtracks Time (s) | Backtracks | Time (s)
n40w40.004 40 480,970 50.81 18 0.06
n60w20.001 60 908,606 199.26 50 0.22
n60w20.002 60 84,074 14.13 46 0.16
n60w20.003 60 > 22,296,012 > 3600 99 0.32
n60w20.004 60 2,685,255 408.34 97 0.24

minimize sum of setup times

38

MDDs have maximum width 16

Conclusions

» MDD for disjunctive constraints
Strong relation to precedence graph

High-level communication between MDD and other inference
mechanisms

» Practical perspective

Current experiments suggest it is stronger for sums

Observed orders of magnitude improvement

39

40

Thank you!

Compilation

Theorem: Constructing the exact MDD for a Disjunctive Instance is
an NP-Hard problem

Nevertheless, some interesting restrictions, e.g. (Balas [99]):

» TSP defined on a complete graph

» Given a fixed parameter k, we must satisfy

| <j if j—i=k forcitiesi,j

Corollary: The exact MDD for the TSP above has O(n2%) nodes

Filter: Top-Down Example

» All-paths state: A,

Labels belonging to all paths from
node r to node u

A, ={3)
Thus eliminate {3} from (u,v)

- Introduced for Alldifferent constraint in
[Andersen et al 2007]

42

Outline

I. Disjunctive Scheduling

2. Multivalued Decision Diagram (MDD) Representation
3. Filtering and Precedence Relations

4. Experimental Results

5. Conclusion

