MDD Propagation for Disjunctive Scheduling

Andre Augusto Cire Joint work with Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University

ISMP 2012

Constraint-based scheduling: Exploit subproblem structure

- High-level, structured constraints (disjunctive, cumulative...)
- Sophisticated inference techniques
- Process constraints one at a time

but how to pool the results of constraint processing?

 Constraint store - Shared data structure that accumulates implications of each constraint

In practice: constraint store is the domain store

Implications are of the form

 $x_i \leq v, x_i \geq v$, or $x_i \neq v$ for $v \in domain(x_i)$

- Propagation: reduce domains as much as possible
- Domain store is a natural relaxation, but may be too weak

alldiff (x_1, x_2, x_3) , $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 \in \{1, 9, 10\}$.

Problem is infeasible

- I. Propagation of alldiff
 - No inference.
- 2. Propagation of sum
 - No inference.

Domains remain unchanged!

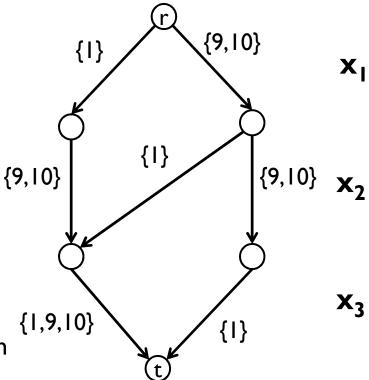
- Common solution: new global constraint
 - cost-alldiff, cost-sum-weighted-alldiff, etc ...

Other alternative: a richer constraint store

- Proposal: Relaxed Multivalued Decision Diagrams (MDDs)
 - Initial framework by Andersen et al (CP2007).
- Fundamental questions
 - How to effectively process MDDs for particular constraints?
 - When does it perform better than domain store?
 - •
- Our goal: application to constraint-based scheduling

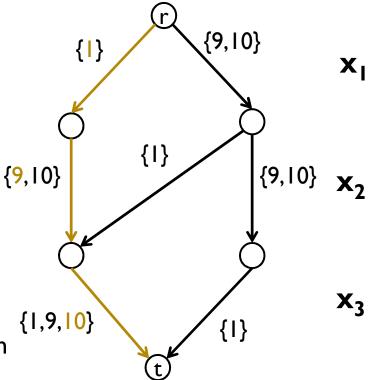
alldiff (x_1, x_2, x_3) , $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 \in \{1, 9, 10\}$.

- Compact representation of a search tree
- Ordered Acyclic Digraph
 - Layers: variables
 - Arc labels: variable assignments
- > Paths from **r** to **t**: solutions to the problem



alldiff (x_1, x_2, x_3) , $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 \in \{1, 9, 10\}$.

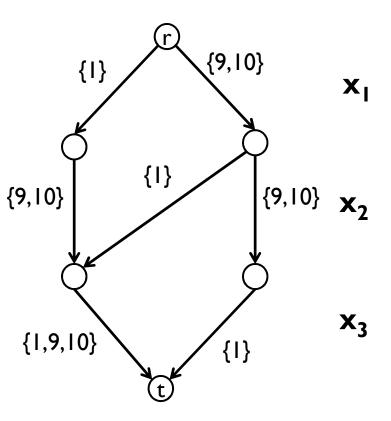
- Compact representation of a search tree
- Ordered Acyclic Digraph
 - Layers: variables
 - Arc labels: variable assignments
- > Paths from **r** to **t**: solutions to the problem
 - Example: $x_1 = 1, x_2 = 9, x_3 = 10$



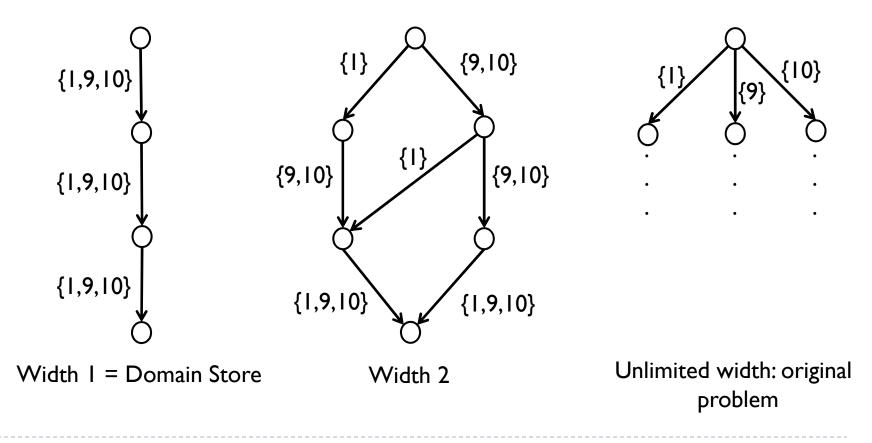
alldiff (x_1, x_2, x_3) , $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 \in \{1, 9, 10\}$.

Relaxed

- It encodes all feasible solutions
- It may encode infeasible solutions



- Relaxation is adjustable
 - Controlled by the **width** of the graph

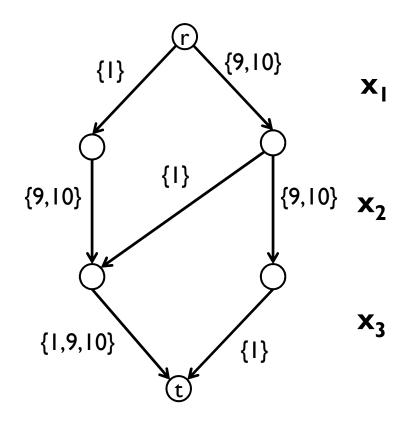


Constraint processing

Refine the MDD representation by removing / adding arcs

alldiff (x_1, x_2, x_3) , $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 \in \{1, 9, 10\}$.

I. Propagation of alldiff

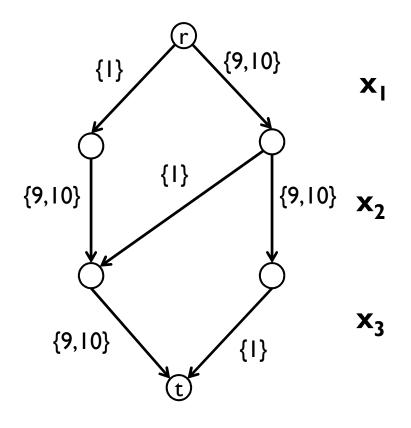


Constraint processing

Refine the MDD representation by removing / adding arcs

alldiff (x_1, x_2, x_3) , $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 \in \{1, 9, 10\}$.

I. Propagation of alldiff



Constraint processing

Refine the MDD representation by removing / adding arcs

alldiff (x_1, x_2, x_3) , $x_1 + x_2 + x_3 \le 12$, $x_1, x_2, x_3 \in \{1, 9, 10\}$.

- I. Propagation of alldiff
- 2. Propagation of sum
 - Detects infeasibility!



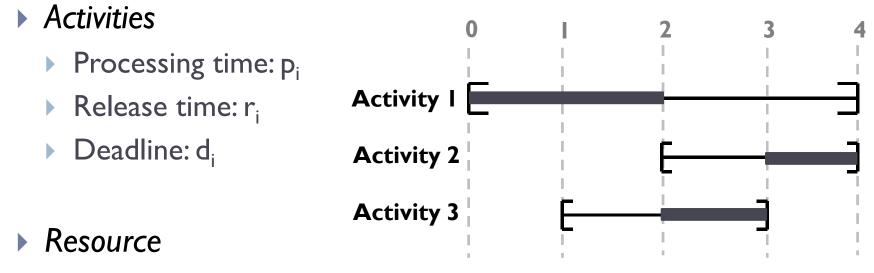
Relaxed MDDs and Scheduling

Focus: disjunctive scheduling

- Highlight of CP, widespread application
- Still has particular deficiencies
- MDD constraint processing for disjunctive scheduling

Disjunctive Scheduling

Sequencing and scheduling of activities on a resource



- Nonpreemptive
- Process one activity at a time

Common Side Constraints

- Precedence relations between activities
- Sequence-dependent setup times
- Induced by objective function
 - Makespan
 - Sum of setup times
 - Sum of completion times
 - Tardiness / number of late jobs
 - ...

Inference

Inference for disjunctive scheduling

- Precedence relations
- Time intervals that an activity can be processed

Sophisticated techniques include:

- Edge-Finding
- Not-first / not-last rules
- Challenges arise in presence of
 - Sequence-dependent setup times
 - Complex objective functions

MDDs for Disjunctive Scheduling

Our two three main considerations:

- Representation
 - How to represent solutions of disjunctive scheduling in an MDD?

Construction

- How to construct this relaxed MDD?
- Inference techniques
 - What can we infer using the relaxed MDD?

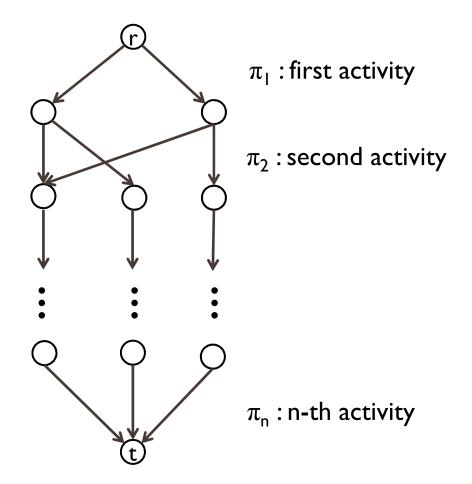
- Natural representation as MDDs
- Every solution can be written as a permutation π

 $\pi_1, \pi_2, \pi_3, \ldots, \pi_n$: activity sequencing in the resource

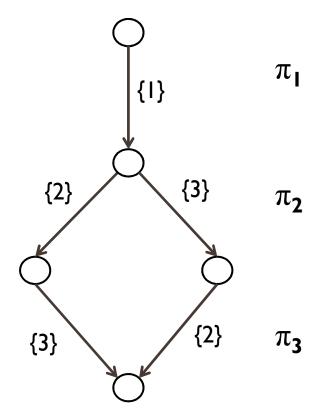
Schedule is *implied* by a sequence, e.g.:

$$start_{\pi_i} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}} \qquad i = 2, \dots, n$$

MDD Representation



MDD Representation



Act	r _i	d _i	p i
I.	0	3	2
2	4	9	2
3	3	8	3

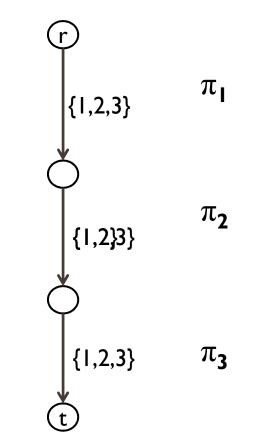
Path $\{I\} - \{3\} - \{2\}$

 $0 \le \text{start}_1 \le 1$ $6 \le \text{start}_2 \le 7$ $3 \le \text{start}_3 \le 5$

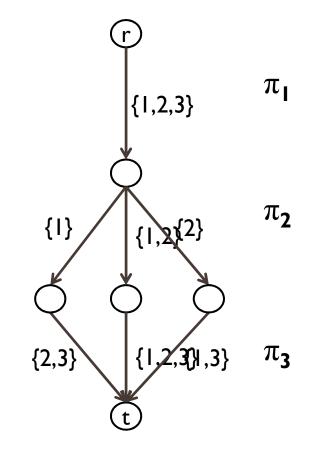
MDD Construction

- In general, MDDs can grow exponentially
 - Polynomial-width for particular scheduling problems
- We fix a maximum width W
- Apply a variation of filter and refinement technique
 - Andersen et al. (CP2007), Hoda et al. (CP2010)

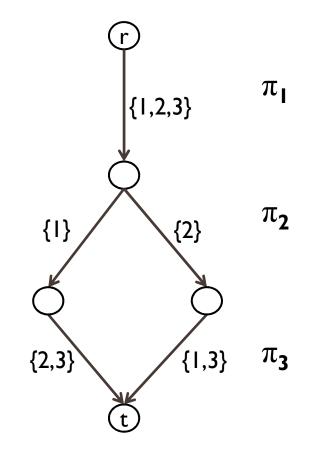
- Start with a width-I MDD
 Straightforward MDD relaxation
- Filter infeasible arc values
 - Top-down/Bottom-up passes



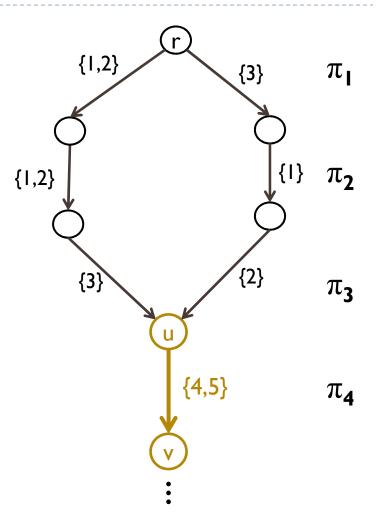
- Start with a width-I MDD
 - Straightforward MDD relaxation
- Filter infeasible arc values
 - Top-down/Bottom-up passes
- Refinement
 - Add nodes to improve relaxation



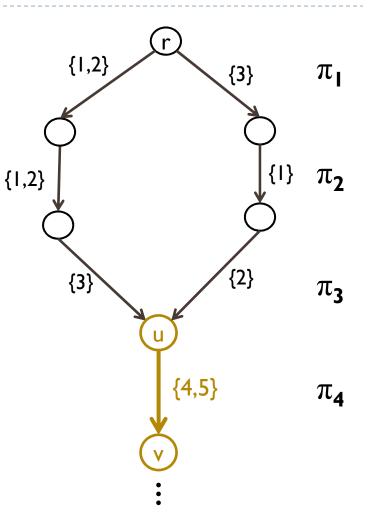
- Start with a width-I MDD
 - Straightforward MDD relaxation
- Filter infeasible arc values
 - Top-down/Bottom-up passes
- Refinement
 - Add nodes to improve relaxation
- Repeat filtering/refinement until certain conditions are met



- Filter based on a state information at each node
- Example:Filtering arcs (u,v)



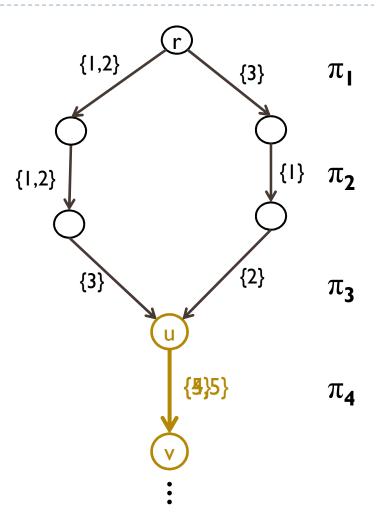
- Earliest Completion Time: E_{u}
 - Minimum completion time of all partial sequences represented by paths from root to node u
- Similarly: Latest Completion Time



Act	r _i	d _i	Pi
I	0	3	2
2	3	7	3
3	I	8	3
4	5	6	I
		•••	

 $E_u = 7$

Eliminate 4 from (u,v)



Other filters

- Node edge-finding, not-first/not-last rules
- Precedence filtering
- Additional alldiff filters
- • •

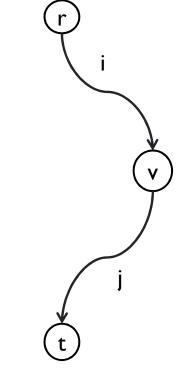
Refinement

Based on *earliest completion time* of a node

MDD Inference

Theorem: Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M

- For a node *v*,
 - A_v^{\downarrow} : values in all paths from root to v
 - A_{v}^{\uparrow} : values in all paths from node v to terminal
- Precedence relation $i \ll j$ holds if and only if $(j \notin A_u^{\downarrow})$ or $(i \notin A_u^{\uparrow})$ for all nodes u in M



Same technique applies to relaxed MDD

Communicate Precedence Relations

- I. Provide precedences inferred from the MDD to solver
 - Update time variables
 - Other inference techniques may utilize them
- 2. We can filter the relaxed MDD using precedence relations inferred from other (CP) techniques
- Precedences deduced by this method might not be dominated by other techniques, even for small widths.

Experimental Results

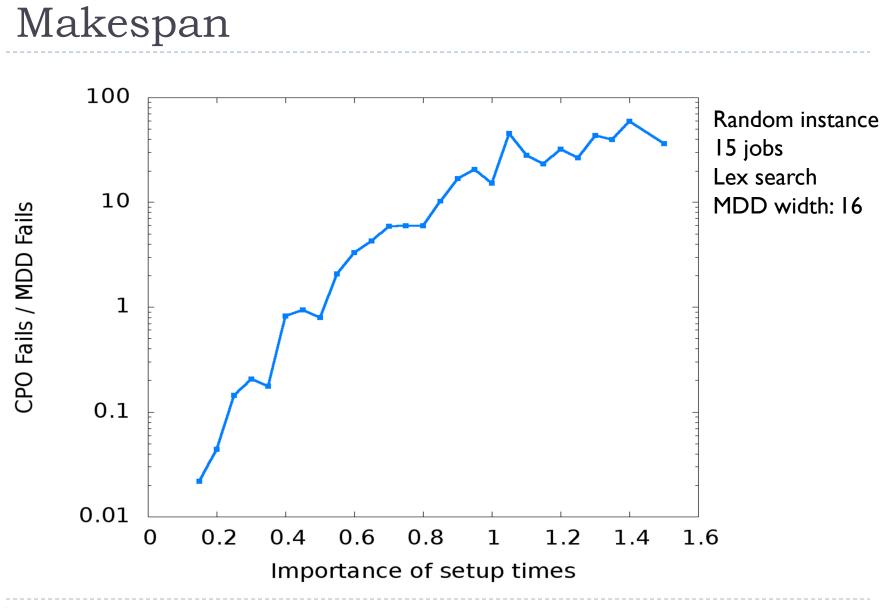
Implemented in Ilog CP Optimizer (CPO)

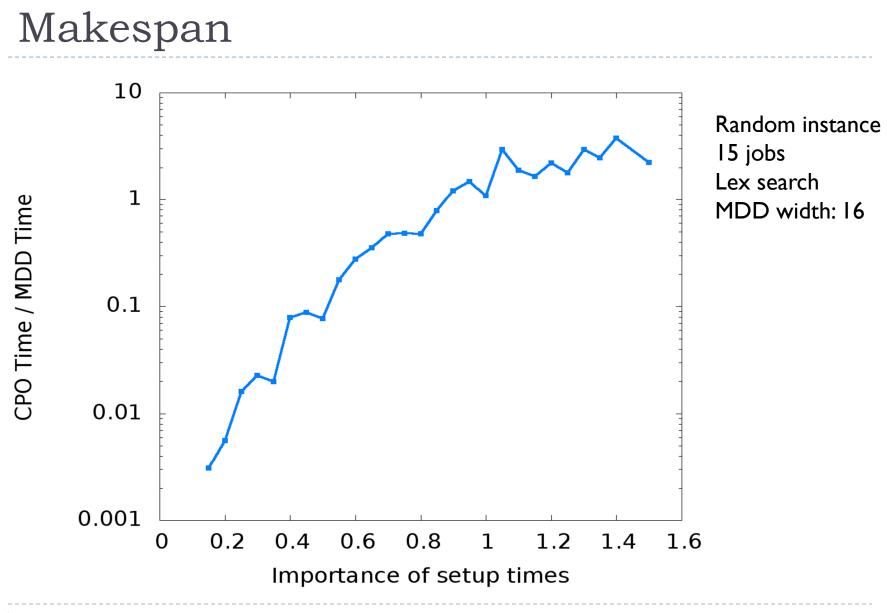
- State-of-the-art constraint based scheduling solver
- Uses a portfolio of inference techniques and LP relaxation

Random and structured instances

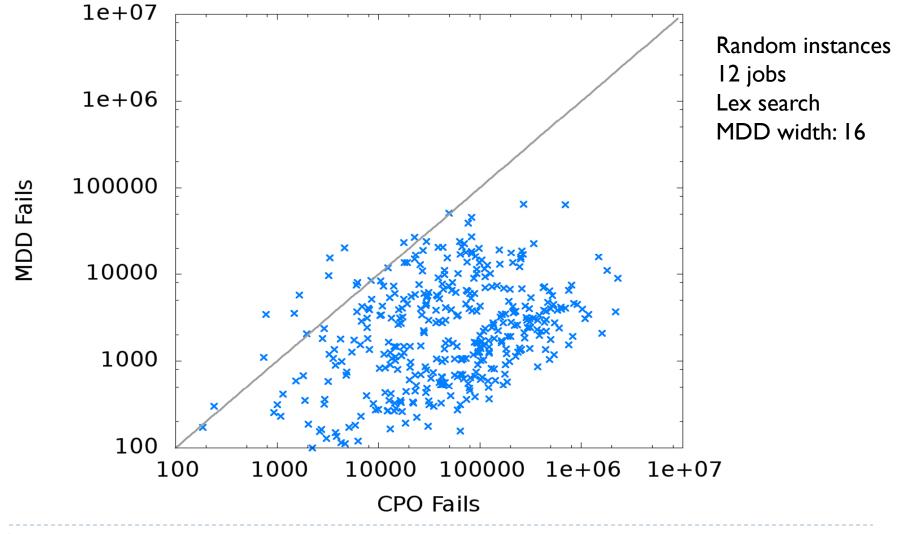
Different classical objective functions

Tested integration CPO+MDD

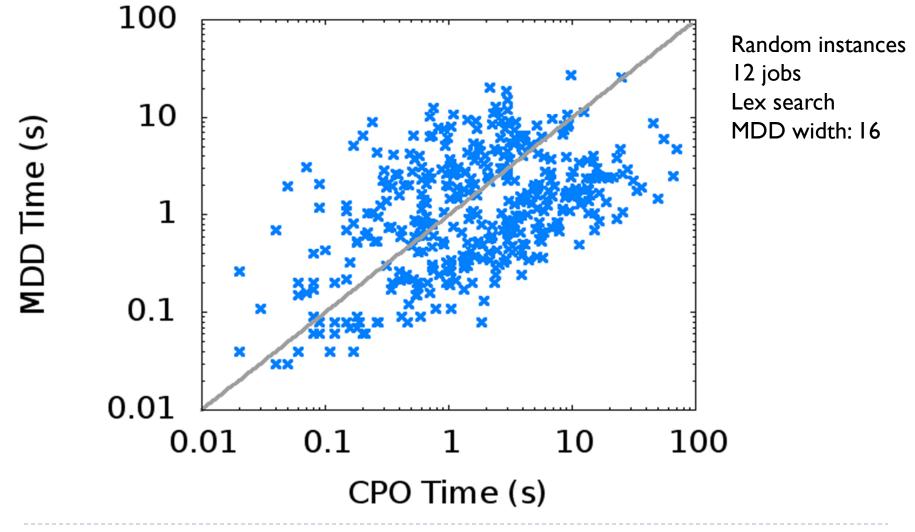




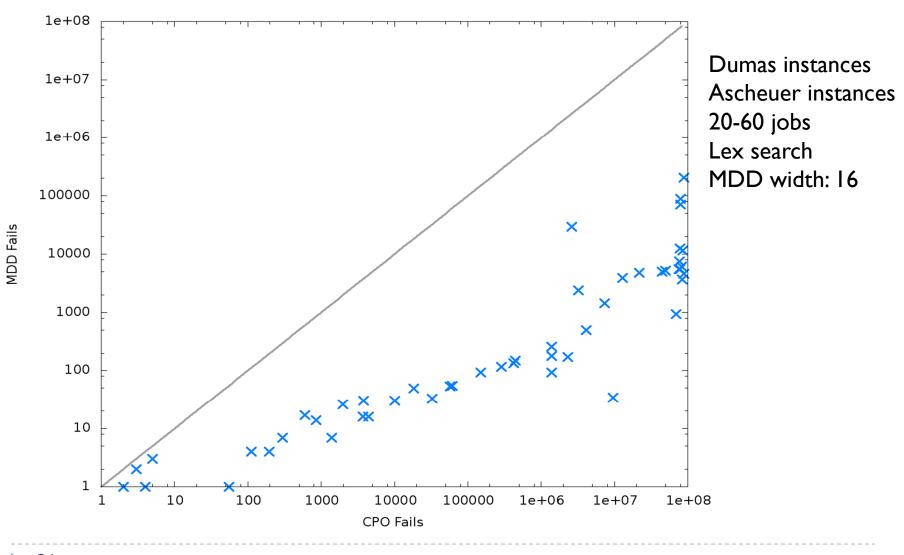
Sum of Completion Times



Sum of Completion Times

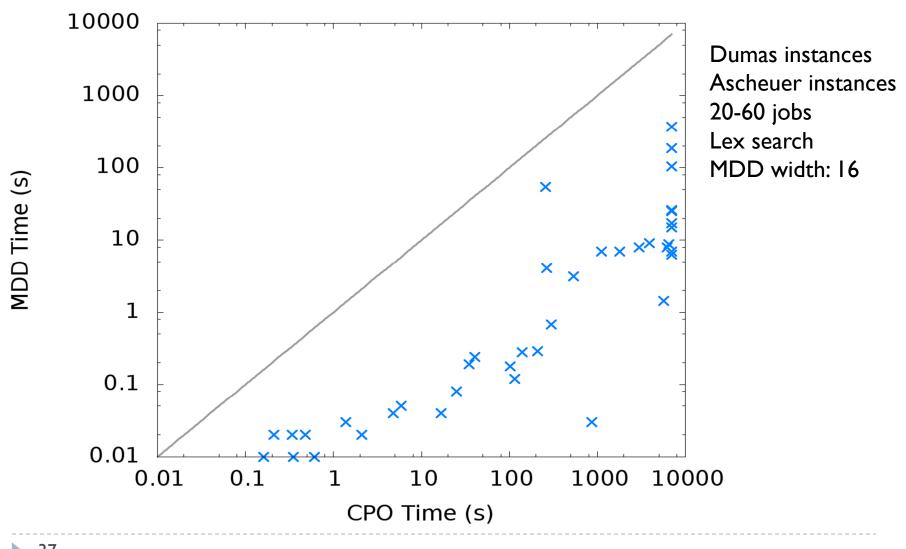


TSP with Time Windows



> 36

TSP with Time Windows



Instances Dumas (TSPTW)

		СРО		CPO+MDD	
Instance	Cities	Backtracks	Time (s)	Backtracks	Time (s)
n40w40.004	40	480,970	50.81	18	0.06
n60w20.001	60	908,606	199.26	50	0.22
n60w20.002	60	84,074	14.13	46	0.16
n60w20.003	60	> 22,296,012	> 3600	99	0.32
n60w20.004	60	2,685,255	408.34	97	0.24

minimize sum of setup times

MDDs have maximum width 16

Conclusions

MDD for disjunctive constraints

- Strong relation to precedence graph
- High-level communication between MDD and other inference mechanisms
- Practical perspective
 - Current experiments suggest it is stronger for sums
 - Observed orders of magnitude improvement

Thank you!

Compilation

Theorem: Constructing the exact MDD for a Disjunctive Instance is an NP-Hard problem

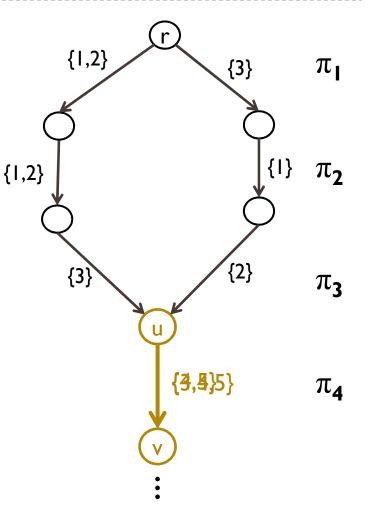
Nevertheless, some interesting restrictions, e.g. (Balas [99]):

- TSP defined on a complete graph
- Given a fixed parameter **k**, we must satisfy

 $i \ll j$ if $j - i \ge k$ for cities i, j

Corollary: The exact MDD for the TSP above has $O(n2^k)$ nodes

- All-paths state: A_u
 - Labels belonging to all paths from node r to node u
 - $A_u = \{3\}$
 - Thus eliminate {3} from (u,v)



 Introduced for Alldifferent constraint in [Andersen et al 2007]

Outline

- I. Disjunctive Scheduling
- 2. Multivalued Decision Diagram (MDD) Representation
- 3. Filtering and Precedence Relations
- 4. Experimental Results
- 5. Conclusion