
Andre Augusto Cire

Joint work with Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University

ISMP 2012

MDD Propagation for

Disjunctive Scheduling

Motivation

2

� Constraint-based scheduling: Exploit subproblem structure

� High-level, structured constraints (disjunctive, cumulative…)

� Sophisticated inference techniques

� Process constraints one at a time

� … but how to pool the results of constraint processing?

� Constraint store - Shared data structure that accumulates
implications of each constraint

Motivation

3

� In practice: constraint store is the domain store

� Implications are of the form

												�� ≤ �, �� ≥ �, or		�� ≠ � for � ∈ �
����(��)

� Propagation: reduce domains as much as possible

� Domain store is a natural relaxation, but may be too weak

Motivation

4

alldiff(��, ��, ��),

�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.

Problem is infeasible

1. Propagation of alldiff
- No inference.

2. Propagation of sum
- No inference.

Domains remain unchanged!

• Common solution: new global constraint

– cost-alldiff, cost-sum-weighted-alldiff, etc …

Motivation

5

� Other alternative: a richer constraint store

� Proposal: Relaxed Multivalued Decision Diagrams (MDDs)

� Initial framework by Andersen et al (CP2007).

� Fundamental questions

� How to effectively process MDDs for particular constraints?

� When does it perform better than domain store?

� ...

� Our goal: application to constraint-based scheduling

Relaxed MDDs

6

� Compact representation of a search tree

� Ordered Acyclic Digraph

� Layers: variables

� Arc labels: variable assignments

� Paths from r to t: solutions to the problem

x1

x2

x3

{9,10}
r

t

{1}

{9,10}

{1,9,10}

{9,10}
{1}

{1}

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.

Relaxed MDDs

7

� Compact representation of a search tree

� Ordered Acyclic Digraph

� Layers: variables

� Arc labels: variable assignments

� Paths from r to t: solutions to the problem

� Example: x1=1, x2=9, x3=10

x1

x2

x3

{9,10}
r

t

{1}

{9,10}

{1,9,10}

{9,10}
{1}

{1}

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.

Relaxed MDDs

8

� Relaxed

� It encodes all feasible solutions

� It may encode infeasible solutions

x1

x2

x3

{9,10}
r

t

{1}

{9,10}

{1,9,10}

{9,10}
{1}

{1}

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.

Relaxed MDDs

9

� Relaxation is adjustable

� Controlled by the width of the graph

{9,10}{1}

{9,10}

{1,9,10}

{9,10}
{1}

{1,9,10}

Width 2Width 1 = Domain Store

{1,9,10}

{1,9,10}

{1,9,10}

{1}
{9}

{10}

.

.

.

.

.

.

.

.

.

Unlimited width: original
problem

Relaxed MDDs

10

� Constraint processing

� Refine the MDD representation by removing / adding arcs

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.
x1

x2

x3

{9,10}
r

t

{1}

{9,10}

{1,9,10}

{9,10}
{1}

{1}

1. Propagation of alldiff

Relaxed MDDs

11

� Constraint processing

� Refine the MDD representation by removing / adding arcs

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.
x1

x2

x3

{9,10}
r

t

{1}

{9,10}

{9,10}

{9,10}
{1}

{1}

1. Propagation of alldiff

Relaxed MDDs

12

� Constraint processing

� Refine the MDD representation by removing / adding arcs

alldiff(��, ��, ��),
�� + �� + �� ≤ 12,

��, ��, �� ∈ {1,9,10}.
x1

x2

x3

{9,10}
r

t

{1}

{9,10}

{9,10}

{9,10}
{1}

{1}

1. Propagation of alldiff

2. Propagation of sum
- Detects infeasibility!

Relaxed MDDs and Scheduling

13

� Focus: disjunctive scheduling

� Highlight of CP, widespread application

� Still has particular deficiencies

� MDD constraint processing for disjunctive scheduling

Disjunctive Scheduling

� Sequencing and scheduling of activities on a resource

� Activities

� Processing time: pi
� Release time: ri
� Deadline: di

� Resource

� Nonpreemptive

� Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4

14

Common Side Constraints

� Precedence relations between activities

� Sequence-dependent setup times

� Induced by objective function

� Makespan

� Sum of setup times

� Sum of completion times

� Tardiness / number of late jobs

� …

15

Inference

� Inference for disjunctive scheduling
� Precedence relations

� Time intervals that an activity can be processed

� Sophisticated techniques include:
� Edge-Finding

� Not-first / not-last rules

� Challenges arise in presence of
� Sequence-dependent setup times

� Complex objective functions

16

MDDs for Disjunctive Scheduling

Our two three main considerations:

� Representation
� How to represent solutions of disjunctive scheduling in an MDD?

� Construction
� How to construct this relaxed MDD?

� Inference techniques
� What can we infer using the relaxed MDD?

17

MDD Representation

� Natural representation as MDDs

� Every solution can be written as a permutation π

π
1
, π

2
, π

3
, …, π

n
: activity sequencing in the resource

� Schedule is implied by a sequence, e.g.:

� �! "#
	≥ � �! "#$%

+ &"#$%
							� = 2,… , �

18

MDD Representation

r

π1 : first activity

π2 : second activity

πn : n-th activity

t

… … …

19

MDD Representation

π1

π2

π3

{2}

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3

{1}

{3}

{3} {2}

Path {1} – {3} – {2}

0 ≤ start1 ≤ 1
6 ≤ start2 ≤ 7
3 ≤ start3 ≤ 5

20

MDD Construction

� In general, MDDs can grow exponentially

� Polynomial-width for particular scheduling problems

� We fix a maximum width W

� Apply a variation of filter and refinement technique
� Andersen et al. (CP2007), Hoda et al. (CP2010)

21

{1,2,3}

Filter and Refinement

� Start with a width-1 MDD

� Straightforward MDD relaxation

� Filter infeasible arc values

� Top-down/Bottom-up passes

π1

π2

π3

t

r

{1,2,3}

{1,2,3}

{1,2}

22

Filter and Refinement

� Start with a width-1 MDD

� Straightforward MDD relaxation

� Filter infeasible arc values

� Top-down/Bottom-up passes

� Refinement

� Add nodes to improve relaxation

π1

π2

π3

t

r

{1,2,3}

{1,2}

{1,2,3}

{1}

{1,3}{2,3}

{2}

23

Filter and Refinement

� Start with a width-1 MDD

� Straightforward MDD relaxation

� Filter infeasible arc values

� Top-down/Bottom-up passes

� Refinement

� Add nodes to improve relaxation

� Repeat filtering/refinement until
certain conditions are met

π1

π2

π3

t

r

{1,2,3}

{1}

{1,3}{2,3}

{2}

24

Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5}

� Filter based on a state
information at each node

� Example:

Filtering arcs (u,v)

π1

π2

π3

π4

…

25

Filter: Top-Down Example

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5} π4

� Earliest Completion Time: Eu
� Minimum completion time of all

partial sequences represented by

paths from root to node u

� Similarly: Latest Completion Time

…

26

Filter: Top-Down Example

π1

π2

π3

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5} π4

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

… … … …

� Eu = 7

� Eliminate 4 from (u,v)
{5}

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

… … … …

…

27

Filter and Refinement

� Other filters

� Node edge-finding, not-first/not-last rules

� Precedence filtering

� Additional alldiff filters

� …

� Refinement

� Based on earliest completion time of a node

28

MDD Inference

Theorem: Given the exact MDD M, we can deduce all implied
activity precedences in polynomial time in the size of M

r

v

t

i

j

� For a node v,

� /0
↓ : values in all paths from root to v

� /0
↑ : values in all paths from node v to terminal

� Precedence relation � ≪ 4 holds if and only if

for all nodes u in M

� Same technique applies to relaxed MDD

29

Communicate Precedence Relations

1. Provide precedences inferred from the MDD to solver

� Update time variables

� Other inference techniques may utilize them

2. We can filter the relaxed MDD using precedence
relations inferred from other (CP) techniques

� Precedences deduced by this method might not be
dominated by other techniques, even for small widths.

30

Experimental Results

� Implemented in Ilog CP Optimizer (CPO)

� State-of-the-art constraint based scheduling solver

� Uses a portfolio of inference techniques and LP relaxation

� Random and structured instances

� Different classical objective functions

� Tested integration CPO+MDD

31

Makespan

32

Random instance
15 jobs
Lex search
MDD width: 16

Makespan

33

Random instance
15 jobs
Lex search
MDD width: 16

Sum of Completion Times

34

Random instances
12 jobs
Lex search
MDD width: 16

Sum of Completion Times

35

Random instances
12 jobs
Lex search
MDD width: 16

TSP with Time Windows

36

Dumas instances
Ascheuer instances
20-60 jobs
Lex search
MDD width: 16

TSP with Time Windows

37

Dumas instances
Ascheuer instances
20-60 jobs
Lex search
MDD width: 16

Instances Dumas (TSPTW)

CPO CPO+MDD

Instance Cities Backtracks Time (s) Backtracks Time (s)

n40w40.004 40 480,970 50.81 18 0.06

n60w20.001 60 908,606 199.26 50 0.22

n60w20.002 60 84,074 14.13 46 0.16

n60w20.003 60 > 22,296,012 > 3600 99 0.32

n60w20.004 60 2,685,255 408.34 97 0.24

MDDs have maximum width 16minimize sum of setup times

38

Conclusions

� MDD for disjunctive constraints

� Strong relation to precedence graph

� High-level communication between MDD and other inference
mechanisms

� Practical perspective

� Current experiments suggest it is stronger for sums

� Observed orders of magnitude improvement

39

Thank you!

40

Compilation

Theorem: Constructing the exact MDD for a Disjunctive Instance is
an NP-Hard problem

Nevertheless, some interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ 4 if 4 − � ≥ 6 for cities i, j

Corollary: The exact MDD for the TSP above has O(n2k) nodes

Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{3}

{1}

{2}

{4,5}

� All-paths state: Au
� Labels belonging to all paths from
node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

• Introduced for Alldifferent constraint in
[Andersen et al 2007]

{3,4,5}

π1

π2

π3

π4

…

42

Outline

1. Disjunctive Scheduling

2. Multivalued Decision Diagram (MDD) Representation

3. Filtering and Precedence Relations

4. Experimental Results

5. Conclusion

