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Disjunctive Scheduling

� Sequencing and scheduling of activities in a resource

� Activities

� Processing time: pi

� Release time: ri

� Deadline: di

� Resource

� Nonpreemptive

� Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4



Extensions

� Precedence relations between activities

� Sequence-dependent setup times

� Variety of objective functions

� Makespan

� Sum of setup-times

� Tardiness / number of late jobs

� …



Current Literature

� Active research spread across communities

� Operations Research

� Artificial Intelligence

� Our focus: Constraint-based Scheduling



Constraint-Based Scheduling

� Constraints in a model capture richer structures, e.g.

disjunctive(s, p)

which enforces

�� + �� ≤ �� ∨ �� + �� ≤ �� ,  for	all	�, �, � ≠ �

� Specialized inference techniques for each constraint

� Separation between model and solution approach



Constraint-Based Scheduling

� Inference for disjunctive scheduling

� Precedence relations

� Time intervals that an activity can be processed

� Sophisticated techniques include:

� Edge-Finding

� Not-first / not-last rules



Constraint-Based Scheduling

� Extensible, flexible scheduling systems

� Successful in many real-world applications

� Well-known deficiencies

� Sequence-dependent setup times

� Complex objective functions

� New inference techniques based on Multivalued Decision 
Diagrams to tackle these deficiencies



Multivalued Decision Diagrams

� Ordered Acyclic Digraph

� Layers: variables

� Arc labels: variable assignments

� Paths from r to t: feasible solutions

� Compact representation of the search tree 
for a problem.

�� + �� ≤ 1,

�� ≠ ��, 	��≠ ��, 	��≠ ��,

��, ��, �� ∈ 0,1,2,3 .
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Multivalued Decision Diagrams
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� Consider any separable objective 
function, e.g.

� � = 	2�� + 3�� + ��
�

� Appropriate arc weights: 
shortest path minimizes f(x)



Multivalued Decision Diagrams

� Consider any separable objective 
function, e.g.

� � = 	2�� + 3�� + ��
�

� Appropriate arc weights: 
shortest path minimizes f(x)
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Disjunctive Scheduling

� Natural representation as MDDs

� Every solution can be written as a permutation π

π
1
, π

2
, π

3
, …, π

n 
:  activity sequencing in the machine

� Schedule is implied by a sequence, e.g.:

� !" #$
	≥ � !" #$&'

+ �#$&'
							� = 2,… , )



Permutation Model

r

π1 : first activity

π2 : second activity

πn : n-th activity

t

… … …



Example

π1

π2

π3

{2}

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3

{1}

{3}

{3} {2}

Path {1} – {3} – {2}

0 ≤ start1 ≤ 1
6 ≤ start2 ≤ 7
3 ≤ start3 ≤ 5



Permutation Model

Our two main considerations:

� Compilation
� How to translate a disjunctive instance to an MDD

� Inference techniques

� Types of inference we can obtain from MDD



Compilation

Theorem: Constructing the exact MDD for a Disjunctive Instance is 
an NP-Hard problem

Nevertheless, some interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ � if   � − � ≥ , for cities i, j 

Corollary:  The exact MDD for the TSP above has O(n2k) nodes



Compilation

� Even in restricted cases, MDDs can grow exponentially

� We are still interested in general cases for inference 
purposes

� Alternative: Relaxed MDDs

� Limit on the width of the graph

� Filter and Refinement [Andersen et al 2007, Hoda et al 2010]



{1,2,3}

Filter and Refinement 

� Start with a relaxed MDD

� Contains all feasible paths

� Filter infeasible arc values

� Top-down/Bottom-up passes
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Filter and Refinement 

� Start with a relaxed MDD

� Contains all feasible paths

� Filter infeasible arc values

� Top-down/Bottom-up passes

� Refinement

� Add nodes to improve relaxation

� Usually heuristics
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Filter: Top-Down Example

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}
{1}
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{1,2,3,4,5}

� Filter based on a state
information at each node

� Ideal states

� Compact

� Markovian property

� Example: 

Filtering arc (u,v)

π1

π2

π3

π4

…



Filter: Top-Down Example

u

r
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v
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{3}
{1}

{2}

{1,2,4,5}

� All-paths state:  Au

� Labels belonging to all paths from 
node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

• Introduced for Alldifferent constraint in  
[Andersen et al 2007])
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Filter: Top-Down Example
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{1}
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� Some-paths state:  Su
� Labels belonging to some path from 

node r to node u

� Su = {1,2,3}

� Identification of Hall sets

� Thus eliminate {1,2,3} from (u,v)

� Introduced for Alldifferent constraint in 
[Andersen et al 2007])
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Filter: Top-Down Example
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{4,5} π4

� Earliest Completion Time:  Eu

� Minimum completion time of all paths 

from root to node u

� Eliminate {i} from (u,v) if 

-� < max	{"� , 23} + �� + min
�	∈7&(�)

{�: ;��,�}

…



Filter: Top-Down Example

π1

π2

π3
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{1}
{3}

{3}
{1}

{2}

{4,5} π4

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

� Eu = 7

� Eliminate 4 from (u,v)
{5}

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

…



MDDs and the Precedence Graph

� Assume we have the exact MDD
for a given instance

� For a node v,

� @A
↓ : all-paths from root to v

� @A
↑ : all-paths from terminal to v

� There exists a solution such that
� ≪ �

iff � ∈ @A
↓ and � ∈ @A

↑ for some v

r

v

t

i

j



MDDs and the Precedence Graph

Theorem: Given the exact MDD M,  we can deduce all implied 
precedences in polynomial time in the size of M

� The “some path” states Su are a relaxation of Au

� Theorem above is directly applied to a relaxed MDD

� A Precedence Store can be used to communicate information 
between traditional inference techniques and the relaxed MDD



MDDs and the Precedence Graph

1. We can deduce precedences from the relaxed MDD

� Update time variables

� Provide precedences to other inference techniques

2. We can filter the relaxed MDD using precedence 
relations inferred from other techniques

� Precedences deduced by this method might not be 
dominated by other techniques, even for small widths.



Experimental Results

� Implemented in Ilog CP Optimizer (CPO)
� State of the art constraint-based scheduler solver

� Uses a portfolio of inference techniques

� Linear Relaxation

� Two versions considered
� Standalone MDD

� Ilog CPO + MDD (but partial integration!)

� Tests on many variations on disjunctive problems
� Focus here on TSP with Time Windows



Instances Dumas – Standalone MDD

CPO MDD Width 16

Instance Backtracks Time Backtracks Time

n20w100.002 1,382,397 95.71 190,101 76.41

n20w60.004 151,301 15.41 85,245 26.65

n20w80.001 19,060 1.31 5,076 1.15

n20w80.005 61,823 5.46 22,369 8.76

n40w40.001 210,682 26.53 22,367 7.33

n40w40.003 152,855 14.71 27,483 20.92

n40w40.004 480,970 50.81 28,334 10.34

n60w20.001 908,606 199.26 31,182 10.1

n60w20.002 84,074 14.13 1,657 0.14

n60w20.003 22,296,012 +∞ 134,755 105.85

n60w20.004 2,685,255 408.34 5,855 3.78

n60w20.005 19,520 9.32 2,580 0.33



Instances Dumas – CPO+MDD

CPO CPO+MDD Width 16

Instance Backtracks Time Backtracks Time

n20w100.002 1,382,397 95.71 131,039 59.58

n20w60.004 151,301 15.41 21,743 7.81

n20w80.001 19,060 1.31 1,073 0.2

n20w80.005 61,823 5.46 7,638 3

n40w40.001 210,682 26.53 6,142 2.91

n40w40.003 152,855 14.71 800 0.14

n40w40.004 480,970 50.81 5,986 3.64

n60w20.001 908,606 199.26 17,637 7.46

n60w20.002 84,074 14.13 728 0.12

n60w20.003 22,296,012 +∞ 55,311 39.43

n60w20.004 2,685,255 408.34 1,567 0.94

n60w20.005 19,520 9.32 1,039 0.08



Conclusions

� The Permutation Model

� Strong relation to precedence graph

� High-level communication between MDD and other inference 
mechanisms

� Practical perspective

� Easy to implement in current constraint solvers

� Observed orders of magnitude improvement



Thank you!


