
MDD-Based Propagation of Among Constraints

Samid Hoda Willem-Jan van Hoeve J.N. Hooker

Tepper School of Business

Carnegie Mellon University

EURO 2010

2

Outline

• Motivation

� constraint programming

� propagation based on MDDs

• MDD-propagation of among constraints

� edge filtering

� node refinement

• Experimental results

• Conclusion

3

Motivation

Constraint Programming applies

• systematic search and

• inference techniques

to solve combinatorial problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable

domains

• Propagating the updated domains to other constraints
x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3 ,x4)

x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}, x4 ∈ {0,1}x1 ∈ {2}, x2 ∈ {1}, x3 ∈ {3}, x4 ∈ {0}

4

Drawback of domain propagation

Observations:

• Communication between constraints only via variable domains

• Information can only be expressed as a domain change

• Other (structural) information that may be learned by a constraint is
lost: it must be projected onto variable domains

• Potential solution space implicitly defined by Cartesian product of
variable domains (very coarse relaxation)

This drawback can be addressed by communicating more expressive
information

• Using multi-valued decision diagrams (MDDs) [Andersen et al. 2007]

• Explicit representation of more refined potential solution space

5

Illustrative Example

AllEqual(x1, x2, x3, x4), all xi binary

x2

x3

x4

x1

1

u1

u2

u3

u4

{0,1}

{0,1}

{0,1}

{0,1}

domain store, size 24

1

u1

u2 u3

u4
u5

u6

{1}

u7

{0}

{0}

{0}

{0}

{1}

{1}

{1}

MDD store, size 2

6

Among constraints

� Given a set of variables X, and a set of values S,
a lower bound L and upper bound U,

among(X, S, L, U) := L ≤ ∑x∈X (x ∈ S) ≤ U

“among the variables in X, at least L and at most
U take a value from the set S”

� Applications in, e.g., sequencing and scheduling

� WLOG assume that X are binary and S = {1}

7

Example: MDD for Among

Exact MDD for among({x1,x2,x3,x4},{1},2,2)

x2

x3

x4

1

u1

u2 u3

u4
u5 u6

{0}

{1}

u7 u8

{0}

{0}{0}

{0}

{1}

{1}

{1} {1}

{1}

{0}

x1

8

MDD-based constraint programming

• Maintain limited-width MDD

� Serves as relaxation

� Typically start with width 1 (domain store)

� Dynamically adjust MDD based on constraints

• Constraint Propagation

� Edge filtering: Remove provably inconsistent edges

� Node refinement: Split nodes to separate edge

information

• Search

� As in classical CP, but may now be guided by MDD

9

MDD Filtering for Among

Goal: Given an MDD and an among constraint, remove all

inconsistent edges from the MDD

(establish MDD-consistency)

Approach:

• Compute path lengths from the top node and from the

bottom node

• Remove edges that are not on a path with lengths

between lower and upper bound

• Complete (MDD-consistent) version

� Maintain all path lengths; quadratic time

• Partial version (does not remove all inconsistent edges)

� Maintain and check bounds (longest and shortest paths); linear
time

10

Node refinement for Among

For each layer in MDD, we first apply edge filter,

and then try to refine

� consider incoming edges for each node

� split the node if there exist incoming edges that

are not equivalent (w.r.t. path length)

Example:

� We will propagate among({x1,x2,x3,x4},{1},2,2)

through a BDD of maximum width 3

11among({x1,x2,x3,x4},{1},2,2)

1

u1

u2

u3

u4

{0,1}

{0,1}

{0,1}

{0,1}

Try to filter edge domain (u1,u2)

SP using (u1,u2,{0,1}) has length < U

LP using (u1,u2,{0,1}) has length > L

Can’t filter

Example

12among({x1,x2,x3,x4},{1},2,2)

1

u1

u2

u3

u4

{0,1}

{0,1}

{0,1}

{0,1}

Split u2?

SP using (u1,0) = 0

SP using (u1,1) = 1

Incoming edge-value pairs

are not equivalent: so split u2

Example

13among({x1,x2,x3,x4},{1},2,2)

1

u1

u2’

u3

u4

{0}

{0,1}

{0,1}

{0,1}

u2’’

{1}

u2SPLIT u2 into two classes

(less than maximum width)

Example

14among({x1,x2,x3,x4},{1},2,2)

1

u1

u2’

u3

u4

{0}

{0,1}

{0,1}

{0,1}

u2’’

{1}

{0,1}

DUPLICATE outgoing edges

Example

15among({x1,x2,x3,x4},{1},2,2)

1

u1

u2’

u3

u4

{0}

{0,1}

{0,1}

{0,1}

u2’’

{1}

{0,1}

Filter edge domains

(u2’,u3) and (u2’’,u3)

(No filtering possible)

Example

16among({x1,x2,x3,x4},{1},2,2)

1

u1

u2’

u3

u4

{0}

{0,1}

{0,1}

{0,1}

u2’’

{1}

{0,1}

Split u3?

SP (u2’,u3,0) = 0

SP (u2’,u3,1) = 1

SP (u2’’,u3,0)= 1

SP (u2’’,u3,1)= 2

Split u3 into 3

equivalence classes

Example

17among({x1,x2,x3,x4},{1},2,2)

1

u1

u2’

u3’’

u4

{0}

{0}

{0,1}

{0,1}

u2’’

{1}

{1}

u3’ u3’’

{0} {1}

Split u3 into 3

equivalence

classes

Example

18among({x1,x2,x3,x4},{1},2,2)

1

u1

u2’

u3’’

u4

{0}

{0}

{0,1}

{0,1}

u2’’

{1}

{1}

u3’ u3’’

{0} {1}

Duplicate outgoing

edges

{0,1} {0,1}

Example

19among({x1,x2,x3,x4},{1},2,2)

1

u1

u2’

u3’’

u4

{0}

{0}

{0,1}

{0,1}

u2’’

{1}

{1}

u3’ u3’’’

{0} {1}

Filter edge

domains

{0,1} {0,1}

LP using (u3’,u4,0) = 1 < 2 = L SP using (u3’’’,u4,1) = 3 > 2 = U

Example

20

1

u1

u2’ u2’’

u3’ u3’’ u3’’’

{0}

{1}

u4’ u4’’

{0}

{0}{0}

{0}

{1}

{1}

{1} {1}

{1}

{0}

Continuing…

among({x1,x2,x3,x4},{1},2,2)

Example

21

Approximate equivalence

Example: edge-value equivalence was exact

� Problem: a few nodes “consume” BDD when
processing a constraint

Remedy: approximate equivalence

� Edge-value pairs are equivalent if SPs/LPs differ
by at most some threshold value

22

Experiments

• Multiple among constraints
� 50 binary variables total
� 5 variables per among constraint, indices chosen from

normal distribution with uniform-random mean in [1..50]
and stdev 2.5, modulo 50

� Classes: 5 to 200 among constraints (step 5), 100
instances per class

• Nurse rostering instances (horizon n days)
� Work 4-5 days per week
� Max A days every B days (Max A/B)
� Min C days every D days (Min A/B)
� Three problem classes

� Compare width 1 (domain store) with increasing widths

23

width 1 vs 4 width 1 vs 16

Multiple Amongs: Backtracks

24

width 1 vs 4 width 1 vs 16

Multiple Amongs: Running Time

25

Nurse rostering problems

Width 1 Width 4 Width 32

Size BT CPU BT CPU BT CPU

Class

1

40 61,225 55.63 8,138 12.64 3 0.09

80 175,175 442.29 5,025 44.63 11 0.72

Class

2

40 179,743 173.45 17,923 32.59 4 0.07

80 179,743 459.01 8,747 80.62 2 0.32

Class

3

40 91,141 84.43 5,148 9.11 7 0.18

80 882,640 2,391.01 33,379 235.17 55 3.27

26

Conclusion

• MDD store provides substantial advantage over domain

store for filtering multiple among constraints

� Wider MDDs yield greater speedups

� Huge reduction in the amount of backtracking and

solution time

• Intensive processing at search nodes can pay off when

more structural information is communicated between

constraints

