

MDD-Based Propagation of Among Constraints

Samid Hoda

Willem-Jan van Hoeve

J.N. Hooker

Tepper School of Business Carnegie Mellon University

EURO 2010

Outline

- Motivation
 - constraint programming
 - propagation based on MDDs
- MDD-propagation of *among* constraints
 - edge filtering
 - node refinement
- Experimental results
- Conclusion

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

 $\begin{array}{c} X_1 > X_2 \\ \hline X_1 + X_2 = X_3 \\ \hline all different(x_1, x_2, x_3, x_4) \end{array}$

$$x_1 \in \{2\}, x_2 \in \{1\}, x_3 \in \{3\}, x_4 \in \{0\}$$
 }

Observations:

- Communication between constraints only via variable domains
- Information can only be expressed as a domain change
- Other (structural) information that may be learned by a constraint is lost: it must be projected onto variable domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)

This drawback can be addressed by communicating more expressive information

- Using *multi-valued decision diagrams* (MDDs) [Andersen et al. 2007]
- Explicit representation of more refined potential solution space

Illustrative Example

AllEqual(x_1, x_2, x_3, x_4), all x_i binary

 Given a set of variables X, and a set of values S, a lower bound L and upper bound U,

among(X, S, L, U) := $L \leq \sum_{x \in X} (x \in S) \leq U$

"among the variables in X, at least L and at most U take a value from the set S"

- Applications in, e.g., sequencing and scheduling
- WLOG assume that X are binary and S = {1}

Example: MDD for Among

Exact MDD for among({x₁,x₂,x₃,x₄},{1},2,2)

MDD-based constraint programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (domain store)
 - Dynamically adjust MDD based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Goal: Given an MDD and an among constraint, remove all inconsistent edges from the MDD (establish MDD-consistency)

Approach:

- Compute path lengths from the top node and from the bottom node
- Remove edges that are not on a path with lengths between lower and upper bound
- Complete (MDD-consistent) version
 - Maintain all path lengths; quadratic time
- Partial version (does not remove all inconsistent edges)
 - Maintain and check bounds (longest and shortest paths); linear time

- For each layer in MDD, we first apply edge filter, and then try to refine
- consider incoming edges for each node
- split the node if there exist incoming edges that are not equivalent (w.r.t. path length)
- Example:
- We will propagate among({x₁,x₂,x₃,x₄},{1},2,2) through a BDD of maximum width 3

among({x₁,x₂,x₃,x₄},{1},2,2)

16

among({x₁,x₂,x₃,x₄},{1},2,2)

among({x₁,x₂,x₃,x₄},{1},2,2) 17

among($\{x_1, x_2, x_3, x_4\}, \{1\}, 2, 2\}$ 18

among($\{x_1, x_2, x_3, x_4\}, \{1\}, 2, 2\}$ 19

Example: edge-value equivalence was exact

 Problem: a few nodes "consume" BDD when processing a constraint

Remedy: approximate equivalence

 Edge-value pairs are equivalent if SPs/LPs differ by at most some threshold value

Experiments

- Multiple among constraints
 - 50 binary variables total
 - 5 variables per among constraint, indices chosen from normal distribution with uniform-random mean in [1..50] and stdev 2.5, modulo 50
 - Classes: 5 to 200 among constraints (step 5), 100 instances per class
- Nurse rostering instances (horizon *n* days)
 - Work 4-5 days per week
 - Max A days every B days (Max A/B)
 - Min C days every D days (Min A/B)
 - Three problem classes
- Compare width 1 (domain store) with increasing widths

Multiple Amongs: Backtracks

width 1 vs 4

width 1 vs 16

Multiple Amongs: Running Time

width 1 vs 4

width 1 vs 16

		Width 1		Width 4		Width 32	
	Size	BT	CPU	BT	CPU	BT	CPU
Class 1	40	61,225	55.63	8,138	12.64	3	0.09
	80	175,175	442.29	5,025	44.63	11	0.72
Class 2	40	179,743	173.45	17,923	32.59	4	0.07
	80	179,743	459.01	8,747	80.62	2	0.32
Class 3	40	91,141	84.43	5,148	9.11	7	0.18
	80	882,640	2,391.01	33,379	235.17	55	3.27

Conclusion

- MDD store provides substantial advantage over domain store for filtering multiple among constraints
 - Wider MDDs yield greater speedups
 - Huge reduction in the amount of backtracking and solution time
- Intensive processing at search nodes can pay off when more structural information is communicated between constraints