

Decision Diagrams for Optimization and Scheduling

Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/

Acknowledgments:

David Bergman, Andre Cire, Samid Hoda, John Hooker, Brian Kell, Joris Kinable, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, Marla Slusky, Tallys Yunes

Summary

What can MDDs do for combinatorial optimization?

- Compact representation of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for integer optimization

- MDD *relaxations* provide upper bounds
- MDD *restrictions* provide lower bounds
- New branch-and-bound scheme

MDDs for constraint-based scheduling

- Constraint propagation with MDDs
- Orders of magnitude improvement possible

Decision Diagrams

xЗ

- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- BDD: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

Brief background

- Original application areas: circuit design, verification
- Usually *reduced ordered* BDDs/MDDs are applied
 - fixed variable ordering
 - minimal exact representation
- Mid-2000s: interest from optimization community
 - cut generation [Becker et al., 2005]
 - 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
 - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
- Interesting variant
 - relaxed MDDs (polynomial size)

[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]

MDDs for combinatorial optimization

• Discrete Optimization

- MISP, MAX-CUT, set covering, set packing, MAX-2SAT, ...
- Constraint Programming
 - MDD propagation (alldifferent, sequence, ...)
- Scheduling and Sequencing
 - Machine scheduling, routing, ...
- Integer Programming
 - Cut generation
- Boolean Satisfiability
 - Clause learning

Approximate MDDs

- Exact MDDs can be of exponential size in general
- We can limit the size (width) of the MDD to obtain a relaxation [Andersen et al., 2007]
 - strength is controlled by the maximum width

MDDs for Integer Optimization

- Bergman, Cire, v.H., Hooker: Optimization Bounds from Binary Decision Diagrams. INFORMS J. Computing 26(2): 253-268, 2014.
- Bergman, Cire, v.H., Yunes: BDD-Based Heuristics for Binary Optimization. *Journal of Heuristics* 20: 211-234, 2014.
- Bergman, Cire, v.H., Hooker. Discrete Optimization with Decision Diagrams. *INFORMS J. Computing*, to appear.
- Bergman, Cire, Sabharwal, Samulowitz, Saraswat, and v.H. Parallel Combinatorial Optimization with Decision Diagrams. In *Proceedings of CPAIOR*, Springer LNCS, 2014.

- Conventional integer programming relies on branchand-bound based on continuous LP relaxations
 - Relaxation bounds
 - Feasible solutions
 - Branching
- We propose a novel branch-and-bound algorithm for discrete optimization based on decision diagrams
 - Relaxation bounds Relaxed BDDs
 - Feasible solutions Restricted BDDs
 - Branching Nodes of relaxed BDDs
- Potential benefits: stronger bounds, efficiency, memory requirements, models need not be linear

Case Study: Independent Set Problem

- Given graph G = (V, E) with vertex weights w_i
- Find a subset of vertices S with maximum total weight such that no edge exists between any two vertices in S

$$\label{eq:max} \begin{array}{ll} \sum_{i} w_{i} x_{i} \\ \text{s.t.} & x_{i} + x_{j} \leq 1 \quad \text{for all (i,j) in E} \\ & x_{i} \text{ binary} \quad \text{for all i in V} \end{array}$$

X₃

X₄

X₅

SCHOOL

Carnegie Mellon

O.E

BUSINES

15

X₄

X₅

SCHOO

Carnegie Mellon

OII:

BUSINES

X₅

SCHOO

Carnegie Mellon

OII:

BUSINES

X₅

Carnegie Mellon

USINES

Merge equivalent nodes

Theorem: This procedure generates a reduced exact BDD

[Bergman et al., 2012]

Relaxed BDD: merge *non-equivalent* nodes when the given width is exceeded

[Bergman et al., 2012]

Relaxed BDD (width \leq 3)

Evaluate Objective Function

Evaluate Objective Function

Restricted BDD

Restricted BDD

- Order of variables greatly impacts BDD size
 also influences bound from relaxed BDD (see next)
- Finding 'optimal ordering' is NP-hard

Insights from independent set as case study

 formal bounds on BDD size

Exact BDD orderings for Paths

24

Formal Results for Independent Set

Graph Class	Bound on Width	
Paths	1	
Cliques	1	
Interval Graphs	1	
Trees	n/2	
General Graphs	Fibonacci Numbers: Layer j ≤ F _{j+1}	

(The proof for general graphs is based on a maximal path decomposition of the graph)

INFORMS J. Computing (2014)

Variable ordering heuristics

- Several possibilities
 - choose vertex at random
 - choose vertex that appears in fewest states in current layer
 - choose vertex according to maximal path decomposition

Variable ordering heuristics

- Several possibilities
 - choose vertex at random
 - choose vertex that appears in fewest states in current layer
 - choose vertex according to maximal path decomposition
- Evaluate quality of the bounds in practice
 - Random Erdös-Rényi G(n,p) graphs
 - DIMACS clique graphs (87 instances)
 - Compare with CPLEX 12.5

(standard MIP model and clique cover model)

Bounds in practice

random graphs (n=500)

Bounds in practice

Last Exact Layer

{3,4}: 5+6 = 11

● {3,4,5} : 0+10 = 10

- Novel branching scheme
 - Branch on **pools** of partial solutions
 - Remove **symmetry** from search
 - Symmetry with respect to feasible completions
 - Can be combined with other techniques
 - Use decision diagrams for branching, and LP for bounds
 - Immediate parallelization
 - Send nodes to different workers, recursive application
 - DDX10 (CPAIOR 2014)

Computational Results: DIMACS

DIMACS Graphs: End Gap (1,800s)

Gap Ratio (UB/LB) Comparison

- In general, our approach can be applied when problem is formulated as a dynamic programming model
 - We can build exact BDD from DP model using top-down compilation scheme (exponential size in general)
 - Note that we do not use DP to solve the problem, only to represent it
- Other problem classes considered
 - MAX-CUT, set covering, set packing, MAX 2-SAT, ...

INFORMS J. Computing (to appear) *J. Heuristics* (2014)

MDDs for Constraint-Based Scheduling

Cire, v.H.: MDDs for Sequencing Problems. *Operations Research*, 61(6): 1411-1428, 2013.

Disjunctive Scheduling

- SCHOOL OF BUSINESS
- Sequencing and scheduling of activities on a resource
- Activities
 Processing time: p_i
 Release time: r_i
 Deadline: d_i
 Activity 3
- Resource
 - Nonpreemptive
 - Process one activity at a time

Extensions

- Precedence relations between activities
- Sequence-dependent setup times
- Various objective functions
 - Makespan
 - Sum of setup times
 - (Weighted) sum of completion times
 - (Weighted) tardiness
 - number of late jobs

^{- ...}

- Natural representation as 'permutation MDD'
- Every solution can be written as a permutation π

 $\pi_1, \pi_2, \pi_3, ..., \pi_n$: activity sequencing in the resource

• Schedule is *implied* by a sequence, e.g.:

 $start_{\pi_{i}} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}}$ i = 2, ..., n

MDD Representation

Act	r _i	p _i	d _i
1	0	2	3
2	4	2	9
3	3	3	8

MDD Representation

Act	r _i	p _i	d_i
1	0	2	3
2	4	2	9
3	3	3	8

- Path {1} {3} {2} :
 - $0 \leq \text{start}_1 \leq 1$
 - $6 \leq \text{start}_2 \leq 7$
 - $3 \leq \text{start}_3 \leq 5$

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:

- *Alldifferent* for the permutation structure
- Earliest start time and latest end time
- Precedence relations

For a given constraint type we maintain specific 'state information' at each node in the MDD

both top-down and bottom-up

Propagation (cont'd)

- State information at each node *i*
 - labels on *all* paths: A_i
 - labels on *some* paths: S_i
 - earliest starting time: E_i
 - latest completion time: L_i
- Top down example for arc (u,v)

Alldifferent Propagation

- All-paths state: A_u
 - Labels belonging to all paths from node r to node u
 - ► A_u = {3}
 - Thus eliminate {3} from (u,v)

Alldifferent Propagation

Some-paths state: S_u

- Labels belonging to some path from node r to node u
- ► S_u = {1,2,3}
- Identification of Hall sets
- Thus eliminate {1,2,3} from (u,v)

Propagate Earliest Completion Time

- Earliest Completion Time: E_u
 - Minimum completion time of all paths from root to node u
- Similarly: Latest Completion Time

Propagate Earliest Completion Time

► E_u = 7

Eliminate 4 from (u,v)

Propagate Precedence Relations

- Arc with label j infeasible if
 i << j and i not on some path from r
- ▶ Suppose 4 ≪ 5
 - ► S_u = {1,2,3}
 - Since 4 not in S_u, eliminate 5 from (u,v)
- Similarly: Bottom-up for $j \ll i$

Theorem: Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M

- For a node *u*,
 - A_u^{\downarrow} : values in all paths from root to *u*
 - A_u^{\uparrow} : values in all paths from node u to terminal
- Precedence relation $i \ll j$ holds if and only if $(j \not\in A_u^{\downarrow})$ or $(i \notin A_u^{\uparrow})$ for all nodes u in M

relaxed MDD: use S_u^{\downarrow} and S_u^{\uparrow}

Precedence relations: example

Arc (*i*,*j*) in \overline{G} if $j \in A_u^{\downarrow}$ and $i \in A_u^{\uparrow}$ for *some* node *u* in *M*

 $O(n^2|M|)$ time

Communicate Precedence Relations

- 1. Provide precedence relations from MDD to CP
 - update start/end time variables in CP model
 - other inference techniques may utilize them
 - help to guide search
- 2. Filter the MDD using precedence relations from other (CP) techniques
- 3. In context of MIP, these can be added as linear inequalities

MDD Construction and Refinement

- To refine the MDD, we generally want to identify equivalence classes among nodes in a layer
 - For sequencing, deciding equivalence is NP-hard
- In practice, refinement can be based on
 - earliest starting time
 - latest earliest completion time r_i+p_i
 - *alldifferent* constraint (A_i and S_i states)

- MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
 - State-of-the-art constraint based scheduling solver
 - Uses a portfolio of inference techniques and LP relaxation
 - MDD is added as user-defined propagator
TSP with Time Windows

Total Tardiness Results

total tardiness

total weighted tardiness

Sequential Ordering Problem (TSPLIB)

			CPO		CPO+MDD, width 2048	
instance	vertices	bounds	best	time (s)	\mathbf{best}	time (s)
br17.10	17	55	55	0.01	55	4.98
br17.12	17	55	55	0.01	55	4.56
$\mathrm{ESC07}$	7	2125	2125	0.01	2125	0.07
$\mathrm{ESC25}$	25	1681	1681	TL	1681	48.42
p43.1	43	28140	28205	TL	28140	287.57
p43.2	43	[28175, 28480]	28545	TL	28480	$279.18{}^{*}$
p43.3	43	[28366, 28835]	28930	TL	28835	177.29*
p43.4	43	83005	83615	TL	83005	88.45
ry48p.1	48	[15220, 15805]	18209	TL	16561	TL
ry48p.2	48	[15524, 16666]	18649	TL	17680	TL
ry48p.3	48	[18156, 19894]	23268	TL	22311	TL
ry48p.4	48	[29967, 31446]	34502	TL	31446	$96.91^{\boldsymbol{*}}$
ft 53.1	53	[7438, 7531]	9716	TL	9216	TL
ft 53.2	53	[7630, 8026]	11669	TL	11484	TL
ft 53.3	53	[9473, 10262]	12343	TL	11937	TL
ft 53.4	53	14425	16018	TL	14425	120.79

Extensions

- Improved bounds
 - Lagrangian relaxation for violated constraints

TSPTW instances

(Constraints, 2015)

- Improved bounds
 - Lagrangian relaxation for violated constraints
 - Additive bounding to integrate (LP) relaxations
- Sequencing with state-dependent data
 - Position-dependent setup times for single machines
 - TSP with time-dependent travel time

Summary

What can MDDs do for combinatorial optimization?

- Compact representation of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

MDDs for integer optimization

- MDD *relaxations* provide upper bounds
- MDD *restrictions* provide lower bounds
- New branch-and-bound scheme

MDDs for constraint-based scheduling

- Constraint propagation with MDDs
- Orders of magnitude improvement possible

Decision Diagrams for Optimization and Scheduling

Preprints, tutorials, presentations, videos, code, benchmark instances: www.andrew.cmu.edu/user/vanhoeve/mdd/