lepper

SCHOOL OF BUSINESS

Decision Diagrams for Optimization and Scheduling

Willem-Jan van Hoeve

Tepper School of Business
Carnegie Mellon University
www.andrew.cmu.edu/user/vanhoeve/mdd/

Acknowledgments:

David Bergman, Andre Cire, Samid Hoda, John Hooker, Brian Kell, Joris Kinable,

Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, Marla Slusky, Tallys Yunes

Google



Summary 'Iéf}“’fj =

SCHOOL OF BUSINESS

What can MDDs do for combinatorial optimization?

e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for integer optimization

e MDD relaxations provide upper bounds
e MDD restrictions provide lower bounds
e New branch-and-bound scheme

MDDs for constraint-based scheduling
e Constraint propagation with MDDs
e Orders of magnitude improvement possible
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e Binary Decision Diagrams were introduced to compactly
represent Boolean functions  [Lee, 1959], [Akers, 1978], [Bryant, 1986]

e BDD: merge isomorphic subtrees of a given binary decision tree

e MDDs are multi-valued decision diagrams (i.e., for discrete
variables)



Brief background Tepper
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e Original application areas: circuit design, verification

e Usually reduced ordered BDDs/MDDs are applied
— fixed variable ordering
— minimal exact representation

e Mid-2000s: interest from optimization community
— cut generation [Becker et al., 2005]
— 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
— post-optimality analysis [Hadzic & Hooker, 2006, 2007]

e |nteresting variant

— relaxed MDDs (polynomial size)
[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]
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e Discrete Optimization
— MISP, MAX-CUT, set covering, set packing, MAX-2SAT, ...

e Constraint Programming
— MDD propagation (alldifferent, sequence, ...)
e Scheduling and Sequencing

— Machine scheduling, routing, ...

e |Integer Programming

— Cut generation

e Boolean Satisfiability

— Clause learning
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0 (1) x; +x, +x32>1
(2) x; +x,+x:2>1
_:1 (3) %, +x,>1
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terminal t

root r
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(1) x; +x, +x32>1
(2) X, + X, + x5 =1
(3) %, +x,>1

Each path corresponds
to a solution
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e Exact MDDs can be of exponential size in general

e We can limit the size (width) of the MDD to obtain a
relaxation [Andersen et al., 2007]

— strength is controlled by the maximum width

11
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MDDs for Integer Optimization

e Bergman, Cire, v.H., Hooker: Optimization Bounds from Binary Decision
Diagrams. INFORMS J. Computing 26(2): 253-268, 2014.

e Bergman, Cire, v.H., Yunes: BDD-Based Heuristics for Binary Optimization.
Journal of Heuristics 20: 211-234, 2014.

e Bergman, Cire, v.H., Hooker. Discrete Optimization with Decision Diagrams.
INFORMS J. Computing, to appear.

e Bergman, Cire, Sabharwal, Samulowitz, Saraswat, and v.H. Parallel
Combinatorial Optimization with Decision Diagrams. In Proceedings of

CPAIOR, Springer LNCS, 2014. 12
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e Conventional integer programming relies on branch-
and-bound based on continuous LP relaxations
— Relaxation bounds
— Feasible solutions
— Branching

e \We propose a novel branch-and-bound algorithm for
discrete optimization based on decision diagrams
— Relaxation bounds — Relaxed BDDs
— Feasible solutions — Restricted BDDs
— Branching — Nodes of relaxed BDDs

e Potential benefits: stronger bounds, efficiency,

memory requirements, models need not be linear
13
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e Given graph G = (V, E) with vertex weights w.

e Find a subset of vertices S with maximum total weight
such that no edge exists between any two vertices in S

max 2., w,X

5 4
s.t. x+x<1 forall(i,j)inE i:i>j 2
x. binary foralliinV 6

14



Exact top-down compilation Tppér

SCHOOL OF BUSINIESS
0 state information: eligible vertices
—:1 r l/
{11213I415}
X,
\\\{2131415}
{3,4} O

X2
X3
X4
X5

15



Exact top-down compilation Tppér

SCHOOL OF BUSINIESS
0 state information: eligible vertices
—:1 r l/
{112131415}
X,
\\\{2131415}
{3,4} (
X2
i \\{\31415}
® 3.4 ) o
X3
X4
X5

15



Exact top-down compilation Tppér

SCHOOL OF BUSINIESS
0 state information: eligible vertices
—:1 r l/
{112131415}
X,
\\\{2131415}
{3,4} (
X2
: \\{\31415}
) 3,4} ) ¢
X3 \
{4}
Z ® 5le @45}
X4
X5

15



Exact top-down compilation Tppér

SCHOOL OF BUSINIESS
0 state information: eligible vertices
—:1 r l/
{112131415}
X,
\\\{2131415}
{3,4} (
X2
: \\{\31415}
) 3.4} ) ¢
X3 \ .
{4}
Z ® 5le @45}
X4
Merge equivalent nodes
X5

15



Node Merging Teppér

SCHOOL OF BUSINESS
state information: eligible vertices
—:1 r
{1,2,3,4,5) .’9
\\\{2131415}
{3,4} \
X2
: \\‘{\31415}
d {34} =2 ¢
X3 \ .
o {4} i
2 ® {5}
X4

16



Node Merging Teppér

SCHOOL OF BUSINESS
state information: eligible vertices
—:1 r
(1,2,3,4,5) .’9
\\\{2131415}
{3,4} \
X2
X3
%)
X4
@ \\
Xs

16



Node Merging Teppér

SCHOOL OF BUSINESS
state information: eligible vertices
0 ¥ O—C
—:1 r
(1,2,3,4,5) ’9
~42,3,4,5}
{3,4} \
X3 *\\\{345} Theorem: This procedure
> (3.4} 5} o generates a reduced
y ) ' exact BDD
3
%)
. [Bergman et al., 2012]
X4
@ \\
Xs

16



Node Merging Tepper

SCHOOL OF BUSINIESS
state information: eligible vertices
1 0 / (1) )
—:1 r
) {1,2,3,4,5) ’9
\\\{2131415}
{3,4} \
X Relaxed BDD: merge
non-equivalent nodes
y when the given width is
3
exceeded
%)
) [Bergman et al., 2012]
X4
@ \\
Xsg

16



Relaxed BDD Tpper

---=:0 Exact BDD O—Q2
—:1 r ’o

SCHOOL OF BUSINESS

17



Relaxed BDD Tpper

-0 Exact BDD 0‘. - Relaxed BDD (width < 3)
—:1 r ’

SCHOOL OF BUSINESS

17



Relaxed BDD Tpper

' Exact BDD O—Q2 Relaxed BDD (width < 3)
—:1 r ’o r
{112131415}

SCHOOL OF BUSINESS

(5H)——4)
X4
{3,4) ~._{2,3,4,5}
X2 . |
{3,4} E {5} " {3,4,5}
X3 \\ | \\
5 \{4,5}
{4} {5} {5} {4,
% s "L 4
Xy
X5

17



Relaxed BDD Tpper

' Exact BDD O—Q2 Relaxed BDD (width < 3)
—:1 r ’o r
{112131415}

SCHOOL OF BUSINESS

(5H)——4)
X4
(3,4} ~_{2,3,4,5}
X2 . |
(3.4} ¢ {5} " {3,4,5)
X3 \\ | \\
5 \{4,5}
@y, 5% {5) (4,
%) 5 A A
Xy
X5

17



Relaxed BDD Tpper

e 0 Exact BDD O—Q2) Relaxed BDD (width < 3)
—:1 r ’o r
{112131415}

SCHOOL OF BUSINESS

H)—4)
Xl -
{3,4} ~._{2,3,4,5}
X2 |
{34} ¢ \. {3,4,5)
X3
%)
X4
Xs

18



Relaxed BDD Tpper

e 0 Exact BDD O—Q2) Relaxed BDD (width < 3)
—:1 r ’o r
{112131415}

SCHOOL OF BUSINESS

(5H)——4)

Xl

{3,4} ~._{2,3,4,5}
X2 |

3,4} \. {3,4,5}
X3

%)
X, |

> P4t

Xs

18



Relaxed BDD Tpper

SCHOOL OF BUSINESS

Xs

(0,0,0,1,0) 19



Relaxed BDD Tpper

-0 Exact BDD 0‘. - Relaxed BDD (width < 3)
—:1 r ’ r

SCHOOL OF BUSINESS

Xs

(110101011) 20



SCHOOL OF BUSINESS

Evaluate Objective Function "Tepper

Relaxed BDD (width < 3)

r

X \

\
X4
X5

21



Evaluate Objective Function "Tepper
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Restricted MDD (width < 3)
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Variable Ordering "lepper

e Order of variables greatly impacts BDD size

— also influences bound from relaxed BDD (see next)

e Finding ‘optimal ordering” is NP-hard

e Insights from independent set as case study

— formal bounds on BDD size

23
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Exact BDD orderings for Paths "Tepper
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Graph Class Bound on Width

Paths 1
Cliques 1
Interval Graphs 1
Trees n/2
General Graphs Fibonacci Numbers:
|Layer j| < Fj,y

(The proof for general graphs is based on a maximal path
decomposition of the graph)
INFORMS J. Computing (2014)
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Variable ordering heuristics lepper
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e Several possibilities
— choose vertex at random
— choose vertex that appears in fewest states in current layer
— choose vertex according to maximal path decomposition

26



Variable ordering heuristics lepper
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e Several possibilities
— choose vertex at random
— choose vertex that appears in fewest states in current layer
— choose vertex according to maximal path decomposition

e Evaluate quality of the bounds in practice
— Random Erdo6s-Rényi G(n,p) graphs
— DIMACS clique graphs (87 instances)
— Compare with CPLEX 12.5
(standard MIP model and cligue cover model)

26
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random graphs (n=500)
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Bounds in practice lepper

random graphs (n=1500)
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Branch and Bound Tepper
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Branch and Bound

Relaxed BDD (width < 3)
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New Branching Scheme lepper
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e Novel branching scheme
— Branch on pools of partial solutions
— Remove symmetry from search
e Symmetry with respect to feasible completions

— Can be combined with other techniques

e Use decision diagrams for branching, and LP for bounds

— Immediate parallelization
e Send nodes to different workers, recursive application
e DDX10 (CPAIOR 2014)

31
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DIMACS Graphs: End Gap (1,800s) Tepper
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Gap Ratio (UB/LB) Comparison
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General Approach Tepper
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e |n general, our approach can be applied when problem
is formulated as a dynamic programming model

— We can build exact BDD from DP model using top-down
compilation scheme (exponential size in general)

— Note that we do not use DP to solve the problem, only to
represent it

e Other problem classes considered
— MAX-CUT, set covering, set packing, MAX 2-SAT, ...

INFORMS J. Computing (to appear)
J. Heuristics (2014)
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g

MDD:s for Constraint-Based Scheduling

Cire, v.H.: MDDs for Sequencing Problems.
Operations Research, 61(6): 1411-1428, 2013.



Disjunctive Scheduling "Tepper
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e Sequencing and scheduling of activities on a resource

. ') o 0 1 2 3 4
e Activities
— Processing time: p, Activity 1 _ j
— Release time: r, Activity 2 E
— Deadline: d.
i Activity 3 [ ﬁ
e Resource

— Nonpreemptive

— Process one activity at a time

36
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Extensions ‘lepper
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e Precedence relations between activities

e Sequence-dependent setup times

e Various objective functions

— Makespan

— Sum of setup times

— (Weighted) sum of completion times
— (Weighted) tardiness

— number of late jobs

37



MDD Representation Tépwf)er
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e Natural representation as ‘permutation MDD’

e Every solution can be written as a
permutation i

. activity sequencing in the resource

Ty, Ty, Ty, ooy T

e Schedule is implied by a sequence, e.g.:

starty, = starty,  +p . 1=2,..,n
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MDD Representation Tepper
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MDD Representation Tepper
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Act ri pI di
2 4 2 9
3 3 3 8
T,
Path {1} —{3}—{2}:
3 0 <start; €1

6 <start, <7

3 Sstart; <5
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MDD-based propagation Tepper
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Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:
e Alldifferent for the permutation structure
e Earliest start time and latest end time

e Precedence relations

For a given constraint type we maintain specific
‘state information’ at each node in the MDD

— both top-down and bottom-up

40
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Propagation (cont’d) Tppér

e State information at
each nodej

— labels on all paths: A,
— labels on some paths: S,

— earliest starting time: E,
— latest completion time: L,

{1,2,3,4,5} T,

e Top down example for
arc (u,v)

41
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Alldifferent Propagation lepper
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All-paths state: A

» Labels belonging to all paths
from node r to node u

» A, = {3}
» Thus eliminate {3} from (u,v)

1,2}

(12,745}

Ty

63
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Alldifferent Propagation ‘lepper
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Some-paths state: S,

» Labels belonging to some
path from node r to node u

» S, =11,2,3}
» Identification of Hall sets

» Thus eliminate {1,2,3} from
(u,v)

64



Propagate Earliest Completion Time lepper
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Earliest Completion Time: E,

» Minimum completion time
of all paths from root to
node u

1,2}

Similarly: Latest Completion
Time

65



Propagate Earliest Completion Time  1epper
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» Eliminate 4 from (u,Vv)
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Propagate Precedence Relations leppeér
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Arc with label j infeasible if

[ < jandinotonsome path fromr

Suppose 4 K 5
» S, ={1,2,3}

» Since 4 notin S, eliminate 5
from (u,v)

Similarly: Bottom-up forj «< i

67



More MDD Inference Tepper
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Theorem: Given the exact MDD M, we can deduce all implied
activity precedences in polynomial time in the size of M

For a node u,
» A} values in all paths from root to u
» Al values in all paths from node u to terminal

Precedence relation i < j holds if and only if
(J & Aﬁ) or (i & Al) for all nodes uin M

relaxed MDD: use S and S,

68
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Precedence relations: example lepper

SCHOOL OF BUSINESS

(AY,AL) = (- | 1234) 0 1 2 3 4 5 6 7 8

Activity 2 [ ﬂ
Activity 3 I:— ]

Activity 4 [ —

L

(1234 | -)

Arc (ij)inGif j € Af and i € A O(n?|M|) time
for some nodeuin M
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Communicate Precedence Relations Tépper
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1. Provide precedence relations from MDD to CP
— update start/end time variables in CP model
— other inference techniques may utilize them
— help to guide search

2. Filter the MDD using precedence relations from
other (CP) techniques

3. In context of MIP, these can be added as linear
inequalities

48



MDD Construction and Refinement "Tepper
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r r r
N1 Cg >‘]3 / \ / \
u iy i
(. — 3 5 ey S '
al J ' - ] ' =
1 2 13 Ja ",‘2 J3
v J] v 11 V] I 1/'2
J3
f]Gz >j3 J1 Czl} J
: : i

Jo < J1

e Torefine the MDD, we generally want to identify equivalence
classes among nodes in a layer
— For sequencing, deciding equivalence is NP-hard

e |n practice, refinement can be based on
— earliest starting time
— latest earliest completion time r.+p,

— alldifferent constraint (A, and S, states) 49
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e MDD propagation implemented in IBM ILOG CPLEX
CP Optimizer 12.4 (CPO)
— State-of-the-art constraint based scheduling solver
— Uses a portfolio of inference techniques and LP relaxation
— MDD is added as user-defined propagator

50



TSP with Time Windows "lepper

SCHOOL OF BUSINESS

10000 ; Dumas/Ascheuer
_ instances

1000 | 1 -20-60jobs
D | X - lex search
O 100 | x| - MDD width: 16
& - x _
= | |
=) %
o 10 i x x XX %]
= X %
Q 1| *
- X
o

>2< XXX
0.1 | . X |
X )2< X X
- X XX X
0.01 e e
0.01 0.1 1 10 100 1000 10000
CPO time (s)

51



Total Tardiness Results lepper
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Sequential Ordering Problem (TSPLIB)
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CPO CPO+MDD, width 2048
instance vertices bounds best  time (s) best time (s)
br17.10 17 55 55 0.01 55 4.98
brl17.12 17 55 55 0.01 55 4.56
ESCO07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 28175, 28480 28545 TL 28480 279.18*
p43.3 43 28366, 28835] 28930 TL 28835 177.29%*
pd3.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 15220, 15805] 18209 TL 16561 TL
ry48p.2 48 (15524, 16666 18649 TL 17680 TL
ry48p.3 48 (18156, 19894] 23268 TL 22311 TL
ry48p.4 48 29967, 31446] 34502 TL 31446 96.91 *
ft53.1 53 (7438, 7531] 9716 TL 9216 TL
ft53.2 53 (7630, 8026] 11669 TL 11484 TL
ft53.3 53 9473, 10262] 12343 TL 11937 TL
ft53.4 53 14425 16018 TL 14425 120.79
53

* solved for the first time



Extensions
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e Improved bounds
— Lagrangian relaxation for violated constraints

With Lagrange multipliers

Scatter plot of optimality gap at the root node

Number of instances solved versus time

Without Lagrange multipliers
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Carnegie Mellon

Extensions lepper
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e Improved bounds
— Lagrangian relaxation for violated constraints
— Additive bounding to integrate (LP) relaxations

e Sequencing with state-dependent data
— Position-dependent setup times for single machines
— TSP with time-dependent travel time
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What can MDDs do for combinatorial optimization?

e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for integer optimization

e MDD relaxations provide upper bounds
e MDD restrictions provide lower bounds
e New branch-and-bound scheme

MDDs for constraint-based scheduling
e Constraint propagation with MDDs
e Orders of magnitude improvement possible
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Decision Diagrams for Optimization and Scheduling

Preprints, tutorials, presentations, videos, code, benchmark instances:

www.andrew.cmu.edu/user/vanhoeve/mdd/



