

## Decision Diagrams for Optimization and Scheduling

Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/

Acknowledgments:

David Bergman, Andre Cire, Samid Hoda, John Hooker, Brian Kell, Joris Kinable, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, Marla Slusky, Tallys Yunes



## Summary



#### What can MDDs do for combinatorial optimization?

- Compact representation of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

#### MDDs for integer optimization

- MDD *relaxations* provide upper bounds
- MDD *restrictions* provide lower bounds
- New branch-and-bound scheme

#### MDDs for constraint-based scheduling

- Constraint propagation with MDDs
- Orders of magnitude improvement possible

## **Decision Diagrams**



xЗ



- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- BDD: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

# Brief background

- Original application areas: circuit design, verification
- Usually *reduced ordered* BDDs/MDDs are applied
  - fixed variable ordering
  - minimal exact representation
- Mid-2000s: interest from optimization community
  - cut generation [Becker et al., 2005]
  - 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
  - post-optimality analysis [Hadzic & Hooker, 2006, 2007]
- Interesting variant
  - relaxed MDDs (polynomial size)

[Andersen, Hadzic, Hooker & Tiedemann, CP 2007]

# MDDs for combinatorial optimization



#### • Discrete Optimization

- MISP, MAX-CUT, set covering, set packing, MAX-2SAT, ...
- Constraint Programming
  - MDD propagation (alldifferent, sequence, ...)
- Scheduling and Sequencing
  - Machine scheduling, routing, ...
- Integer Programming
  - Cut generation
- Boolean Satisfiability
  - Clause learning





























## Approximate MDDs



- Exact MDDs can be of exponential size in general
- We can limit the size (width) of the MDD to obtain a relaxation [Andersen et al., 2007]
  - strength is controlled by the maximum width





#### MDDs for Integer Optimization

- Bergman, Cire, v.H., Hooker: Optimization Bounds from Binary Decision Diagrams. INFORMS J. Computing 26(2): 253-268, 2014.
- Bergman, Cire, v.H., Yunes: BDD-Based Heuristics for Binary Optimization. *Journal of Heuristics* 20: 211-234, 2014.
- Bergman, Cire, v.H., Hooker. Discrete Optimization with Decision Diagrams. *INFORMS J. Computing*, to appear.
- Bergman, Cire, Sabharwal, Samulowitz, Saraswat, and v.H. Parallel Combinatorial Optimization with Decision Diagrams. In *Proceedings of CPAIOR*, Springer LNCS, 2014.



- Conventional integer programming relies on branchand-bound based on continuous LP relaxations
  - Relaxation bounds
  - Feasible solutions
  - Branching
- We propose a novel branch-and-bound algorithm for discrete optimization based on decision diagrams
  - Relaxation bounds Relaxed BDDs
  - Feasible solutions Restricted BDDs
  - Branching Nodes of relaxed BDDs
- Potential benefits: stronger bounds, efficiency, memory requirements, models need not be linear

## Case Study: Independent Set Problem

- Given graph G = (V, E) with vertex weights w<sub>i</sub>
- Find a subset of vertices S with maximum total weight such that no edge exists between any two vertices in S

$$\label{eq:max} \begin{array}{ll} \sum_{i} w_{i} x_{i} \\ \text{s.t.} & x_{i} + x_{j} \leq 1 \quad \text{for all (i,j) in E} \\ & x_{i} \text{ binary} \quad \text{for all i in V} \end{array}$$



**X**<sub>3</sub>

**X**<sub>4</sub>

**X**<sub>5</sub>





SCHOOL

**Carnegie** Mellon

O.E

BUSINES

15

**X**<sub>4</sub>

**X**<sub>5</sub>





SCHOO

**Carnegie** Mellon

OII:

BUSINES



**X**<sub>5</sub>



SCHOO

**Carnegie** Mellon

OII:

BUSINES



**X**<sub>5</sub>



Carnegie Mellon

USINES

Merge equivalent nodes



















Theorem: This procedure generates a reduced exact BDD

[Bergman et al., 2012]







Relaxed BDD: merge *non-equivalent* nodes when the given width is exceeded

[Bergman et al., 2012]













Relaxed BDD (width  $\leq$  3)

























### **Evaluate Objective Function**





### **Evaluate Objective Function**





#### Restricted BDD







#### Restricted BDD








- Order of variables greatly impacts BDD size
   also influences bound from relaxed BDD (see next)
- Finding 'optimal ordering' is NP-hard

Insights from independent set as case study

 formal bounds on BDD size

### **Exact BDD orderings for Paths**







24

## Formal Results for Independent Set



| Graph Class     | Bound on Width                                     |  |
|-----------------|----------------------------------------------------|--|
| Paths           | 1                                                  |  |
| Cliques         | 1                                                  |  |
| Interval Graphs | 1                                                  |  |
| Trees           | n/2                                                |  |
| General Graphs  | Fibonacci Numbers:<br> Layer j  ≤ F <sub>j+1</sub> |  |

(The proof for general graphs is based on a maximal path decomposition of the graph)

INFORMS J. Computing (2014)

## Variable ordering heuristics



- Several possibilities
  - choose vertex at random
  - choose vertex that appears in fewest states in current layer
  - choose vertex according to maximal path decomposition

## Variable ordering heuristics



- Several possibilities
  - choose vertex at random
  - choose vertex that appears in fewest states in current layer
  - choose vertex according to maximal path decomposition
- Evaluate quality of the bounds in practice
  - Random Erdös-Rényi G(n,p) graphs
  - DIMACS clique graphs (87 instances)
  - Compare with CPLEX 12.5

(standard MIP model and clique cover model)

#### Bounds in practice



#### random graphs (n=500)



#### Bounds in practice

















































Last Exact Layer

{3,4}: 5+6 = 11

● {3,4,5} : 0+10 = 10



- Novel branching scheme
  - Branch on **pools** of partial solutions
  - Remove **symmetry** from search
    - Symmetry with respect to feasible completions
  - Can be combined with other techniques
    - Use decision diagrams for branching, and LP for bounds
  - Immediate parallelization
    - Send nodes to different workers, recursive application
    - DDX10 (CPAIOR 2014)

#### **Computational Results: DIMACS**





## DIMACS Graphs: End Gap (1,800s)





Gap Ratio (UB/LB) Comparison



- In general, our approach can be applied when problem is formulated as a dynamic programming model
  - We can build exact BDD from DP model using top-down compilation scheme (exponential size in general)
  - Note that we do not use DP to solve the problem, only to represent it
- Other problem classes considered
  - MAX-CUT, set covering, set packing, MAX 2-SAT, ...

*INFORMS J. Computing* (to appear) *J. Heuristics* (2014)







#### MDDs for Constraint-Based Scheduling

Cire, v.H.: MDDs for Sequencing Problems. *Operations Research*, 61(6): 1411-1428, 2013.

## Disjunctive Scheduling

- SCHOOL OF BUSINESS
- Sequencing and scheduling of activities on a resource
- Activities
  Processing time: p<sub>i</sub>
  Release time: r<sub>i</sub>
  Deadline: d<sub>i</sub>
  Activity 3
- Resource
  - Nonpreemptive
  - Process one activity at a time

#### Extensions



- Precedence relations between activities
- Sequence-dependent setup times
- Various objective functions
  - Makespan
  - Sum of setup times
  - (Weighted) sum of completion times
  - (Weighted) tardiness
  - number of late jobs

<sup>- ...</sup> 



- Natural representation as 'permutation MDD'
- Every solution can be written as a permutation  $\pi$

 $\pi_1, \pi_2, \pi_3, ..., \pi_n$ : activity sequencing in the resource

• Schedule is *implied* by a sequence, e.g.:

 $start_{\pi_{i}} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}}$  i = 2, ..., n

### **MDD** Representation





| Act | r <sub>i</sub> | p <sub>i</sub> | d <sub>i</sub> |
|-----|----------------|----------------|----------------|
| 1   | 0              | 2              | 3              |
| 2   | 4              | 2              | 9              |
| 3   | 3              | 3              | 8              |

### **MDD** Representation





| Act | r <sub>i</sub> | p <sub>i</sub> | $d_i$ |
|-----|----------------|----------------|-------|
| 1   | 0              | 2              | 3     |
| 2   | 4              | 2              | 9     |
| 3   | 3              | 3              | 8     |

- Path {1} {3} {2} :
  - $0 \leq \text{start}_1 \leq 1$
  - $6 \leq \text{start}_2 \leq 7$
  - $3 \leq \text{start}_3 \leq 5$



*Propagation:* remove infeasible arcs from the MDD

We can utilize several structures/constraints:

- *Alldifferent* for the permutation structure
- Earliest start time and latest end time
- Precedence relations

For a given constraint type we maintain specific 'state information' at each node in the MDD

both top-down and bottom-up

## Propagation (cont'd)



- State information at each node *i* 
  - labels on *all* paths:  $A_i$
  - labels on *some* paths:  $S_i$
  - earliest starting time:  $E_i$
  - latest completion time: L<sub>i</sub>
- Top down example for arc (u,v)



# **Alldifferent Propagation**



- All-paths state: A<sub>u</sub>
  - Labels belonging to all paths from node r to node u
  - ► A<sub>u</sub> = {3}
  - Thus eliminate {3} from (u,v)



# Alldifferent Propagation



Some-paths state: S<sub>u</sub>

- Labels belonging to some path from node r to node u
- ► S<sub>u</sub> = {1,2,3}
- Identification of Hall sets
- Thus eliminate {1,2,3} from (u,v)



## **Propagate Earliest Completion Time**



- Earliest Completion Time: E<sub>u</sub>
  - Minimum completion time of all paths from root to node u
- Similarly: Latest Completion Time



## **Propagate Earliest Completion Time**





► E<sub>u</sub> = 7

Eliminate 4 from (u,v)



## Propagate Precedence Relations



- Arc with label j infeasible if
   i << j and i not on some path from r</li>
- ▶ Suppose 4 ≪ 5
  - ► S<sub>u</sub> = {1,2,3}
  - Since 4 not in S<sub>u</sub>, eliminate 5 from (u,v)
- Similarly: Bottom-up for  $j \ll i$





Theorem: Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M

- For a node *u*,
  - $A_u^{\downarrow}$ : values in all paths from root to *u*
  - $A_u^{\uparrow}$ : values in all paths from node u to terminal
- Precedence relation  $i \ll j$  holds if and only if  $(j \not\in A_u^{\downarrow})$  or  $(i \notin A_u^{\uparrow})$  for all nodes u in M

relaxed MDD: use  $S_u^{\downarrow}$  and  $S_u^{\uparrow}$ 

## Precedence relations: example





Arc (*i*,*j*) in  $\overline{G}$  if  $j \in A_u^{\downarrow}$  and  $i \in A_u^{\uparrow}$ for *some* node *u* in *M* 

 $O(n^2|M|)$  time

### **Communicate Precedence Relations**



- 1. Provide precedence relations from MDD to CP
  - update start/end time variables in CP model
  - other inference techniques may utilize them
  - help to guide search
- 2. Filter the MDD using precedence relations from other (CP) techniques
- 3. In context of MIP, these can be added as linear inequalities

## MDD Construction and Refinement





- To refine the MDD, we generally want to identify equivalence classes among nodes in a layer
  - For sequencing, deciding equivalence is NP-hard
- In practice, refinement can be based on
  - earliest starting time
  - latest earliest completion time r<sub>i</sub>+p<sub>i</sub>
  - *alldifferent* constraint (A<sub>i</sub> and S<sub>i</sub> states)



- MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
  - State-of-the-art constraint based scheduling solver
  - Uses a portfolio of inference techniques and LP relaxation
  - MDD is added as user-defined propagator
## TSP with Time Windows





### **Total Tardiness Results**





total tardiness

total weighted tardiness

# Sequential Ordering Problem (TSPLIB)



|                  |          |                 | CPO   |               | CPO+MDD, width $2048$ |                          |
|------------------|----------|-----------------|-------|---------------|-----------------------|--------------------------|
| instance         | vertices | bounds          | best  | time $(s)$    | $\mathbf{best}$       | time $(s)$               |
| br17.10          | 17       | 55              | 55    | 0.01          | 55                    | 4.98                     |
| br17.12          | 17       | 55              | 55    | 0.01          | 55                    | 4.56                     |
| $\mathrm{ESC07}$ | 7        | 2125            | 2125  | 0.01          | 2125                  | 0.07                     |
| $\mathrm{ESC25}$ | 25       | 1681            | 1681  | $\mathrm{TL}$ | 1681                  | 48.42                    |
| p43.1            | 43       | 28140           | 28205 | $\mathrm{TL}$ | 28140                 | 287.57                   |
| p43.2            | 43       | [28175, 28480]  | 28545 | $\mathrm{TL}$ | 28480                 | $279.18{}^{*}$           |
| p43.3            | 43       | [28366, 28835]  | 28930 | $\mathrm{TL}$ | 28835                 | 177.29*                  |
| p43.4            | 43       | 83005           | 83615 | $\mathrm{TL}$ | 83005                 | 88.45                    |
| ry48p.1          | 48       | [15220,  15805] | 18209 | $\mathrm{TL}$ | 16561                 | $\mathrm{TL}$            |
| ry48p.2          | 48       | [15524, 16666]  | 18649 | $\mathrm{TL}$ | 17680                 | $\mathrm{TL}$            |
| ry48p.3          | 48       | [18156, 19894]  | 23268 | $\mathrm{TL}$ | 22311                 | $\mathrm{TL}$            |
| ry48p.4          | 48       | [29967, 31446]  | 34502 | $\mathrm{TL}$ | 31446                 | $96.91^{\boldsymbol{*}}$ |
| ft 53.1          | 53       | [7438, 7531]    | 9716  | $\mathrm{TL}$ | 9216                  | $\mathrm{TL}$            |
| ft 53.2          | 53       | [7630, 8026]    | 11669 | $\mathrm{TL}$ | 11484                 | $\mathrm{TL}$            |
| ft 53.3          | 53       | [9473, 10262]   | 12343 | $\mathrm{TL}$ | 11937                 | $\mathrm{TL}$            |
| ft 53.4          | 53       | 14425           | 16018 | $\mathrm{TL}$ | 14425                 | 120.79                   |
|                  |          |                 |       |               |                       |                          |

#### Extensions



- Improved bounds
  - Lagrangian relaxation for violated constraints



TSPTW instances

(Constraints, 2015)



- Improved bounds
  - Lagrangian relaxation for violated constraints
  - Additive bounding to integrate (LP) relaxations
- Sequencing with state-dependent data
  - Position-dependent setup times for single machines
  - TSP with time-dependent travel time

### Summary



#### What can MDDs do for combinatorial optimization?

- Compact representation of all solutions to a problem
- Limit on size gives *approximation*
- Control strength of approximation by size limit

#### MDDs for integer optimization

- MDD *relaxations* provide upper bounds
- MDD *restrictions* provide lower bounds
- New branch-and-bound scheme

#### MDDs for constraint-based scheduling

- Constraint propagation with MDDs
- Orders of magnitude improvement possible



### Decision Diagrams for Optimization and Scheduling

Preprints, tutorials, presentations, videos, code, benchmark instances: www.andrew.cmu.edu/user/vanhoeve/mdd/