
Decision Diagrams for
Optimization

Andre Augusto Cire
Dept. of Management, University of Toronto Scarborough

Rotman School of Management

MIP 2015, Chicago, June 2015

Collaborators

2

Willem-Jan van Hoeve
Carnegie Mellon University

John Hooker
Carnegie Mellon University

David Bergman
University of Connecticut

Joris Kinable
Carnegie Mellon University

Christian Tjandraatmadja
Carnegie Mellon University

Thiago Serra
Carnegie Mellon University

Our Main Research Goal

Investigate the use of Decision Diagrams for
solving discrete optimization problems

3

• New relaxation/bounding technique
• Bounds can be superior to state-of-the-art methods in certain problems

• Generic primal heuristic
• Scales to large-scale problems

• Inference techniques
• New types of cuts for MIPs and other optimization technologies

• Novel complete solution technique
• Solved open instances from classical benchmarks
• Parallel method that scales almost linearly with number of processors

4

Contributions so far

Decision Diagrams

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1 𝑥2 ∧ 𝑥3 𝑥4

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

… … … … …

5

Decision Diagrams

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1 𝑥2 ∧ 𝑥3 𝑥4

0 1

x1

x2

x3

x4

0

1

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

… … … … …

6

Decision Diagrams

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1 𝑥2 ∧ 𝑥3 𝑥4

0 1

x1

x2

x3

x4

0

1

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

… … … … …

7

Decision Diagrams

• Graphical representation of
Boolean functions

𝑓 𝑥 = 𝑥1 𝑥2 ∧ 𝑥3 𝑥4

0 1

x1

x2

x3

x4

0

1

x1 x2 x3 x4 f(x)

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 1 1 1

… … … … …

8

Decision Diagrams

• Graphical representation of
Boolean functions

• Dual role
• Computational model
• Graphical encoding

• [Lee’59, Akers’78, Bryant’86]

𝑓 𝑥 = 𝑥1 𝑥2 ∧ 𝑥3 𝑥4

0 1

x1

x2

x3

x4

0

1

9

Decision Diagrams

• Application in several areas
• Circuit design
• Formal verification
• Symbolic model checking
• …

• Our focus: Optimization
• Literals variables
• Arcs value assignments
• Paths encode solutions 0 1

x1

x2

x3

x4

0

1

10

Decision Diagrams

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

0 1

x1

x2

x3

x4

0

1

11

Decision Diagrams

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

0 1

x1

x2

x3

x4

0

1

12

Decision Diagrams

0 1

x1

x2

x3

x4

0

1

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

13

Decision Diagrams

r

x1

x2

x3

x4

0

1

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

t

14

Decision Diagrams

r

x1

x2

x3

x4

0

1

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}

• Maximizing a linear (or separable) function:
• Arc lengths: contribution to the objective
• Longest path: optimal solution

0

0

0

0

2

1

-4

1

t

15

Decision Diagrams

• Uses of this framework:
• Solution counting (Lobbing’96)
• Large-scale network flows (Hachtel et al’97)
• Postoptimality analysis (Hadzic & Hooker’08)
• Few others, typically domain-specific.

• Our goal: exploit the use of decision
diagrams in generic optimization
methods

r

x1

x2

x3

x4

0

1

0

0

0

0

2

1

-4

1

t

16

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Search

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts

17

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Search

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts

18

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

19

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

20

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

max 3x1 + 4x2 + 2x3 + 2x4 + 7x5

subject to
x1 + x2 ≤ 1
x1 + x3≤ 1
x2 + x3≤ 1
x3 + x4 ≤ 1
x4 + x5 ≤ 1
x1, x2, x3, x4, x5 ∈ {0,1}

• Integer Programming Formulation:

21

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem • Our model: Dynamic Programming
• Exploit recursiveness
• Model is formulated through states
• Decisions (or controls): define state

transitions

• Decision diagram: State-Transition Graph
• Nodes corresponds to states
• Arcs are state transitions
• Arc weights are transition costs

22

Modeling Framework

• DP model for the maximum independent set:
• State: vertices that can be added to an independent set (eligible vertices)
• Decision: select or not a vertex i from the eligibility set

• Formal model:

𝑉𝑖 𝑆 =
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 1 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 5

23

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

State: set of eligible vertices

24

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
x1

x2

x3

x4

x5

include

exclude

{v4 ,v5}{v2, v3, v4 ,v5}

{v1, v2, v3, v4 ,v5}

State: set of eligible vertices

25

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}{v2, v3, v4 ,v5}

State: set of eligible vertices

26

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

{v4 ,v5}

State: set of eligible vertices

27

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

004

{v4 ,v5}

State: set of eligible vertices

28

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

004

{v4 ,v5}

{v5} {v5}

State: set of eligible vertices

29

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5}

{v5} { v3, v4 ,v5}

004

{v4 ,v5}

{v5}

State: set of eligible vertices

30

Maximum Independent Set Problem

1

3

2 4

5

3

4 2

2 7

r

t

0 3

00

0

0

0

0

0

0

0

4

2

2

7

x1

x2

x3

x4

x5

include

exclude

State: set of eligible vertices

31

32

3

1 2

4

1

2

-2

-1

-1

3

right

left

r

t

-4

0

10
6

4

1

0

4
2 0

0

0

v1

v2

v3

v4

Other Example: Maximum Cut Problem

33

r

t

-4

0

10
6

4

1

0

4
2 0

03

1 2

4

1

2

-2

-1

-1

3

right

left

0

v1

v2

v3

v4

Other Example: Maximum Cut Problem

Some quick observations

• Variable ordering plays a big role on size
• Closely connected to treewidth and bandwidth

• Independent Set: polynomial for certain classes of graphs

• TSP: parameterized-size depending on precendence relations

• In general, decision diagrams grow exponentially large
• Proof: Extended Formulations for the Independent Set Problem

34

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

35

Relaxed Decision Diagrams

• In practice, we cannot work with exact diagrams

• Alternative: limit the size to approximate the feasible space

• Parameter on the width of the diagram

• Relaxed Decision Diagrams: Over-approximation

• Introduced by [Andersen et al’07]

36

Relaxed Decision Diagrams

37

x1

x2

v3

v4

v5

include

exclude

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Max Width = 2
r

t

0 3

00

0

0

0

0
0

0

0

4

2

2

7

4 2

1

3

2 4

5

3

2 7

Relaxed Decision Diagrams

38

x1

x2

v3

v4

v5

include

exclude

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Max Width = 2
r

t

0 3

00

0

0

0

0
0

0

0

4

2

2

7

x = (0, 1, 0, 0, 1)
Solution value = 11

4 2

1

3

2 4

5

3

2 7

Relaxed Decision Diagrams

39

x1

x2

v3

v4

v5

include

exclude

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Max Width = 2
r

t

0 3

00

0

0

0

0
0

0

0

4

2

2

7

x = (0, 1, 1, 0, 1)
Upper bound = 13

4 2

1

3

2 4

5

3

2 7

Compiling Relaxed Decision Diagrams

• Model is augmented with a state agregation operator
• Recipe on how to merge nodes so that no feasible solution is lost

40

• 𝑉𝑖 𝑆 =
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 1 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 5

• Δ 𝑆1, 𝑆2 = 𝑆1 ∪ 𝑆2

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3 x1

x2

x3

x4

x5

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3 , v4 ,v5}

{v5} { v3 , v4 ,v5}

{v4 ,v5}

Max Width = 2

0 4 0

41

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include

exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3 , v4 ,v5}

{v5} { v3 , v4 ,v5}

{v4 ,v5}

0 4 0

Max Width = 2

x1

x2

x3

x4

x5

42

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include
exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5} {v4 ,v5}

0 4 0

Max Width = 2

x1

x2

x3

x4

x5

43

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include
exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5} {v4 ,v5}

0 4 0

Max Width = 2

{ v3 ,v4 ,v5}

x1

x2

x3

x4

x5

44

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

r
0 3

include
exclude

{v1, v2, v3, v4 ,v5}

{v4 ,v5}

{v2, v3, v4 ,v5} {v4 ,v5}

0 4 0

Max Width = 2

{ v3 ,v4 ,v5}

x1

x2

x3

x4

x5

45

Building Relaxed Decision Diagrams

1

3

2 4

5

3

4 2

2 7

include
exclude

Max Width = 2

x1

x2

x3

x4

x5

46

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Relaxation Bound: Maximum Independent Set

47

• Filtering operations
• “Redundant” constraints

•Additive Bounding
• Incorporate dual information from LP relaxations

•DD-Based Lagrangian Relaxations

Strengthening Diagram Relaxations

• Filtering operations
• “Redundant” constraints

•Additive Bounding
• Incorporate dual information from LP relaxations

•DD-Based Lagrangian Relaxations

Strengthening Diagram Relaxations

DD-Based Lagrangian Relaxation

include
exclude

x1

x2

x3

x4

x5

50

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

• We are solving

max f(x)
subject to

x ∈ RelaxedDD

DD-Based Lagrangian Relaxation

include
exclude

x1

x2

x3

x4

x5

51

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

• We are solving

max f(x)
subject to

x ∈ RelaxedDD

x = (0, 1, 1, 0, 1)
Upper bound = 13

DD-Based Lagrangian Relaxation

include
exclude

x1

x2

x3

x4

x5

52

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

• Let A, b be such that:

Ax ≤ b for any feasible x

• DD-Based Lagrangian:

max f(x) + λ(b – Ax)
subject to

x ∈ RelaxedDD

• Gives an upper bound for
any λ ≥ 0

DD-Based Lagrangian Relaxation

include
exclude

x1

x2

x3

x4

x5

53

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

x = (0, 1, 1, 0, 1)
Upper bound = 13

• Solution (0,1,1,0,1)
violates constraint

x2 + x3 ≤ 1

• We penalize with term

+ λ (1 – x2 – x3)

by simply changing the
cost structure of the DD

DD-Based Lagrangian Relaxation

include
exclude

x1

x2

x3

x4

x5

54

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

4 2

1

3

2 4

5

3

2 7

λ = 2 • Solution (0,1,1,0,1)
violates constraint

x2 + x3 ≤ 1

• We penalize with term

+ λ (1 – x2 – x3)

by simply changing the
cost structure of the DD

DD-Based Lagrangian Relaxation

include
exclude

x1

x2

x3

x4

x5

55

0

r

t

2 5

0

0

0

0

0

0

0
0

2

7

2

4 2

1

3

2 4

5

3

2 7

λ = 2 • Solution (0,1,1,0,1)
violates constraint

x2 + x3 ≤ 1

• We penalize with term

+ λ (1 – x2 – x3)

by simply changing the
cost structure of the DD

DD-Based Lagrangian Relaxation

include
exclude

x1

x2

x3

x4

x5

56

Better upper
bound: 12 !

0

r

t

2 5

0

0

0

0

0

0

0
0

2

7

2

4 2

1

3

2 4

5

3

2 7

λ = 2 • Solution (0,1,1,0,1)
violates constraint

x2 + x3 ≤ 1

• We penalize with term

+ λ (1 – x2 – x3)

by simply changing the
cost structure of the DD

Computational Analysis

• Incorporated into IBM ILOG CP Optimizer (CPO)
• State-of-the-art constraint-based scheduling solver

• Uses a portfolio of inference techniques and LP relaxations

57

TSP with Time Windows

58

Dumas/Ascheuer instances
- 20-100 jobs
- maximum width: 16

59

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

CP+MDD: No Lagrangian

C
P

+M
D

D
: W

it
h

 L
ag

ra
n

gi
an

Solution Times (secs)

DD-Based Lagrangian

Other Results

• Asymmetric TSP with Precedence Constraints
• Closed 3 TSPLIB open instances

• Easy modeling for certain problems
• Example: Time-Dependent TSPs

60

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Primal
Heuristics

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

61

Restricted Decision Diagrams

62

4 2

1

3

2 4

5

3

2 7

include

exclude

Max Width = 2

• Under-approximation of the feasible set r

t

0 3

00

0

0

0

0

0

02

2

7

v1

v2

v3

v4

v5

Restricted Decision Diagrams

63
include

exclude

Max Width = 2

• Under-approximation of the feasible set

1

3

2 4

5

3

4 2

2 7

(1,0,0,0,1) Lower bound = 10

r

t

0 3

00

0

0

0

0

0

02

2

7

v1

v2

v3

v4

v5

Primal Bound: Set Covering

64

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., valid cuts

65

Quick Notes on Inference

• Cut generation for MIPs
• Several techniques from Behle’07

• Recent: Polar set cuts from Relaxed Decision Diagrams
• Talk to Christian Tjandraatmadja! (poster yesterday!)

• Highly-structured Cuts
• Precedence relations that must hold in scheduling problems

• We are still exploring notion of decision diagram separation
• Cire & Hooker, ISAIM 2014

66

Generic Optimization
Techniques

Modeling
Framework

Relaxation
Methods

Search

Primal
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts

67

Exact Method

• Novel decision diagram branch-and-bound scheme
• Relaxed diagrams play the role of the LP relaxation

• Restricted diagrams are used as primal heuristics

• Branching is done on the nodes of the diagram
• Branching on pools of partial solutions

• Eliminate search symmetry

68

1

2

4

3

56

Relaxed Exact

69

1

2

4

3

56

Relaxed Exact

Up to a certain layer,
the diagrams are the
same (i.e., one layer
before you start
forcefully merging)

70

1

2

4

3

56

Relaxed

Thus, an optimum solution
must necessarily pass through
one of these nodes

71

1

2

4

3

56

Relaxed

R

1

2

{v3, v4 ,v5, v6} {v3, v6}{v3, v4 ,v5}

72

1

2

4

3

56

Relaxed

R

1

2

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

73

Longest path to
node

1

2

4

3

56

Relaxed

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

74

v3

R

T

{v3, v6}

{v6} { }

{ }

v6

1

2

4

3

56

Relaxed

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

75

v3

R

T

{v3, v6}

{v6} { }

{ }

v6
Solution of value 2 !!

1

2

4

3

56

Relaxed

76

Explore each separately, saving the best
solution/bound found

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1

Maximum Cut

77

instance old % gap new % gap % reduction

g11 11.17 0.53 95.24
g50 1.84 0.32 82.44
g32 11.59 10.64 8.20
g12 11.69 10.79 7.69
g33 11.70 11.30 3.39
g34 12.32 11.99 2.65

• Reduced certain optimality gaps

Maximum Independent Set: 500 variables

78

Maximum Independent Set: 1500 variables

79

Parallel Search with Decision Diagrams

• New branching scheme is very suitable to parallelism

• Idea: explore DP States in different cores
• Relatively little information needs to be shared

• Most of the computational work involves computing relaxations/restrictions,
done locally by each computer core

• Easier to distribute load

• Joint work with Horst Samulowitz, Vijay Saraswat (IBM Research), and
Ashish Sabharwal (Allen Inst.)

80

Parallel Search: Why bother?

• Current technology
• Integer Programming

• Gurobi: Average speedup factor (Gu, 2013)
• 1.7x on 5 cores

• 1.8x on 25 cores

• CPLEX (Mittleman, 2009)
• 1.67x on 4 cores

• SAT
• 2013 SAT competition

• 8x on 32 cores

• Constraint Programming
• Only focus on infeasible instances/finding all solutions

81

Parallel Search with Decision Diagrams

C125.9 1 core 4 cores 16 cores 64 cores 256 cores

Time to solve (s) 1100.91 277.07 70.74 19.53 8.07

Speedup - 3.97x 15.56x 56.37x 136.42x

82

83

CPLEX Decision Diagrams

84

Thank you!

Decision Diagram Page:
http://www.andrew.cmu.edu/user/vanhoeve/mdd/

acire@utsc.utoronto.ca

85

Parallel Architecture

• We consider a centralized
architecture

• Master maintains a pool of states to
process

• Workers receive states, generate
relaxed diagrams, and send new states
to master

• Suitable to small architectures (up to
256 cores)

86

Master & Workers Pools

• Master keeps a priority queue of states
• States with better optimization bounds have a higher priority of being explored

• Workers also keep a local priority queue
• Relaxed (and restricted) decision diagrams are computed very quickly

• Reduce communication to master

• Key issue: large memory consumption
• Pools may grow quickly for very large problems

• If memory is almost exceeded, priority queue becomes a regular queue
(depth-first search)

87

Load Balancing

• Crucial question in many parallelization scheme

• In our case: How to distribute states among workers?
• Too many nodes at once: many workers will be idle

• Too few nodes: communication becomes bottleneck

88

Load Balancing

89

𝑛𝑜𝑑𝑒𝑠 𝑡𝑜 𝑠𝑒𝑛𝑑 = min 𝑐.
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑜𝑜𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠
,
𝑎𝑣𝑔 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑑𝑑𝑒𝑑

𝑐′

where c and c’ are some constants (in our experiments, c = c’ = 2)

Load Balancing

90

75% of nodes with best optimization bounds
• Speed up the processing of promising nodes

Computational Results

• Relaxed decision diagrams implemented in C++

• Parallel architecture implemented in X10
• IBM X10 Team: Vijay Saraswat et al

• x10-lang.org

• Tested in a computer cluster with 256 cores
• 16 computers, each with 32 cores, 64 GB RAM

91

92

CPLEX Decision Diagrams

93

Other results

• Also observe same behaviour for other problem classes
• Proved optimality for some maxcut instances for the first time

• Testing on some variations of constrained TSP

• Other architectures
• Work-stealing models

94

Thank you!

95

Relaxed Decision Diagrams

• Computational study on the max. independent set problem
• Able to provide tighter bounds than integer programming models

• Application on Single-Machine Scheduling Problems
• Closed open TSPLib instances, orders of magnitude improvement over

constraint programming models, plus theoretical properties

• Application on Timetabling Problems
• Orders of magnitude speed up in solving times compared to state-of-the-art

approaches, plus theoretical properties

96

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem • Our model: Dynamic Programming
• Exploit recursiveness
• Solved by stages
• Passing from one stage to another corresponds to

transitioning from a state to another

• Decision diagram: State-Transition Graph
• Nodes corresponds to states
• Arcs are state transitions
• Arc weights are transition costs

97

Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem • DP model for the maximum independent set:

𝑉𝑖 𝑆 =
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 1 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 5

• Highlights:
• Stage i: select vertex i
• State: set of eligible vertices

98

Filtering

99

• Max Width = 2
• State: left-hand side of

constraint
2
1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max 4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

Filtering

100

• Max Width = 2
• State: left-hand side of

constraint
• Longest path: x1 = x2 = x3 = 12

1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max 4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

Filtering

101

2
1

• Note that top-down is a forward
recursion:

Vi(...) = Vi-1(...) + ...

x1

x2

x3

r

t
2
1

max 4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

0

1 2

3 2

3

Filtering

102

0

1 • But what happens when we do a
backward recursion?

2
1

x1

x2

x3

r

t
2
1

max 4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

0

1 2

3 2

3

Filtering

103

0

1 • But what happens when we do a
backward recursion?

2
1

x1

x2

x3

r

t
2
1

2

max 4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

2+2+1 > 4!

0

1 2

3 2

3

Filtering

104

max 4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

2
1

• Underlying concept: Use “redundant”
DP formulations to remove arcs, e.g.:

V’i(...) = V’i-1(...) + V’i+1(...) + ...
0

1

x1

x2

x3

r

t

2

0

1 2

3 2

3

Some theoretical insights

105

• Let X the set of solutions represented by
an MDD

• Optimizing a linear function f over the
MDD is equivalent to solving the LP
problem:

r

t

x1

x2

x3

Minimize cx
subject to
x is a flow from r to t

Minimize cx
subject to
x ∈ conv(X)

=

Some theoretical insights

106

• Let Ax ≥ b be a set of constraints that we
dualize over the MDD.

• If z* is the optimal shortest path after
dualization, then

r

t

x1

x2

x3

z* =

Minimize cx
subject to
Ax ≥ b
x ∈ conv(X)

