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Our Main Research Goal

Investigate the use of Decision Diagrams for 
solving discrete optimization problems
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• New relaxation/bounding technique
• Bounds can be superior to state-of-the-art methods in certain problems

• Generic primal heuristic
• Scales to large-scale problems

• Inference techniques
• New types of cuts for MIPs and other optimization technologies

• Novel complete solution technique
• Solved open instances from classical benchmarks
• Parallel method that scales almost linearly with number of processors
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Decision Diagrams

• Graphical representation of 
Boolean functions

𝑓 𝑥 = 𝑥1 𝑥2 ∧ 𝑥3 𝑥4
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Decision Diagrams
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Decision Diagrams

• Graphical representation of 
Boolean functions

• Dual role
• Computational model
• Graphical encoding

• [Lee’59, Akers’78, Bryant’86] 

𝑓 𝑥 = 𝑥1 𝑥2 ∧ 𝑥3 𝑥4
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Decision Diagrams

• Application in several areas
• Circuit design
• Formal verification
• Symbolic model checking
• …

• Our focus: Optimization
• Literals  variables
• Arcs  value assignments
• Paths encode solutions 0 1
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Decision Diagrams

max 2x1 + x2 - 4x3 + x4

subject to
x1 – x2 = 0
x3 – x4 = 0
x1, x2, x3, x4 ∈ {0,1}
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Decision Diagrams
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Decision Diagrams
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Decision Diagrams
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• Maximizing a linear (or separable) function:
• Arc lengths: contribution to the objective
• Longest path: optimal solution
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Decision Diagrams

• Uses of this framework:
• Solution counting (Lobbing’96)
• Large-scale network flows (Hachtel et al’97)
• Postoptimality analysis (Hadzic & Hooker’08)
• Few others, typically domain-specific.

• Our goal: exploit the use of decision 
diagrams in generic optimization 
methods
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Search

Primal 
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts
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Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

19



Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

20



Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem

max 3x1 + 4x2 + 2x3 + 2x4 + 7x5

subject to
x1 + x2 ≤ 1
x1 + x3≤ 1
x2 + x3≤ 1
x3 + x4 ≤ 1
x4 + x5 ≤ 1
x1, x2, x3, x4, x5 ∈ {0,1}

• Integer Programming Formulation:
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Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem • Our model: Dynamic Programming
• Exploit recursiveness
• Model is formulated through states
• Decisions (or controls): define state 

transitions

• Decision diagram: State-Transition Graph
• Nodes corresponds to states
• Arcs are state transitions 
• Arc weights are transition costs
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Modeling Framework

• DP model for the maximum independent set:
• State: vertices that can be added to an independent set (eligible vertices)
• Decision: select or not a vertex i from the eligibility set

• Formal model:

𝑉𝑖 𝑆 =  
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 1 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 5
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Maximum Independent Set Problem
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Maximum Independent Set Problem
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Maximum Independent Set Problem
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Maximum Independent Set Problem
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Some quick observations

• Variable ordering plays a big role on size
• Closely connected to treewidth and bandwidth

• Independent Set: polynomial for certain classes of graphs

• TSP: parameterized-size depending on precendence relations

• In general, decision diagrams grow exponentially large
• Proof: Extended Formulations for the Independent Set Problem
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation
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Relaxed Decision Diagrams

• In practice, we cannot work with exact diagrams

• Alternative: limit the size to approximate the feasible space

• Parameter on the width of the diagram

• Relaxed Decision Diagrams: Over-approximation

• Introduced by [Andersen et al’07]
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Relaxed Decision Diagrams

37

x1

x2

v3

v4

v5

include

exclude

0

r

t

0 3

0

0

0

0

0

0

0
2

2

7

4

Max Width = 2
r

t

0 3

00

0

0

0

0
0

0

0

4

2

2

7

4 2

1

3

2 4

5

3

2 7



Relaxed Decision Diagrams
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Relaxed Decision Diagrams
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Compiling Relaxed Decision Diagrams

• Model is augmented with a state agregation operator
• Recipe on how to merge nodes so that no feasible solution is lost
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• 𝑉𝑖 𝑆 =  
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 1 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 5

• Δ 𝑆1, 𝑆2 = 𝑆1 ∪ 𝑆2



Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Building Relaxed Decision Diagrams
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Relaxation Bound: Maximum Independent Set
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• Filtering operations
• “Redundant” constraints

•Additive Bounding
• Incorporate dual information from LP relaxations

•DD-Based Lagrangian Relaxations

Strengthening Diagram Relaxations
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DD-Based Lagrangian Relaxation
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max  f(x)
subject to

x ∈ RelaxedDD



DD-Based Lagrangian Relaxation
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max  f(x)
subject to

x ∈ RelaxedDD
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Upper bound = 13



DD-Based Lagrangian Relaxation
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• Let A, b be such that:

Ax ≤ b for any feasible x

• DD-Based Lagrangian:

max  f(x) + λ(b – Ax)
subject to

x ∈ RelaxedDD

• Gives an upper bound for 
any λ ≥ 0 



DD-Based Lagrangian Relaxation
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• Solution (0,1,1,0,1) 
violates constraint

x2 + x3 ≤ 1

• We penalize with term

+ λ (1 – x2 – x3)

by simply changing the 
cost structure of the DD



DD-Based Lagrangian Relaxation
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λ = 2 • Solution (0,1,1,0,1) 
violates constraint

x2 + x3 ≤ 1

• We penalize with term

+ λ (1 – x2 – x3)

by simply changing the 
cost structure of the DD



DD-Based Lagrangian Relaxation
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DD-Based Lagrangian Relaxation
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Computational Analysis

• Incorporated into IBM ILOG CP Optimizer (CPO)
• State-of-the-art constraint-based scheduling solver

• Uses a portfolio of inference techniques and LP relaxations
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TSP with Time Windows
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Dumas/Ascheuer instances
- 20-100 jobs
- maximum width: 16
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Other Results

• Asymmetric TSP with Precedence Constraints
• Closed 3 TSPLIB open instances

• Easy modeling for certain problems
• Example: Time-Dependent TSPs
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Primal 
Heuristics

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump
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Restricted Decision Diagrams
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Restricted Decision Diagrams
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Primal Bound: Set Covering
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Primal 
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump

E.g., valid cuts
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Quick Notes on Inference

• Cut generation for MIPs
• Several techniques from Behle’07

• Recent: Polar set cuts from Relaxed Decision Diagrams 
• Talk to Christian Tjandraatmadja! (poster yesterday!)

• Highly-structured Cuts 
• Precedence relations that must hold in scheduling problems

• We are still exploring notion of decision diagram separation
• Cire & Hooker, ISAIM 2014
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Generic Optimization 
Techniques

Modeling 
Framework

Relaxation 
Methods

Search

Primal 
Heuristics

Inference

E.g., Mixed-integer Programming

E.g., Linear Inequalities

E.g., Linear Programming 
Relaxation

E.g., Feasibility Pump

E.g., Branch and boundE.g., valid cuts
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Exact Method

• Novel decision diagram branch-and-bound scheme
• Relaxed diagrams play the role of the LP relaxation

• Restricted diagrams are used as primal heuristics

• Branching is done on the nodes of the diagram
• Branching on pools of partial solutions

• Eliminate search symmetry
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Relaxed Exact

Up to a certain layer, 
the diagrams are the 
same (i.e., one layer 
before you start 
forcefully merging)
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Thus, an optimum solution 
must necessarily pass through 
one of these nodes
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Relaxed
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Explore each separately, saving the best 
solution/bound found

{v3, v4 ,v5, v6}
0

{v3, v6}
1

{v3, v4 ,v5}
1



Maximum Cut
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instance old % gap new % gap % reduction

g11 11.17 0.53 95.24
g50 1.84 0.32 82.44
g32 11.59 10.64 8.20
g12 11.69 10.79 7.69
g33 11.70 11.30 3.39
g34 12.32 11.99 2.65

• Reduced certain optimality gaps



Maximum Independent Set: 500 variables
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Maximum Independent Set: 1500 variables
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Parallel Search with Decision Diagrams

• New branching scheme is very suitable to parallelism

• Idea: explore DP States in different cores
• Relatively little information needs to be shared

• Most of the computational work involves computing relaxations/restrictions, 
done locally by each computer core

• Easier to distribute load

• Joint work with Horst Samulowitz, Vijay Saraswat (IBM Research), and 
Ashish Sabharwal (Allen Inst.)
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Parallel Search: Why bother?

• Current technology
• Integer Programming

• Gurobi: Average speedup factor (Gu, 2013)
• 1.7x on 5 cores

• 1.8x on 25 cores

• CPLEX (Mittleman, 2009)
• 1.67x on 4 cores

• SAT
• 2013 SAT competition

• 8x on 32 cores

• Constraint Programming
• Only focus on infeasible instances/finding all solutions
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Parallel Search with Decision Diagrams

C125.9 1 core 4 cores 16 cores 64 cores 256 cores

Time to solve (s) 1100.91 277.07 70.74 19.53 8.07

Speedup - 3.97x 15.56x 56.37x 136.42x
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CPLEX Decision Diagrams
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Thank you!

Decision Diagram Page: 
http://www.andrew.cmu.edu/user/vanhoeve/mdd/

acire@utsc.utoronto.ca
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Parallel Architecture

• We consider a centralized 
architecture

• Master maintains a pool of states to 
process

• Workers receive states, generate 
relaxed diagrams, and send new states 
to master

• Suitable to small architectures (up to 
256 cores)
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Master & Workers Pools

• Master keeps a priority queue of states
• States with better optimization bounds have a higher priority of being explored

• Workers also keep a local priority queue
• Relaxed (and restricted) decision diagrams are computed very quickly

• Reduce communication to master

• Key issue: large memory consumption
• Pools may grow quickly for very large problems 

• If memory is almost exceeded, priority queue becomes a regular queue 
(depth-first search)

87



Load Balancing

• Crucial question in many parallelization scheme

• In our case: How to distribute states among workers?
• Too many nodes at once: many workers will be idle

• Too few nodes: communication becomes bottleneck  
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Load Balancing
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𝑛𝑜𝑑𝑒𝑠 𝑡𝑜 𝑠𝑒𝑛𝑑 = min 𝑐.
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑜𝑜𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠
,
𝑎𝑣𝑔 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑑𝑑𝑒𝑑

𝑐′

where c and c’ are some constants (in our experiments, c = c’ = 2)



Load Balancing
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75% of nodes with best optimization bounds
• Speed up the processing of promising nodes



Computational Results

• Relaxed decision diagrams implemented in C++

• Parallel architecture implemented in X10
• IBM X10 Team: Vijay Saraswat et al

• x10-lang.org

• Tested in a computer cluster with 256 cores
• 16 computers, each with 32 cores, 64 GB RAM

91



92



CPLEX Decision Diagrams

93



Other results

• Also observe same behaviour for other problem classes
• Proved optimality for some maxcut instances for the first time

• Testing on some variations of constrained TSP

• Other architectures
• Work-stealing models
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Thank you!
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Relaxed Decision Diagrams

• Computational study on the max. independent set problem
• Able to provide tighter bounds than integer programming models

• Application on Single-Machine Scheduling Problems
• Closed open TSPLib instances, orders of magnitude improvement over 

constraint programming models, plus theoretical properties

• Application on Timetabling Problems
• Orders of magnitude speed up in solving times compared to state-of-the-art 

approaches, plus theoretical properties
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Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem • Our model: Dynamic Programming
• Exploit recursiveness
• Solved by stages
• Passing from one stage to another corresponds to 

transitioning from a state to another

• Decision diagram: State-Transition Graph
• Nodes corresponds to states
• Arcs are state transitions 
• Arc weights are transition costs
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Modeling Framework

1

3

2 4

5

3

4 2

2 7

Ex.: Maximum independent set problem • DP model for the maximum independent set:

𝑉𝑖 𝑆 =  
𝑚𝑎𝑥 𝑉𝑖−1 𝑆 ∖ 𝑖 , 𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 + 1 , 𝑖 ∈ 𝑆

𝑉𝑖−1 𝑆 ∖ 𝑁 𝑖 , 𝑜. 𝑤.

𝑉𝑖 ∅ = 0, 𝑖 = 1,… , 5

• Highlights:
• Stage i: select vertex i
• State: set of eligible vertices
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Filtering
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• Max Width = 2
• State: left-hand side of 

constraint
2
1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max  4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}



Filtering
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• Max Width = 2
• State: left-hand side of 

constraint
• Longest path: x1 = x2 = x3 = 12

1

x1

x2

x3

r

t
2
1

0

1 2

3 2

3

max  4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}



Filtering
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2
1

• Note that top-down is a forward 
recursion:

Vi(...) = Vi-1(...) + ...

x1

x2

x3

r

t
2
1

max  4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

0

1 2

3 2

3



Filtering
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0

1 • But what happens when we do a 
backward recursion?

2
1

x1

x2

x3

r

t
2
1

max  4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

0

1 2

3 2

3



Filtering
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0

1 • But what happens when we do a 
backward recursion?

2
1

x1

x2

x3

r

t
2
1

2

max  4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

2+2+1 > 4!

0

1 2

3 2

3



Filtering
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max  4x1 + 4x2 + x3

subject to
x1 + x2+ x3 ≤ 4
x1, x2, x3 ∈ {1,2}

2
1

• Underlying concept: Use “redundant” 
DP formulations to remove arcs, e.g.:

V’i(...) = V’i-1(...) + V’i+1(...) + ...
0

1

x1

x2

x3

r

t

2

0

1 2

3 2

3



Some theoretical insights
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• Let X the set of solutions represented by 
an MDD

• Optimizing a linear function f over the 
MDD is equivalent to solving the LP 
problem:

r

t

x1

x2

x3

Minimize cx
subject to
x is a flow from r to t

Minimize cx
subject to
x ∈ conv(X)

=



Some theoretical insights
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• Let Ax ≥ b be a set of constraints that we 
dualize over the MDD.

• If z* is the optimal shortest path after 
dualization, then

r

t

x1

x2

x3

z* =

Minimize cx
subject to
Ax ≥ b
x ∈ conv(X)


