An MDD approach to multidimensional
bin packing

Brian Kell and Willem-Jan van Hoeve

Carnegie Mellon University

CPAIOR
May 20, 2013



Outline

@ Introduction

e MDD construction

Q Approximate MDDs

e MDD techniques for bin packing
e Experimental results

Q Conclusions



Introduction

Introduction

Multidimensional bin packing

@ Given: A set of m bin capacities and a set of n item sizes.
@ Each bin capacity and each item size is a d-tuple of
nonnegative integers.

@ Objective: Assign each item to a bin so that no bin capacity
is exceeded in any dimension.

@ This is a satisfaction problem.

Multivalued decision diagram (MDD)
@ Edge-labeled acyclic directed multigraph.
@ Nodes arranged in layers.
@ Top layer contains the root; bottom layer contains the sink.

@ Each edge goes from one layer to the next.




MDD construction

Direct MDD representation for bin packing

@ The state of a node in layer i is the list

Structure of the MDD @

of remaining bin capacities after the first | °
i — 1 items have been placed.

@ Edges represent the options for packing

1 2
the next item (i.e., the various bins). i 1
@ Each path from the root to the sink

represents a feasible solution. s ¢ % 4%
Example (to the right) é?
@ One dimension. 1 2 12 1

@ Two bins, each of capacity 7.
@ Four items, with sizes 5, 3, 2, and 1.




MDD construction

Exact MDD construction

Top-down compilation

@ Build the MDD layer by layer. 5 T2

@ For each node in the current layer, @ @
identify outgoing edges. ; ! 1

@ For each outgoing edge, determine the
resulting state.

@ If the next layer already containsanode| 2 + 2 +{ =2
with that state, point the edge there.
Otherwise consrt)ruct a new grlmode. é?

2 1



MDD construction

Exact MDD construction

Exploratory construction

@ Maintain a collection T of nodes to be processed.
@ To process a node in layer i:
o Identify outgoing edges.
e For each outgoing edge, determine the resulting state.
e If layer i + 1 already contains a node with that state, point
the edge there. Otherwise construct a new node.

@ If T is a queue: top-down compilation.
@ If T is a stack: depth-first search.

@ Use heuristic to identify most promising nodes:
heuristic-driven depth-first search.




Approximate MDDs

Approximate MDDs

@ In general, exact MDDs can have exponential size.

@ Approximate MDDs approximate the structure of exact
MDDs.

@ Represent the solution set to a relaxation or restriction of
the original instance.

@ Idea (Andersen, Hadzic, Hooker, Tiedemann, 2007): Limit
the width of each layer of the MDD.



Approximate MDDs

Approximate MDDs by merging

@ When the width of a layer exceeds a preset limit, reduce
the size of the layer by merging nodes.
@ The state of a merged node should be a relaxation or
restriction of the states of the original nodes.
@ For multidimensional bin packing:
e Relaxation merge = componentwise maximum.
e Restriction merge = componentwise minimum.
@ Bergman, van Hoeve, Hooker (2011): Merge nodes a pair
at a time.

@ New approach: Use a clustering algorithm to partition the
nodes, and merge each cluster.

e E.g., median cut algorithm of Heckbert (1982).



Approximate MDDs

Restriction MDDs by deletion

@ When the width of a layer exceeds a preset limit, reduce
the size of the layer by deleting some nodes.

@ Use a heuristic to determine the most promising nodes to
keep.
@ Trades cost of clustering algorithm for cost of heuristic.



MDD techniques for bin packing

Ullage MDD representation for bin packing

Structure of the MDD

@ Ullage: the amount by which a
container falls short of being full (i.e., 5

7
remaining bin capacity). @
@ To handle symmetry in bins, node

states are now multisets of ullages. :
@ ltems are assigned to ullages rather

than specific bins. s 5

) 4

Example (to the right) @
@ One dimension. 1 4 2
@ Two bins, each of capacity 7.

@ Four items, with sizes 5, 3, 2, and 1.




MDD techniques for bin packing

Node states in the ullage MDD representation

@ Round down each ullage to the nearest
sum of a subset of remaining item sizes 5 7

(these sums can be precomputed). (free bin)

@ “Dead” bin: so small that none of the
remaining items will fit (can be ignored).

Detecting equivalent states @

Detecting feasibility and infeasibility » 2; ;3
@ Total ullage may be too small for
remaining items (implies infeasibility). @
@ “Free” bin: large enough in every LI

dimension that all remaining items will
fit (implies feasibility).




Experimental results

Experimental setup

@ Test instances:
e 6 dimensions
e 6 identical bins
e 18 items of randomly generated sizes in {0,...,1000}
@ 0% to 35% bin slack: 52 instances at each value
@ Our algorithms implemented in Java, using ullage MDD
representation

@ Maximum MDD width: 5000 nodes

@ For comparison: AIMMS 3.13

e CP solver: CPOptimizer 12.4, using independent
cp: :BinPacking constraints
e MIP solver: CPLEX 12.4



Experimental results

Feasibility and hardness profiles

1 ‘ x 10000
Feasibility —*— T
09 - CP —e—
: MIP —=—
Exact MDD 1000
o 08F _
= g
2 07 2
8 100§
g 08 3
c (o]
£ o5 0 £
c f=
b 3
g 0.4 o
2 03 ! g
02
0.1
0.1
0 0.01

0 5 10 15 20 25 30 35
Percentage bin slack



Experimental results

Performance profile: 20% bin slack

1 T T T T T
09 r 1
0.8 1
el
g
s 07r R
(2]
g osf 1
S
w 05 ]
£
S 04 1
c
2
5 03¢ 1
i
02 CP —e— ]
MIP —=—
0.1 Exact MDD —=— ]
0 - ) ) Relaxation merge + deletion —+—
0.1 1 10 100 1000 10000

Time (seconds)



Experimental results

Infeasible vs. feasible instances: 20% bin slack

Fraction of instances solved

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Infeasible instances

CP —e—
MIP —=—
Exact MDD
Relaxation merge

1 10 100
Time (seconds)

1000

10000

Fraction of instances solved

Feasible instances

CP —e—
MIP —=—

Exact MDD —=—
Restriction merge —=—
Deletion —e—

0.1 1
Time (seconds)



Conclusions

Conclusions

@ Several variations of a generic algorithm for construction of
exact and approximate MDDs.
e Heuristic-driven depth-first method for exact MDDs.
e Application of clustering algorithm for approximate MDDs.
@ Techniques to apply MDDs effectively to multidimensional
bin packing.
o Ullage MDD representation to handle symmetry.
e Tricks to detect equivalent states and to detect feasibility
and infeasibility.
@ Experimental results show these techniques can
outperform current CP and MIP solvers.



	Introduction
	MDD construction
	Approximate MDDs
	MDD techniques for bin packing
	Experimental results
	Conclusions

