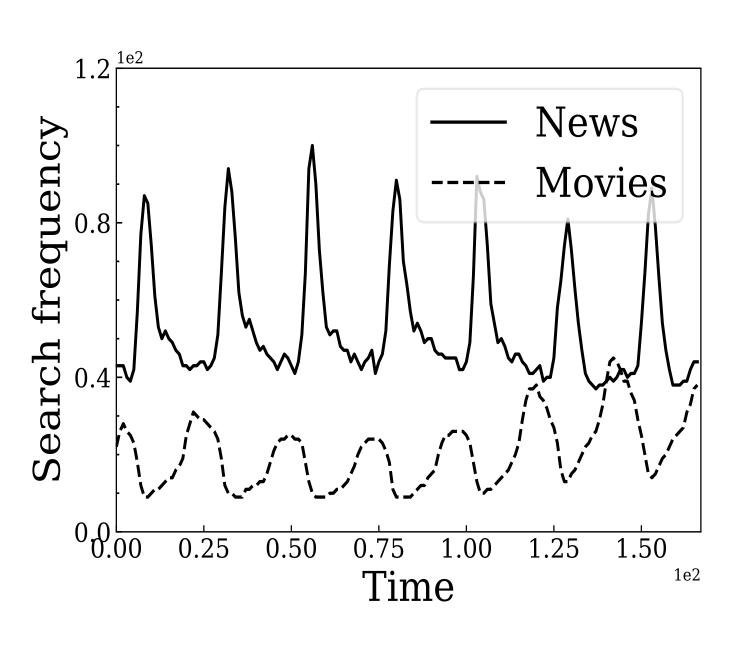


Tackling Heterogeneous Traffic in Multi-access Systems via Erasure Coded Servers Tuhinangshu Choudhury, Weina Wang, Gauri Joshi

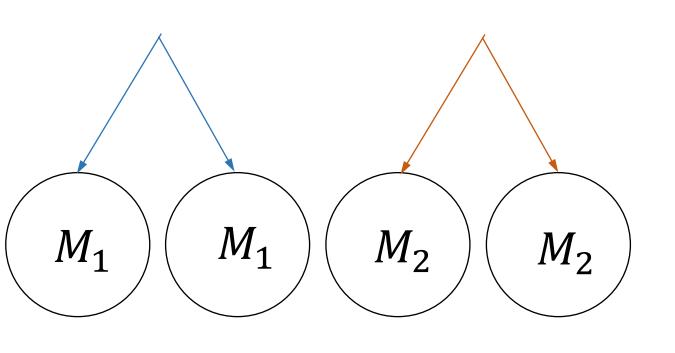
Motivation

- Servers in cloud systems allocated based on traffic.
- Traffic can vary significantly.
- Over-provisioning of servers to maintain QoS.
- Under-utilization of resources during low traffic.

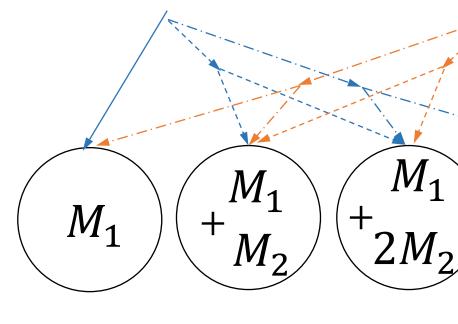


A Simple Example

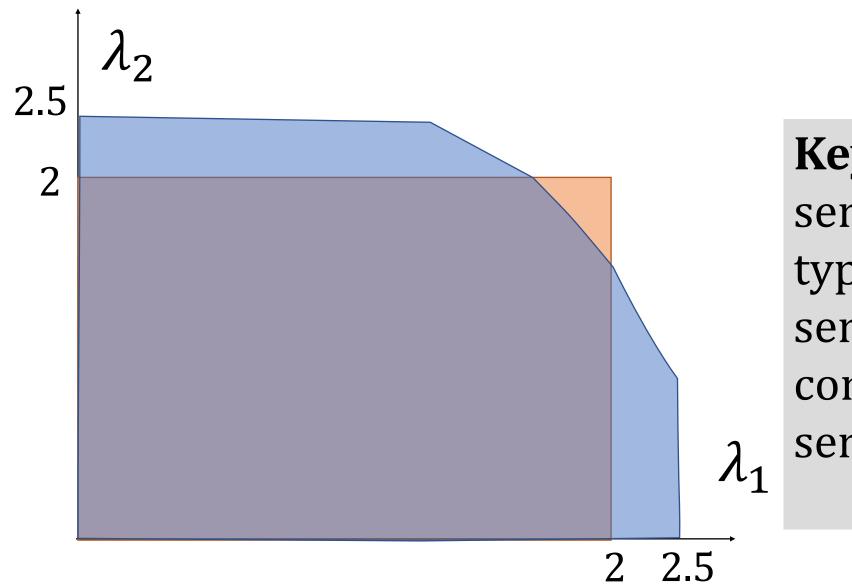
- Cloud system storing two matrices *M*₁ and *M*₂.
- 4 unit rate servers processing download requests.



Traditional System Contain only systematic servers



Coded System Contain systematic and coded servers

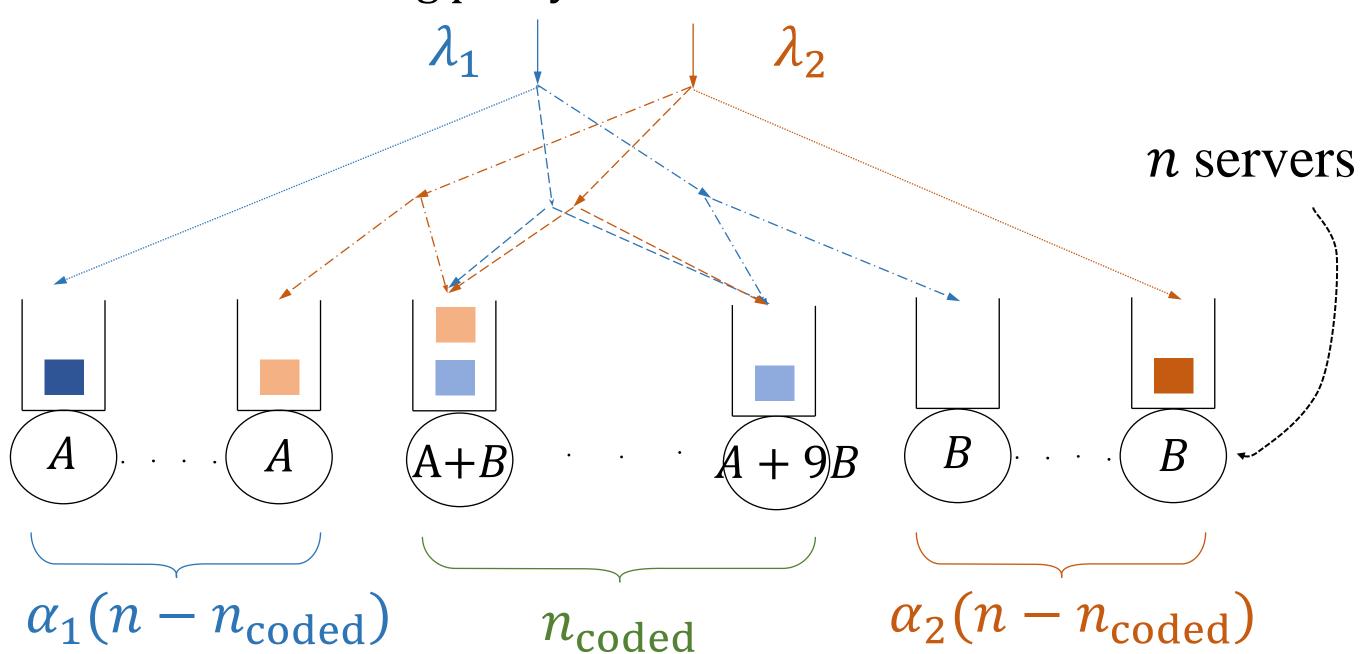


Key Difference: Systematic servers can serve only one job type, while coded servers can serve multiple job types when combined with systematic servers.

- Traditional system offers one way to download a file, while the coded system provides three.
- Increases maximum serviceable rate from 2 to 2.5.
- Coded servers improve flexibility, thus allowing usage of underutilized systematic servers.

System Model

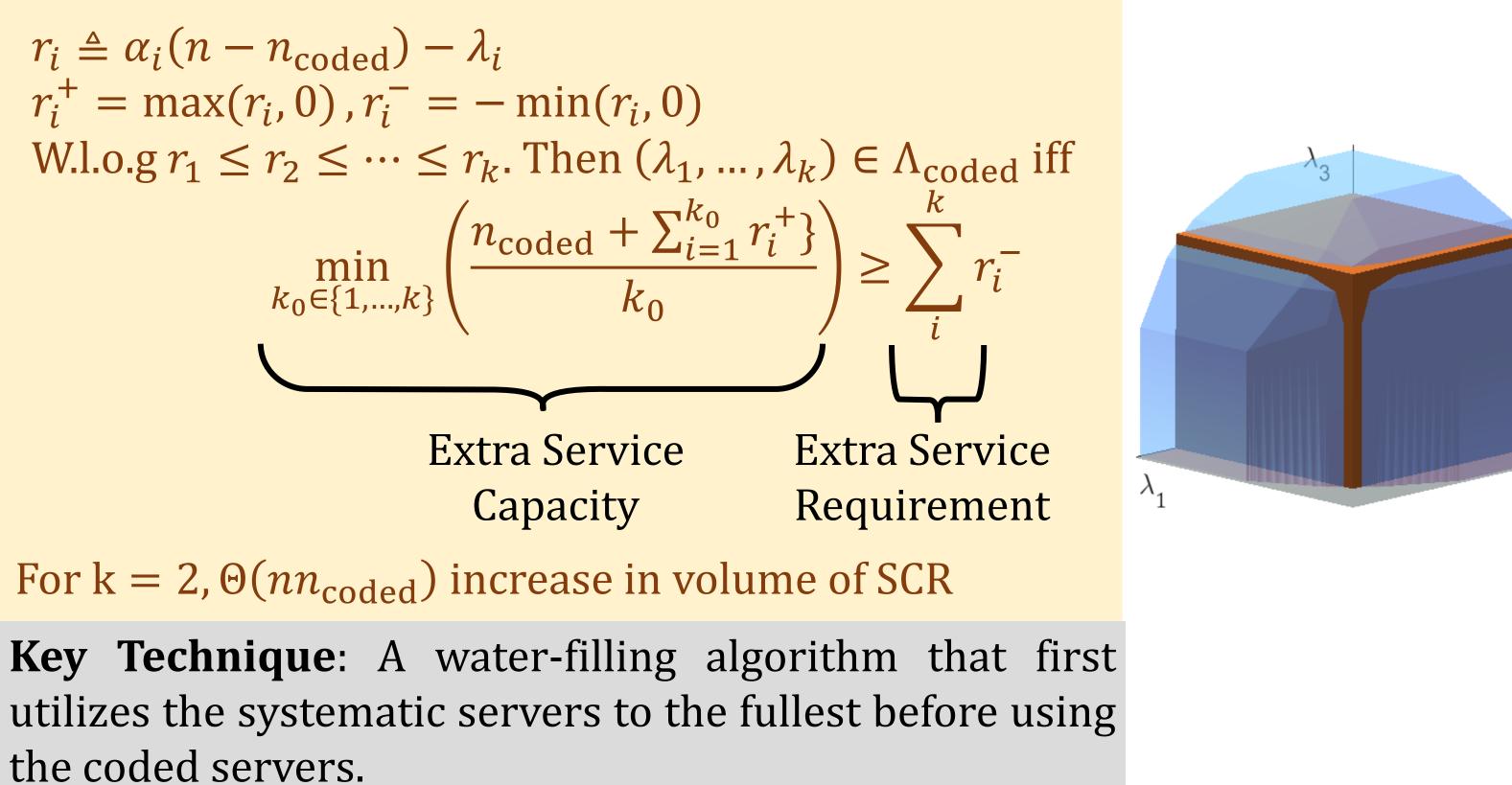
- k job types with arrival according to $PP(\lambda_i)$ for the i^{th} type.
- *n* servers with Exp(1) service.
- α_i fraction of systematic servers is allocated for the *i*th type.
- Replace *n*_{coded} systematic servers with erasure-coded servers.
- Probabilistic routing policy to choose a combination of servers.



Service Capacity Region

Compared to previous work, we extended the service capacity region characterization for any general k and reduced the stability criteria from a combinatorial equation to a linear equation.

Theorem: Service Capacity Region Characterization



the coded servers.

Summary

- Few erasure-coded servers significantly improve the service capacity region.
- In terms of mean response time, the coded system is significantly better than
- or at least as good as the uncoded system in most regimes.
- Coded system is more resilient to variation in traffic.

 M_2

Response Time

We characterize the difference in response time for the coded system and the uncoded system for different traffic regimes.

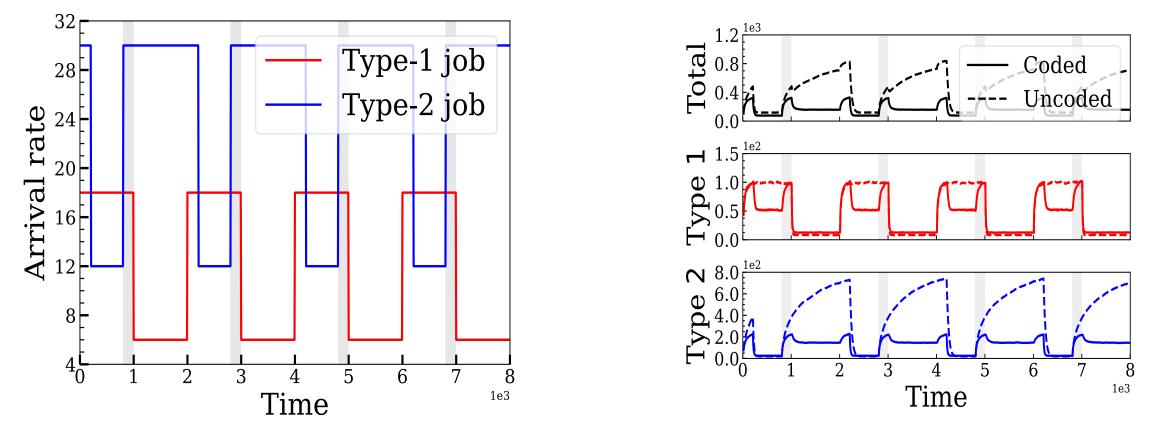
	Theorem: I
$\lambda_2^{(n)}$	
	Light: E 7
	Inner-heavy

Key Technique: Designing an optimal routing policy that reduces the load from the heavier loaded systematic servers while maintaining the system's stablility.

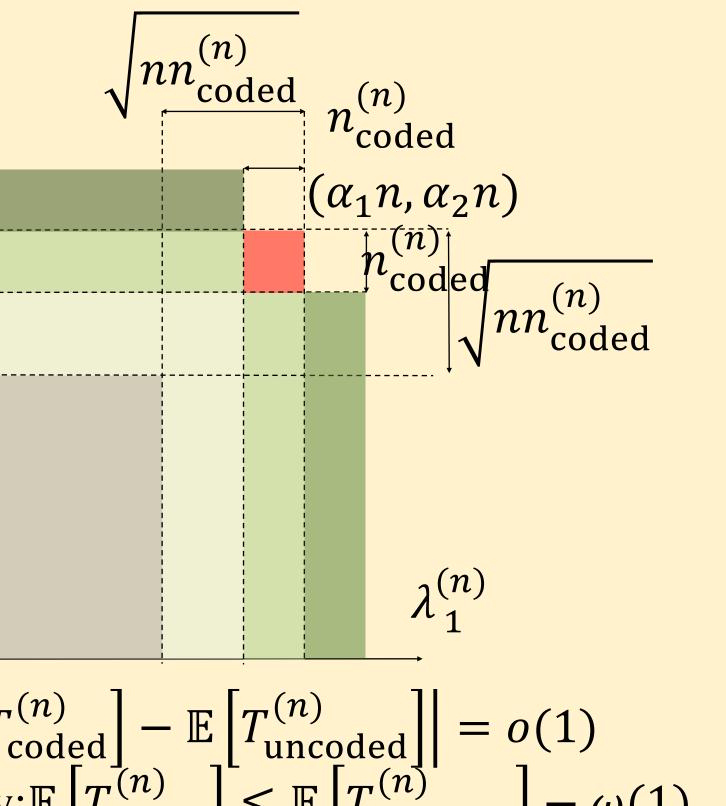
Regimes for k = 2

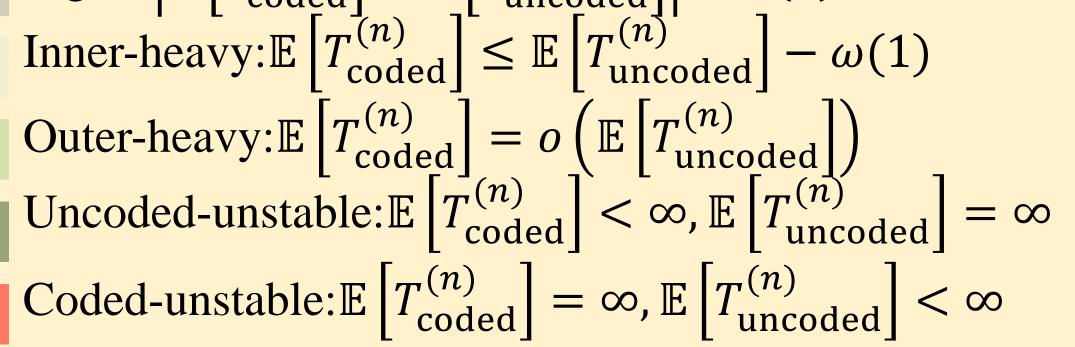
- Light: $\beta_i^{(n)} = \omega$
- Inner-heavy: $\beta_1^{(n)} \in$
- Outer-heavy: $\beta_1^{(n)} =$ For regime definitions

Experiments



Response Time Characterization





$$nn_{coded}^{(n)}) \text{ for all } i$$

$$= \left(\Omega\left(n_{coded}^{(n)} \right), o\left(\sqrt{nn_{coded}^{(n)}} \right) \right), \beta_2^{(n)} = \omega\left(\beta_1^{(n)} \right)$$

$$= o\left(n_{coded}^{(n)} \right), \beta_2^{(n)} = \omega\left(n_{coded}^{(n)} \right)$$

$$= o\left(n_{coded}^{(n)} \right), \beta_2^{(n)} = \omega\left(n_{coded}^{(n)} \right)$$

$$= o\left(n_{coded}^{(n)} \right), \beta_2^{(n)} = \omega\left(n_{coded}^{(n)} \right)$$

$$= o\left(n_{coded}^{(n)} \right), \beta_2^{(n)} = \omega\left(n_{coded}^{(n)} \right)$$

$$= o\left(n_{coded}^{(n)} \right), \beta_2^{(n)} = \omega\left(n_{coded}^{(n)} \right)$$

Two job types with arrival rate in form of a pulse wave