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1 SUMMARY
We extended Professor Railing’s CADSS framework to model computation on GPUs. By employing

a modular and configurable design, we were able to study the impact of different hardware configu-

rations and program characteristics on performance, including block scheduling, warp scheduling,

barriers, and thread divergence.

2 BACKGROUND
Parallel programming models for GPU’s like NVIDIA’s CUDA provide a high level abstraction

for parallel programming. Though programmers explicitly define the “layout” for computation by

assigning threads to blocks and blocks to grids, most details about how instructions are scheduled

onto hardware remain opaque by design. Programmers cannot make assumptions about how

threads are grouped into warps, how they are scheduled, or how they handle divergent control flow.

Because these details are proprietary, many are also not exposed by profiling tools like NVIDIA’s

Nsight. However, these are all details that can significantly affect program performance, so it is

important to be able to reason about them at a high level.

The goal of our project, then, is to gain insights into how different designs — both in terms of

the hardware layout and the mapping of work onto the hardware — impact the performance of

programs. In particular, our project will investigate the following questions:

(1) How does performance scale across multiple processors? The “compute” area of GPUs

is typically divided into several processors, each of which interleaves the computation of

warps within a thread block. We will refer to these basic units as streaming multiprocessors
throughout this report as this is the terminology used byNVIDIA [1].Wewill investigate how

performance scales as we run the same amount of work on one streaming multiprocessor

versus when we do so on multiple.

(2) How does inter-warp parallelism affect performance?Modern GPUs can interleave

the instruction streams of several warps to tolerate pipeline and memory stalls [1]. We

will investigate to what extent this capability allows performance to scale within a single

multiprocessor as we add more warps.

(3) Howdoes synchroniztion affect performance? Barrier instructions, for example CUDA’s

__syncthreads(), cause a warp’s instruction stream to stall until all threads in the block

have reached the specified program point. We will investigate how these instructions affect

performance.

(4) How does thread divergence affect performance?Modern GPUs execute instructions

in a SIMT (single instruction, multiple thread) fashion. So, threads are grouped into “warps”

(the NVIDIA term [1]) that must execute in lockstep. Divergent control flow within warps

affects performance because not all threads can be actively performing computation, which

limits our ability to exploit a GPU’s parallelism. In this paper we will explore how a simulator

can be used to measure thread divergence for different programs, and investigate the impact

of different per-warp scheduling techniques on occupancy and performance.
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Fig. 1. Architecture of the original CADSS Simulation framework [6].

Taken together, we believe that these questions cover most of the key mechanisms GPUs use

to achieve parallelism. We therefore hope to offer answers to each question through a series of

simulation studies.

3 APPROACH
3.1 Programming Framework
Rather than implement a new computer architecture simulation framework from scratch, we based

our simulator on CADSS (Computer Architecture Design Simulator for Students). CADSS is a

trace-driven, open source simulator framework built by Professor Railing for the introductory

computer architecture course at CMU (15–346) [6]. In 15–346, students put together a simulator

that integrates multiple components (cache, memory, interconnect, processor, branch predictor,

etc.) to enable unified simulation across a range of modular components.

Figure 1 shows the architecture of the original simulator. As the diagram shows, a key feature is

that it integrates multiple components that affect the performance of computation. For our project,

we replace the the processor component with a gpu component. From there, we retain only the

memory component. All other components (cache, coherence, interconnect) are effectively stripped

out because they are out of scope for this project.

CADSS is a CMake project primarily written in C, but with support for extensions written in

C++. We wrote all of our extensions in C++. So, our project has no specific target machine. Note

that if shared objects are used, then they should be recompiled for the target machine.

3.2 Our Extensions
In Section 2 we discussed the goals of our project. We will now discuss how our extensions to

CADSS help us tackle each question. Recall that we wanted to (a) measure how performance scales

with parallelism across warps within SMs and across SMs, (b) quantify the effects of synchronization,

and (c) study the effects of thread divergence and workload imbalance within warps.

To effectively investigate each component, our goal was to isolate each component and hold all

other variables constant. So, for components (a) and (b), we do not model any thread divergence or

workload imbalance. The instruction streams executed by each warp are therefore identical. Note
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that this setup does not require the simulator to perform computation (i.e. actually execute the

instructions on real data) — because we are only interested in total runtime, trace files need only to

specify the types of instruction being executed in addition to the distribution of memory accesses.

This matches the setup used in the original CADSS framework.

However, this trace file format is not suitable for investigating component (c). If the trace file

does not specify different input data for each thread, then they cannot diverge and there cannot

be any workload imbalance. One workaround would be to explicitly encode divergent instruction

streams for each warp in the trace files. However, hardcoding the instruction stream for each warp

like this would not allow us investigate the effects of different techniques for handling branches

and thread divergence. So, we decided the simulator must support per-thread computation based

on variable input data.

So, we have seen that the requirements for components (a) and (b) differ significantly for the

requirements for component (c). Component (c) requires significant changes to the trace file

format and simulator to support computation. Because (c) is only concerned with modeling thread

divergence, the considerations for components (a) and (b) (memory latency, multiple SMs, multiple

warps) are not relevant to (c). Similarly, (a) and (b) do not need to model thread divergence and can

use a much simpler trace file format and simulator design.

We therefore decided to split our project into two simulators, each of which is based on a simple

5-stage in-order processor we developed at the beginning of this project:

• Scaling Simulator. This simulator assumes no divergence. We will use it to measure how

performance scales across multiple SMs, multiple warps on an SM, and barriers. We also

assume that memory is constant latency.

• Divergence Simulator. This simulator explicitly models computation to track thread

divergence. We will use this to investigate the performance impacts of thread divergence,

as well as the benefits of different methods of handling branches. This simulator assumes

that all instructions have the same runtime, save for those that cause stalls due to data

dependencies or control hazards.

We will discuss the design of each simulator in the subsections that follow.

3.3 Scaling Simulator Design
3.3.1 Overall design of single SM. . The overall GPU SM design of our simulator is a 6-stage

pipelined 32 wide SIMD processor with warp scheduling. The SM contains a set number (config-

urable, 64 by default) of warp slots that can be used to store warp contexts and schedule warps.

In other words, the SM is able to schedule up to 64 warps at a time by default, and any additional

warps will be stored in a queue that is pulled from when one of the 64 current warps finishes

executing.

The processor consists of the following stages, and we use queues to pass instructions from one

stage to another stage. This is simplified and omits some implementation details.

• Fetch: In this stage, we use the warp scheduler to select the next warp we want to run and

get it’s instruction pointer. We also update the register scoreboard, which is used to prevent

read after write conflicts at the fetch stage.

• Decode: This stage is currently has nothing inside it as nothing in decode can effect ticks

in our model.

• Execute: Same as decode, we do not need to worry about this stage as we are implementing

a software simulation.
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• memory_rising: In this stage, we check to see if the current request is a memory load. If it

is a load we need to kick off a memory operation and move the current instruction into

a vector of entries waiting for memory data. If it is not a load, we pass it to the memory

falling stage. One interesting feature in our memory is that it allows instructions following

a load to retire earlier as long as there is no data hazard, meaning that our memory is non

blocking.

• memory_falling: In this stage, we check to see if any waiting instruction has received

data from memory. If any waiting instruction has received data, it will be added to a buffer

which will pass it to the write back stage as soon as the pipeline stage is free.

• write_back: If a instruction reaches this stage, it is about to retire and commit to archi-

tectural state. Here, we update the register scoreboard, and we can successfully retire the

instruction.

3.3.2 Warp scheduler. : We used a simple but seemingly very effective warp scheduler (see results)

to schedule our warps. In summary, the scheduler will loop through all the warps inside the 64

warp slots of the SM and select the first one that can issue a instruction (ie is not stalled or waiting

to resolve a conflict). This means that our warp scheduler will always prioritize the warp in the

first slot inside the SM and will only schedule other warps in higher slots in the event that the warp

in the first slot can not be scheduled. Ignoring barriers, we keep track of what can be scheduled

by keeping a register scoreboard for each warp that indicates if we will get a conflict. Since our

processor is in-order, the only conflict we need to worry about is read after write.

3.3.3 Barriers. : Our scaling simulator also supports barriers. This complicates our warp scheduler

because barriers work very differently than just hazard detection as not only do all the warps

currently residing inside the 64 slots of our SM need hit the barrier, we also need any additional

warps in the waiting queue to also hit the barrier. Meaning that we will need to take a warps that

hit a barrier (and therefore are stalling) out of the 64 slots in the SM and replace it with warps in

the waiting queue that have not hit the barrier yet.

Since we are swapping warps, it adds an additional layer of complexity because we need to

ensure that all instructions of a warp retires and commits to the architectural state (scoreboard)

before we swap it. This can be done by stalling the warp until its scoreboard is clean, and then

we issue the barrier instruction and swap it out for a warp in the waiting queue that hasn’t hit

the barrier yet. The stalling is one source of overhead introduced by barrier. The other source of

overhead is that all warps are synchronized after a barrier, meaning that if one warp stalls due to a

hazard right after the barrier, all warps after it will also stall immediately.

3.3.4 Multiple SMs. Our scaling simulator also supports multiple SMs. Each SM can only run 1

thread block at a time. We map blocks onto SMs dynamically by having each SM take one thread

block during initialization. If an SM finishes computation, it can take another thread block as long as

there are still thread blocks remaining (specified by remainingBlocks in gpu.cpp). Computation

only finishes when there are no more remaining blocks and all SMs have finished their thread

block.

3.4 Divergence Simulator Design
3.4.1 Trace File Format and Transpiler. To model the impacts of thread divergence and workload

imbalance across a range of programs easily, we chose to have the divergence simulator perform

computation — that is, actually execute the instructions that make up the kernels that it simulates.

To achieve this, we modified the trace reader component to read a dialect of PTX rather than the
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Fig. 2. Overview of the Divergence Simulator. An off-the-shelf compiler is used to generate PTX from C++
CUDA source code, then a transpiler translates the PTX into a more restricted language we call “PTX-
Minus”. To support different scheduling techniques, the Scheduler class is abstract and supports multiple
implementations. The CFG is used to to get information about successors and dominators.

existing CADSS trace file format. Though PTX is not actually an ISA that executes on hardware, a

similar approach is used by existing open source projects [3], and it is a reasonable enough proxy

for our purposes.

Figure 2 shows the specifics of this approach. We use an off-the-shelf compiler to convert CUDA

source code to PTX, then use a simple transpiler to a restricted subset of PTX. Inspired by the

"PTXPlus" of GPGPUSim [3], we dub our language "PTX-Minus" because it implements a very

limited set of instructions and has a very simple syntax. Appendix B shows some examples of

transpiled programs.

Due to time constraints, we only guarantee coverage on the test programs bundled with this

project. Still, this approach has the advantage that it is relatively easy to add new trace files: rather

than trying to collect a trace from a real GPU, you simply compile CUDA source code, specify the

program inputs, then put everything through the transpiler. If the simulator does not yet support

an instruction, it is relatively easy to add support for it either by adding it explicitly or by breaking

it down into simpler instructions. For example, the fused multiply add instruction (mad) is broken
down into a multiply followed by an add for simplicity.

3.4.2 Computation. With this new trace file format in hand, computation is relatively straightfor-

ward. The trace reader reads the input data from the top of the trace file, malloc’s space for it, and
passes the start addresses to the GPU. Instructions are then “executed” simply by interpreting them

at runtime during the “write back” stage of our five-stage pipeline. Since the example programs

only write to “global” memory and not shared memory, memory reads and writes are supported

simply by reading from and writing to the buffers allocated by the trace reader. Because all the

types are explicitly encoded in the trace file, the address computation in the compiled PTX code

works out of the box for the programs covered in this report!

The key advantage of doing computation is that we know the exact values of the predicate

registers for branch instructions, so we can track thread divergence. After going through a divergent
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branch, a lane mask is attached to subsequent instructions by the Scheduler component. The masked

lanes are then simply ignored for those instructions by the interpreter.

3.4.3 Scheduler. A key factor determining thread divergence is how the instruction scheduler

handles divergent branches. To explore the performance of different implementations, the Scheduler

provides an abstract base class, on top of which different schedulers can be built. Currently, we

provide two schedulers: NaiveScheduler and ReconvergenceScheduler. Each only needs to

implement the interface shown in Figure 2: the GetNextInstruction() method grabs the next

instruction to be executed, and the NotifyBranch() method notifies the scheduler of a branch

instruction and the new lane mask so that it can update its internal state.

We will now discuss each of the schedulers provided by our framework. The Naive scheduler
handles divergent branches simply by pushing the if and else branches onto a stack, along with

their corresponding lane masks. The top entry on the stack is then executed until it has completely

finished executing. Then, we pop from the stack and resume execution from the new top entry. If

all threads have finished, the simulation exits.

The Reconvergence scheduler implements the algorithm initially presented by Fung et al. [2],

and reproduced by Aamodt et al. [1] in their textbook. Each stack entry holds three things: a

reconvergence point, a NextPC and a lane mask. The algorithm then proceeds as follows:

• Execution starts with an entry where all warps are running.

• When a branch is encountered. Change the NextPC of the top entry to be the reconvergence
point of the branch. Push two new entries with the same reconvergence point, but different

NextPC’s and lane masks for the if and else branches.

• When execution hits the reconvergence point for the entry on the top of the stack, we pop

from the stack and resume execution from the new top entry.

As described by [1], we choose the reconvergence point to be the Immediate Post Dominator
of the basic block in the program’s control flow graph. This is the functionality provided by the

CFG module – it constructs a control flow graph from the program, and computes the immediate

post dominator for each node by first computing the post dominators, then doing a BFS to find

the nearest successor that is a post-dominator. The algorithms for post-dominators and immediate

post-dominators were adapted from pseudocode provided in a lecture by Mahlke [5].

As an example, Figure 3 shows the control flow graph our simulator generates for the collatz
example program. Note that the diamond starting with the node LBB02 corresponds to the if/else

block in the program’s loop. When the reconvergence scheduler is notified of the branch there, it

notices that the threads can reconverge at LBB05, since that is the immediate post-dominator of

LBB02.

4 RESULTS
4.1 Scaling Simulator Studies
4.1.1 Relevant variables.

• Memory load delay: While we have used the API for memory accesses provided by CADSS,

we have modified cache.c such that all memory loads take a constant amount of time (by

default, 100 cycles). This can be configured inside cache.c by changing the count variable

in pendingRequest.
• Warp slots: every SM has a fixed number of execution contexts to hold register files for

warps (configurable, defaults to 64). Additional warps that do not fit into this space are

buffered in a queue and are eventually inserted into a free warp slot once one frees up.

4.1.2 Warp scheduler analysis.
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Fig. 3. Control Flow Graph generated from the collatz example program by our simulator.

• Table 1: nostall is a trace that consists only of ALU ops with no register dependencies

between instructions. Hence, we never stall and the importance of warp scheduling is

diminished. This means that we should expect the number of ticks elapsed to scale linearly

with the number of threads, since only one warp can run at any given time.

• Table 2: Meanwhile, stallMax is the same trace as nostall but every ALU instruction

has a register dependency on the previous instruction, meaning that we must stall at every

instruction to avoid read-after-write hazards. Since we stall, warp scheduling can kick in and

mask latency. We see this effect as there are minimal tick increases as we start increasing

the number of threads. We also see that runtime begins to increase linearly once we reach

128 threads (4 warps). This is because read-after-write hazards only stall for 6 cycles in a

6 staged pipelined processor, meaning that we only need 6 warps at a time to fully hide

latency and any more will not help.

• Table 3: Mixed.trace is a short trace of size 4 that contains an ALU op, a load, followed

by another ALU op with a register dependency to the load, and ends with a store. Since

memory loads take 100 cycles, we see that a single warp/thread should take over 100 ticks

to complete. Without warp scheduling, we should expect the total number of ticks to double

as we double the number of threads. However, with our warp scheduler, we see that ticks

barely increase as we increase threads until we reach 2048 threads (64 warps). As we exceed

2048 threads (64 warps), we see a rapid increase in execution time because the GPU SM can

only store the context of 64 warps at a time by default, meaning that any additional warps

must wait for a current running warp to complete before they can run.

• Table 4: HeavyStall.trace is a trace that contains many load instructions followed by

an ALU instrution with a register dependency to the load. So, the trace stalls a lot and
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can therefore benefit significantly from warp scheduling. As we can see, there is a very

minimal increase in ticks as we double the number of warps until we reach 2048 total

threads (64 warps). After we exceed 64 warps, we have filled up all the warp slots on our

SM and therefore remaining warps can only be run when more execution contexts become

available.

• Table 5: Here, we try to run mixed.trace with 32× 64 threads (64 warps) as we try to vary

the number of warp slots/warp contexts a single SM can hold. As expected, as we increase

the number of warp slots, our performance increases as we have more warps we can switch

into when we encounter stalls. However, we see that there is no change between 64 and

256 slots because we have only 64 warps worth of threads.

Threads Ticks
32 44

64 82

128 158

256 310

512 614

1024 1222

Table 1. A table showing how ticks change based on thread count when running nostall.trace on a single SM
with 64 warp slots. We can disregard memory latency because nostall has no memory operations

Threads Ticks
32 192

64 193

128 195

256 384

512 762

1024 1333

Table 2. A table showing how ticks change based on thread count when running stallMax.trace on a single
SM with 64 warp slots. We can disregard memory latency because stallMax has no memory operations

4.1.3 Barrier analysis.
• Table 6: the heavystall_barrier trace modifies HeavyStall to include a barrier between
every instruction. As we might expect, runtime and overhead compared to HeavyStall
increase as we increase the number of threads. This makes sense because we need to ensure

that all warps have reached the barrier before we can execute instructions past the barrier.

• Trace of a simple barrier: Appendix C contains a simple barrier trace as well as the

simulation walkthrough of the barrier trace. Notice that the both warps are synchronized

after we hit the barrier.

4.1.4 Multiple SMs.
• Figure 4: Here, we investigate how performance scales as we add additional streaming

multiprocessors. Since every SM can only run 1 thread block at a time, we expect the number

of ticks to be inversely proportional to the number of SM cores initially. Once we reach 16
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Threads Ticks
32 113

64 115

128 124

256 132

512 158

1024 205

2048 314

4096 570

8192 1082

16384 2106

32768 8250

65536 20442

Table 3. A table showing how ticks change based on thread count when running mixed.trace on a single SM
with 64 warp slots. We assume that memory loads have a 100 tick latency.

Threads Ticks
32 1627

128 1629

512 1633

2048 1753

8192 6683

32768 26159

Table 4. A table showing how ticks change based on thread count when running heavystall.trace on a single
SM with 64 warp slots. We assume that memory loads have a 400 tick latency.

Warp Slots Ticks
1 6854

4 1730

16 494

64 314

256 314

Table 5. A table showing how ticks change based on warp slots of a SM when running mixed.trace on a single
SM when using 2048 threads (64 warps). We assume that memory loads have a 100 tick latency.

cores, however, we stop seeing a decrease in ticks as 16 thread blocks can only map to 16

cores at most; any extra cores will be idle.

4.2 Divergence Simulator Studies
We will base our analysis in this section on the results for two example programs, which we

introduce here:

• binsearch: Given an array of search keys and a sorted array of elements to search through,

try to find search keys in parallel using a single CUDA kernel. As was discussed in the

relevant written assignment, a major issue in this kernel is thread divergence because the
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Threads Ticks
32 1651

128 1671

512 1906

2048 2698

8192 9298

32768 35650

Table 6. A table showing how ticks change based on thread count when running heavystall_barrier.trace on a
single SM with 64 warp slots. We assume that memory loads have a 400 tick latency.
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Fig. 4. Chart depicting ticks vs cores when we run 16 thread blocks with block size of 2048 threads (64 warps).
Each SM has 64 warp slots and we assume memory loads have 100 ticks of latency.

elements in the search array are completely independent and could lie anywhere in the

target array.

• collatz: The Collatz conjecture states that for any 𝑛 ≥ 1 you can repeatedly apply the

following operation:

𝑓 (𝑛) =
{
3𝑛 + 1 If 𝑛 is odd

𝑛/2 If 𝑛 is even

Then you will eventually reach 1. For our example program, we collect the first 32 numbers

that require at most 20 iterations to converge to one, then sort them by ascending order of

computational intensity.

The full CUDA C++ source code for each program is included in Appendix A.

4.2.1 Measuring Thread Divergence. One of the key goals of the divergence simulator was to quan-

tify thread divergence within a single warp across a range of different programs. To demonstrate

this capability of the simulator, we modify it to print the active lane mask for each instruction that

it executes. This then gives us an accurate picture of how many threads are active during each

point of the simulated program. We can visualize this output in two different ways:
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(1) Total Active Threads over Time – at each tick, how many threads in the warp are active?

This is just a single line where the 𝑥-axis is the instruction count and the 𝑦-axis is the total

number of active threads.

(2) Heatmap. Here the 𝑥-axis is still instruction count, but the 𝑦-axis has 32 lanes, one for each

thread in the warp. Each cell then is colored if the thread is active at that time step, and

white otherwise. This format is useful for visualizing what specific threads are doing over

the course of the program rather than the aggregate representation provided by the first

format.

An example of the heatmap representation is shown in Figure 5. We can see there is a vast

difference in thread divergence. We can see that the binary search kernel is very divergent because

of the amount of “white” on the chart — for the majority of the program, the majority of threads

are inactive. Meanwhile, the Collatz kernel suffers from divergence to a much lesser extent, since

most of the chart is colored.

Since these results were collected using the reconvergence scheduler, the control flow graphs for

each program can lend insight to why there is such a dramatic difference in divergence. Figure 6

shows the CFG for binsearch, and Figure 3 shows the CFG for collatz. As noted earlier, the CFG

for Collatz has a reconvergence point at LBB05 that allows all active threads to resume execution

in lockstep together at the end of each loop iteration. To see this, note the colors in Figure 5. Each

divergent section is marked by a strip of blue – this is exactly the if-else statement in the CFG

(LBB02). This is followed by a strip of orange corresponding to the if branch (LBB03), followed by a

complementary (non-overlapping) strip of green corresponding the else branch. The threads then

converge at reconvergence point marked by a strip of red (LBB05). Meanwhile, the control flow

graph generated by our simulator for binsearch is a mess. Here, the blocks corresponding to the

loop are those below LBB03. Note that, since the algorithm is based on immediate post-dominators,

there is no reconvergence point for the branches in the loop other than LBB09, which is the end of

the program anyway. The group of active threads grows smaller and smaller until each individually

terminates (marked by the small strip of green). The only time all threads come together again is at

the end of the program (the return statement), marked by the strip of pink on the right of the chart.

Of course, another factor is the algorithmic properties of each program. In the naive binary

search kernel, elements make it through the branch depending on whether they are smaller or

greater than a common pivot value in the middle of the target array. Assuming the search keys are

uniformly distributed, half of the threads will become inactive at each iteration. We can visually

confirm this using the “total active threads” chart shown in Figure 7. Note how the number of

active threads roughly halves at each step, followed by another spike, at which point the halving

pattern continues again. The spike at the end of the program corresponds to the to the threads

reconverging at the return statement (the pink strip at LBB09 in Figure 5).

Meanwhile, collatz is explicitly written so that adjacent threads have similar amounts of work.

The reason we see the total number of active threads decreasing over time in Figure 5 is because

higher thread IDs have more difficult problems (more Collatz iterations) by construction, yielding

the triangle shape we see on the chart.

4.2.2 Exploring Divergence Management Strategies. Our simulator design also allows us to explore

different scheduling strategies. In particular, our simulator supports a Reconvergence Scheduler and
a Naive Scheduler that does not attempt to look for reconvergence points (Section 3.4).

Figure 8 shows how thread activity varies over time using the naive scheduler using the heatmap

representation. Comparing this to Figure 5 (the results for the Reconvergence Scheduler) yields

interesting results. We see that the chart for binsearch is almost identical. The only difference

is that the unified pink strip at which the threads reconverged has now been broken up and put
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(a) binsearch

(b) collatz

Fig. 5. Heatmap representation for thread activity for one warp executing the binsearch and collatz
example programs using the Reconvergence Scheduler. In each chart, the 𝑥-axis is instruction count, and
the 𝑦-axis is the thread ID. A colored cell indicates that the thread is active for the relevant instruction, and a
blank cell indicates that thread is inactive. The specific color of each colored cell corresponds to the basic
block the instruction belongs to.
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Fig. 6. Control Flow Graph generated by our simulator for the binsearch program.

at the end of the last bar for each thread. This result aligns with our expectations — as we noted,

the CFG produced by our simulator does not allow any opportunities for reconvergence besides

at the end of the program, so the per thread activity profile looks similar to the naive scheduler.

Meanwhile, the results for collatz are dramtically different. From the amount of white on the

chart, we can see that most threads are inactive for the majority of the program. Where threads

are active, many of them serialize almost all of their computation into one fat bar. So, this is a

case where the reconvergence scheduler clearly comes out on top because it is able to exploit the

reconvergence point at LBB05 (Figure 3).
A natural follow up question is: how do these different strategies affect performance? Figure 9

shows the runtime of each strategy on both traces, measured in simulator ticks. We can see that

there is a minimal improvement for binsearch, but a dramatic improvement for collatz. This
matches up with our analysis of the heatmap charts. We see a small improvement on binsearch
because the threads are able to reconverge at the last basic block to execute it once altogether
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Fig. 7. Total Number of Active Threads over time for the binsearch example program. The 𝑥-axis represents
the total number of instructions processed, and the 𝑦-axis represents the total number of active threads at
each instruction.

rather than several times. However, the improvement is only small because there are no other

opportunities for reconvergence. Meanwhile, the improvement on collatz is dramatic – 8259 vs

1009 ticks (over an 8× speedup!). This is because, without reconvergence, threads often execute

instructions with few other threads, or on their own. Note that this also means the effects of costly

instructions like branches (which stall the pipeline due to being control hazards) are magnified

because they are executed more than they need to be. These charts therefore demonstrate that a

scheduler that manages divergence effectively is crucial to performance for programs where there

are opportunities for reconvergence.

4.2.3 Summary. In this section we have used heatmap and total active thread charts to demonstrate

that our simulator effectively captures the divergence and control flow properties of our example

programs. We have also shown that our framework allows comparison of different strategies for

managing divergent control flow within warps.

5 REFERENCES USED
In this section, we briefly list the works we found helpful in completing this project:

• The textbook by Aamodt et al. [1] was very helpful in understanding the reconvergence

stack used in the Reconvergence Scheduler.

• The lecture slides by Mahlke [5] provided pseudocode for computing post-dominators and

immediate post-dominators.

• The paper on CADSS [6] was very useful in understanding how the simulator framework

used in this project.

A full bibliography is included at the end of this document.
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(a) binsearch

(b) collatz

Fig. 8. Heatmap representation for thread activity for one warp executing the binsearch and collatz
example programs using the Naive Scheduler. In each chart, the 𝑥-axis is instruction count, and the 𝑦-axis
is the thread ID. A colored cell indicates that the thread is active for the relevant instruction, and a blank cell
indicates that thread is inactive. The specific color of each colored cell corresponds to the basic block the
instruction belongs to.
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Fig. 9. Runtime in Ticks for the Naive and Reconvergence strategies on the binsearch and collatz traces.

6 LIST OF WORK DONE BY EACH STUDENT
Both authors contributed equally to the base for the Scaling and Divergence simulators, namely

the simple five stage in-order pipeline implemented at the beginning of the project.

6.1 Ethan
Ethan implemented all of the components and report sections related to the Scaling Simulator. In
particular, he extended the simulator to support:

• Warp scheduling within SMs to tolerate latency and pipeline stalls. Allows SM to simulate

runs with arbitrary many warps and arbitrarly many warp-slots.

• Multiple SMs, and scheduling of warps onto them. Can run arbitrarly many blocks with

any possible block size that is divisble by threads_per_warp

• Barrier Instructions, and the associated traces and results.

• Incorporated CADSS memory component to simulator

6.2 Theo
Theo implemented all of the components, results, and report sections related to the Divergence
Simulator. In particular, he:

• Extended the trace reader to support a new trace file format supporting computation,

referred to as “PTX-Minus” in this report.

• Extended the simulator to support the new instructions, and support computation via

interpretation of PTX-Minus instructions. Also added support for predicated execution.

• Implemented two scheduling components to explore different strategies for managing

thread divergence, including the “Naive” scheduler and the reconvergence scheduler.

• Implemented the supporting “CFG” module used by the scheduling components. Imple-

mented code to build CFGs, compute post-dominators, and immediate post-dominators.
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6.3 Distribution of Work
Based on the above distribution we believe both authors have contributed equally to this work.
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A EXAMPLE PROGRAMS
A.1 Binary Search Kernel
This parallel binary search kernel is taken from Written Assignment 2. A key learning objective

was that the kernel could suffer from thread divergence. We confirm this hypothesis in our report!

__global__ void cudaBinarySearch(int n, int m, int *S, int *A, int *R) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i >= n) return;

int search = S[i];
int left = 0, right = m - 1, middle = 0;

R[i] = -1; // In case not found

// Binary Search
while (left <= right) {

middle = left + (right - left) / 2;

if (search < A[middle]) {
right = middle - 1;

}
else if (search > A[middle]) {

left = middle + 1;
} else {

R[i] = middle;
break;

}
}

}

A.2 Collatz Kernel
This Collatz kernel computes the number of iterations needed for each element to converge in

parallel.

__global__ void collatz(int* A, int *result, int n) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= n) { return; }
result[tid] = 0;

int x = A[tid];
while (x != 1) {

if (x % 2 == 0) {
x /= 2;

} else {
x = 3 * x + 1;

}
result[tid] += 1;

}
}
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B TRANSPILED “PTX-MINUS” PROGRAMS
After compiling the programs shown in Appendix A, the user can specify values for the parameter

at the top of the file. The traces below show the result of running this through the transpiler. Note

the simplified syntax and slightly modified instructions versus regular PTX.

B.1 trace_binsearch.txt

int _param_0 32

int _param_1 64

int* _param_2 8928 9385 4950 6247 11255 15290 2469 11094 14127 13579 1043 12060 166

5382 166 166 15290 9385 14371 10388 9249 2983 2117 1275 2278 287 1043 5382 11501

1263 2278 6447

int* _param_3 166 287 750 1043 1263 1275 1577 1865 2117 2278 2280 2469 2660 2983 3058

3396 3773 4938 4950 5224 5382 5461 6032 6247 6398 6447 6646 7179 8319 8785 8802

8866 8928 9033 9053 9204 9249 9385 9400 9698 9971 10247 10388 10513 10794 10802

10920 11094 11202 11255 11271 11501 11870 12060 12266 13579 13729 13933 14127 14349

14371 14442 14977 15290

int* _param_4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

---

ldparam.u32 %r13 _param_0

ldparam.u32 %r12 _param_1

ldparam.u64 %rd3 _param_2

ldparam.u64 %rd4 _param_3

ldparam.u64 %rd5 _param_4

mov.u32 %r14 %ctaid.x

mov.u32 %r15 %ntid.x

mov.u32 %r16 %tid.x

mul.s32 %r1 %r15 %r14

add.s32 %r1 %r1 %r16

setp.ge.s32 %p1 %r1 %r13

@%p1 bra $L__BB0_9

cvta.global.u64 %rd6 %rd5

cvta.global.u64 %rd7 %rd3

mul.wide.s32 %rd8 %r1 4

add.s64 %rd9 %rd7 %rd8

ld.global.u32 %r2 %rd9

add.s64 %rd1 %rd6 %rd8

mov.u32 %r17 -1

st.global.u32 %rd1 %r17

setp.lt.s32 %p2 %r12 1

@%p2 bra $L__BB0_9

add.s32 %r23 %r12 -1

cvta.global.u64 %rd2 %rd4

mov.u32 %r24 0

$L__BB0_3:

sub.s32 %r19 %r23 %r24

shr.u32 %r20 %r19 31

add.s32 %r21 %r19 %r20
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shr.s32 %r22 %r21 1

add.s32 %r6 %r22 %r24

mul.wide.s32 %rd10 %r6 4

add.s64 %rd11 %rd2 %rd10

ld.global.u32 %r7 %rd11

setp.lt.s32 %p3 %r2 %r7

@%p3 bra $L__BB0_7

bra.uni $L__BB0_4

$L__BB0_7:

add.s32 %r23 %r6 -1

bra.uni $L__BB0_8

$L__BB0_4:

setp.gt.s32 %p4 %r2 %r7

@%p4 bra $L__BB0_6

bra.uni $L__BB0_5

$L__BB0_6:

add.s32 %r24 %r6 1

$L__BB0_8:

setp.ge.s32 %p5 %r23 %r24

@%p5 bra $L__BB0_3

bra.uni $L__BB0_9

$L__BB0_5:

st.global.u32 %rd1 %r6

$L__BB0_9:

ret

B.2 collatz.txt

int* _param_0 1 2 4 8 16 5 32 10 3 20 21 6 40 12 13 24 26 17 34 35 11 22 23 7 14 15 28

29 30 9 18 19

int* _param_1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1

int _param_2 32

---

ldparam.u64 %rd2 _param_0

ldparam.u64 %rd3 _param_1

ldparam.u32 %r9 _param_2

mov.u32 %r10 %ntid.x

mov.u32 %r11 %ctaid.x

mov.u32 %r12 %tid.x

mul.s32 %r1 %r10 %r11

add.s32 %r1 %r1 %r12

setp.ge.s32 %p1 %r1 %r9

@%p1 bra $L__BB0_7

cvta.global.u64 %rd4 %rd3

mul.wide.s32 %rd5 %r1 4

add.s64 %rd1 %rd4 %rd5

mov.u32 %r19 0
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st.global.u32 %rd1 %r19

cvta.global.u64 %rd6 %rd2

add.s64 %rd7 %rd6 %rd5

ld.global.u32 %r20 %rd7

setp.eq.s32 %p2 %r20 1

@%p2 bra $L__BB0_7

$L__BB0_2:

mov.u32 %r3 %r19

and.b32 %r15 %r20 1

setp.eq.b32 %p3 %r15 1

mov.pred %p4 0

xor.pred %p5 %p3 %p4

not.pred %p6 %p5

@%p6 bra $L__BB0_4

bra.uni $L__BB0_3

$L__BB0_4:

shr.u32 %r16 %r20 31

add.s32 %r17 %r20 %r16

shr.s32 %r20 %r17 1

bra.uni $L__BB0_5

$L__BB0_3:

mul.s32 %r20 %r20 3

add.s32 %r20 %r20 1

$L__BB0_5:

add.s32 %r19 %r3 1

setp.ne.s32 %p7 %r20 1

@%p7 bra $L__BB0_2

add.s32 %r18 %r3 1

st.global.u32 %rd1 %r18

$L__BB0_7:

ret
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C BARRIER TRACE
C.1 Trace File

A 7f23f3d92100 2, 1, 0 //PC of 0x555555576fb0

F 7f23f3d92f38 -1, -1, -1 //PC of 0x555555577ff0, F stands for barrier

A 7f23f3d92f38 2, 7, 1 //PC of 0x555555578020

C.2 Simulator output

Tick: 1

0 instructions waiting for memory

Current Instruction (Warp #0): 0x555555576fb0 //WARP 0 runs first alu instuction

register 2 is used

Tick: 2

0 instructions waiting for memory

Current Instruction (Warp #1): 0x555555576fb0 //WARP 1 runs first alu instruction

register 2 is used

Tick: 3

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0 //WARP 0 and 1 stalls until all

instructions in pipeline retires and

updates architectural state

Tick: 4

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0

Tick: 5

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0

Tick: 6

0 instructions waiting for memory

stallCount: 1

Current Instruction (Warp #0): 0x555555577ff0 //All instructions from warp 0 retired so

we can issue barrier, warp 0 is now stalled

Tick: 7

0 instructions waiting for memory

warp : 0 is in a barrier and can not execute

stallCount: 2
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Current Instruction (Warp #1): 0x555555577ff0 //All instructions from warp 1 retired so

we can issue barrier, both warps are stalled

Tick: 8

0 instructions waiting for memory

warp: 0 has finished!

Current Instruction (Warp #0): 0x555555578020 //Since both instructions reached barrier

both both are now runnable

register 2 is used

Tick: 9

0 instructions waiting for memory

warp: 1 has finished!

Current Instruction (Warp #1): 0x555555578020

register 2 is used

Tick: 10

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0 //we are now waiting for

instructions to retire through pipeline

Tick: 11

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0 //we are now waiting for

instructions to retire through pipeline

Tick: 12

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0 //we are now waiting for

instructions to retire through pipeline

Tick: 13

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0 //we are now waiting for

instructions to retire through pipeline

Tick: 14

0 instructions waiting for memory

All warps are stalled.

Current Instruction (Warp #18446744073709551615): 0 //we are now waiting for

instructions to retire through pipeline

Tick: 15

0 instructions waiting for memory

All warps are stalled.
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Current Instruction (Warp #18446744073709551615): 0

Ticks - 15
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1. https://forums.developer.nvidia.com/t/maximum-number-of-warps-and-warp-size-per-sm

/234378
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Received April 29, 2025

http://gpgpu-sim.org
https://books.google.com/books?id=MBQFuAEACAAJ
https://books.google.com/books?id=MBQFuAEACAAJ
https://web.eecs.umich.edu/~mahlke/courses/483f06/lectures/483L20.pdf
https://web.eecs.umich.edu/~mahlke/courses/483f06/lectures/483L20.pdf

	1 Summary
	2 Background
	3 Approach
	3.1 Programming Framework
	3.2 Our Extensions
	3.3 Scaling Simulator Design
	3.4 Divergence Simulator Design

	4 Results
	4.1 Scaling Simulator Studies
	4.2 Divergence Simulator Studies

	5 References Used
	6 List of Work Done by Each Student
	6.1 Ethan
	6.2 Theo
	6.3 Distribution of Work

	A Example Programs
	A.1 Binary Search Kernel
	A.2 Collatz Kernel

	B Transpiled ``PTX-Minus'' Programs
	B.1 trace_binsearch.txt
	B.2 collatz.txt

	C Barrier Trace
	C.1 Trace File
	C.2 Simulator output


