
Switch-Visor: Towards Infrastructure-Level Virtualization of
SDN Switches

Huan Chen
University of Electronic Science and Technology of China

and Duke University

Theophilus Benson
Brown University

ABSTRACT
To test and update switch operating systems, developers and testers
need to install run beta-switch OSes (switch agents) alongside pro-
duction versions. However, today’s network virtualization solu-
tions fail to support infrastructure-level virtualization of hardware
switches. In particular, they fail to provide performance guarantee
and isolation of the switch’s resources: CPU, Memory, and ASIC
(TCAM/SRAM).

In this paper, we de�ne the notion of infrastructure-level switch
virtualization, akin to IaaS, infrastructure-level switch virtualiza-
tion provides tenants, testers or developers, with low-level control
over the switches: allowing a tenant to install switch agents on
the switches and to run their own controller. To support this ab-
straction, we present a system, Switch-Visor, which presents a �rst
step towards providing comprehensive virtualization of a switch’s
resources. Switch-Visor employs a synthesis of well-founded virtu-
alization technologies and novel hardware virtualization techniques.
Switch-Visor introduces three main concepts: �rst, using container-
based virtualization on the switch to virtualize CPU and Memory;
second, leveraging intelligent TCAMmanagement and novel sched-
ulers to provide guarantees within the ASIC, and employing novel
domain-speci�c o�oading techniques to eliminate sources of in-
terference. Our proposed solutions, leverage changes to switch OS
and switch agents making them immediately applicable to existing
SDN switches.

CCS CONCEPTS
• Networks → Bridges and switches; Network resources al-
location; Network management;

KEYWORDS
Software-de�ned Networking; Virtualization; Resource Allocation

ACM Reference Format:
HuanChen and Theophilus Benson. 2017. Switch-Visor: Towards Infrastructure-
Level Virtualization of SDN Switches. In CAN’17: CAN’17: Cloud-Assisted
Networking Workshop, December 12, 2017, Incheon, Republic of Korea. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3155921.3158431

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CAN’17, December 12, 2017, Incheon, Republic of Korea
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5423-3/17/12. . . $15.00
https://doi.org/10.1145/3155921.3158431

1 INTRODUCTION
Network virtualization, the “killer-application” for Software De-
�ned Networks (SDNs), allows network operators to carve out their
networks for testing and updates. Today, network virtualization
focuses on controller level virtualization [2, 15] with the virtual-
ization layer interposed between the controller and the switches.
However, with the growing adoption of white box switches, there
is a growing need for a lower level virtualization primitive that
enables testers and developers to install and control Switch Agents
or Switch OSes for testing, updates, and outsource management
functions.

This lower layer virtualization level should exist between the
switch hardware and the switch agents (switch OSes) running atop
it. Akin to IaaS which provides low-level control over computing,
the lower layer (infrastructure-level) virtualization provides low-
level control over a switch allowing a tenant to install switch agents
on the switch and to run their own controller interacting with these
agents. We call this new virtualization paradigm Infrastructure-
level Switching as a Service (ISaaS). We argue that to provide ISaaS,
SDN networks must include mechanisms and primitives to slice
SDN switches across all resources: CPU, Memory, and ASIC (the
switch hardware responsible for servicing SDN control plane oper-
ations (SDNCTLs)), and more importantly to provide guarantees
and isolation across these resources.

Unfortunately, the complexity and heterogeneity of data plane
devices, e.g. switches, makes it challenging to enforce performance
guarantees on SDNCTLs, e.g. rule installation or port con�gura-
tion. In particular, the response time of a SDNCTLs is a function
of the switch’s CPU for processing SDNCTLs and switch’s ASIC
hardware for implementing SDNCTLs. Furthermore, the resource
requirements of these SDNCTLs vary signi�cantly — Table 1 high-
lights the heterogeneity in resource requirements across several
representative SDNCTLs [16]. Making performance guarantees
over these SDNCTLs requires:
• Intelligently rate limiting the set of SDNCTLs contending for
hardware resources.

• Controlling the set of background processes utilizing the switch’s
resources to eliminate hardware interference – a key challenge
in making guarantees in any virtualized scenario [14, 21, 22].

• Scheduling the di�erent SDNCTLs to simultaneously ensure
that performance guarantees are met while maintaining work-
conservation to eliminate resource waste.

1.1 Related Work
Traditional approaches for virtualizing SDN switches, FlowVisor [15]
and OpenVirtex [2], focus on partitioning TCAM space and enforc-
ing access control over tra�c. These approaches do not make guar-
antees on the speed with which the SDNCTLs may be installed or

25

CAN’17, December 12, 2017, Incheon, Republic of Korea Huan Chen and Theophilus Benson

Request (1/s) F.Mod Flow Stats Port Stats Feature Echo
5000 60% 30% 50% 42% 22%
10000 80% 48% 75% 60% 23%
20000 N/A 1 52% 92% 85% 25%
Table 1: CPU Utilization of Di�erent SDNCTLs

con�gured. On the other hand, providing performance guarantees
over tra�c �owing through a virtual network, switch backplane,
is signi�cantly simpler than providing guarantees for SDNCTLs
performed on the virtual network, because existing data plane prim-
itives lend themselves, more naturally, to enforcing performance
isolation between tra�c. Speci�cally, existing tools, e.g. token buck-
ets, provide guarantee and isolation by limiting the quantity of traf-
�c for each tenant. However, as discussed earlier it is insu�cient
to simply rate limit the quantity of SDNCTLs because di�erent
SDNCTLs require di�erent amount of resources and therefore lim-
its must be carefully determined based on the type of SDNCTLs
currently being processed.

1.2 Switch-Visor
In this paper, we argue that rather than focusing on redesigning
switch hardware, which has signi�cant cost implications, we should
focus on judiciously allocating and managing existing switch hard-
ware resources to ensure that performance guarantees can be ef-
�ciently enforced. Moreover, for uncontrollable events, i.e., hard-
ware interrupts, we should o�oad their processing from switches
to cheaper commodity servers. Switch-Visor takes the �rst step to-
wards developing a framework that provides guarantees on control
plane I/O operations, SDNCTLs by introducing primitives to control
ASIC-driven I/O events and mechanisms to use existing black-box
models to rate limit controller I/O events for di�erent tenants. Our
design of Switch-Visor introduces three novel components to the
SDN ecosystem:
Containerized Switches (CPU/Memory Virtualization): We
argue for a light virtualization of a physical switch by running
containers, one for each tenant. The containers allow us to isolate
the di�erent tenants and provide CPU and memory guarantees.
Additionally, the containers allow a tenant to run arbitrary agents.
SDNCTL-Visor (ASIC Virtualization): To provide guarantees at
the ASIC level, we propose a shim layer between the containers
and the ASIC. This shim layer uses a token-bucket to rate limit
interactions with the ASIC. The size of the bucket is a function of the
guarantees, the current state of the switches, and the set of permit-
able SDNCTLs. The token buckets for the di�erent containers on a
switch are constantly updated after each SDNCTL is permitted into
the ASIC. To calculate the actual rate limits with multiple resource
allocation, we use Dominant Resource Fairness (DRF) [9] which is
a generalization max-min fairness for multiple resources.
Event-O�loader: To handle unpredictable SDNCTLs generated
by the switches, Switch-Visor o�oads processing from the switch
to a container running on the cloud servers. This shifts the burden
of handling and managing these SDNCTLs to an x86 server where
they can be rate limited (by the server’s NIC).

PHY

Forwarding Engine

Sw
itchTC

A
M……

Tenant 1 Tenant 2 Tenant 3

CPU

OF-DPA/Open NSL etc.

n

OFX OF Agent InSPired

OS

A
SIC

Figure 1: White Box Switch

2 BACKGROUND
Although much work has gone into host virtualization and creat-
ing solid techniques for ensuring and enforcing isolation between
tenants on a host, the network (switch) has seen relatively little
innovation in this direction.

In this section, we review the design and architecture of mod-
ern SDN-switches and highlight the challenges of virtualizing and
sharing these switches.

2.1 White Box Switches
Most modern SDN switches are essentially white box switches
running commodity software and composed of commodity switch-
ing hardware. These switches contain traditional CPU and mem-
ory structures making them amenable to existing virtualization
techniques for isolating, virtualizing, and sharing the computing re-
sources. Additionally, they contain specialized (Application-speci�c
integrated circuit) ASICs which are used for network speci�c func-
tionality – forwarding packets. Techniques for CPU and memory
virtualization do not naturally lend themselves to ASIC virtualiza-
tion.
Challenge 1: Switch virtualization requires tackling the ASIC.

These devices run a Linux based OS with specialized device dri-
vers to handle interactions with the switch’s ASIC. This simple
and open ecosystem has fostered growth and innovation of white
box switches. The openness and ability to run arbitrary software
on these switches have motivated others to design new switch
agents to delegate and run next to the traditional SDN agents.
Moreover, a growing number of switch agents exist to run on
white box switches, e.g. Aristas EoS, BigSwitch’s SwitchLight, and

26

Switch-Visor: Towards Infrastructure-Level ... SDN Switches CAN’17, December 12, 2017, Incheon, Republic of Korea

Switch-Visor classi�cation SDNCTL Type OpenFlow SDNCTL Examples

Tenant Initiated Controller-to-Switch
Read-State, Flow-Mod, Port-Desc

Modify-State, Con�guration, Features
Packet-Out, Barrier

Symmetric Hello, Echo, Vendor
Hardware Initiated Asynchronous Packet-In, Flow-Removed, Port-Status, Error

Table 2: Classi�cation of OpenFlow Messages

VMWare’s OpenVSwitch (OVS). These agents will compete and con-
tent with the SDN agents for CPUs [4, 17], and hardware resources
(e.g. TCAMs [4]).
Challenge 2: Tenants are able to bring their own Switch-software
agent, forcing us to revisit assumptions and architectures for the
switch’s OS.

2.2 Virtualization Challenges
We argue that ASIC virtualization should provide guarantees over
the amount and number of instructions that can be performed. Akin
to the IOPS (Input/Output Operations per second) we expect for
virtual Disks, virtualized ASICs should provide a similar notion of
SDNCTL Operations per section (SDNCTL-OPS).

To better understand the challenges that complicate ASIC virtu-
alization, in Figure 1, we present the diagram of white box switch
and highlight components used to perform di�erent SDNCTL op-
erations. We roughly classify the SDNTCL into several categories
and highlight related challenges [1]:
Tenant Initiated: This class of SDNCTL are generated by the con-
troller or the local switch agent. For example, �ow-mod, an SDNCTL
used to add �ow entries to the ASIC. These SDNCTLs require a com-
bination of CPU and ASIC processing, however, these events can
be measured by benchmarking the devices and controlled by rate-
limiting the controller or the local switch agent. The key challenge
lies in understanding how to set the weight for the rate-limiter and
more speci�c understanding how to translate the benchmarking
results into rate limits.
Hardware Initiated: These SDNCTL are akin to hardware inter-
rupts, they are generated by the ASIC and sent to the OS, the switch
agent and subsequently to the remote controller for processing. Ex-
amples include, packet-in which is generated when a packet arrives
but the ASIC contains no �ow tables. This class of SDNCTLs are
harder to control because there are no rate-limiters within the
hardware to suppress these events. Although uncontrollable, these
SDNCTLs can signi�cantly impact CPU performance, with prior
studies showing that SDNCTL can consume signi�cant CPU and
memory resources thus signi�cantly impacting the performance of
the switch agents [7]. Fortunately, these SDNCTLs can be o�oaded
from the switch, processed, and generated at a di�erent entity. For
example, the packet can be sent to the o�oad server which subse-
quently generates the “packet-in” SDNCTL. The key challenges for
delegating and o�oading this functionality include coordinating
information exchange between the switch and the o�oad server in
a quick, scalable, and lightweight manner.

2.3 Novel Switch Virtualization Contract
Next, we present a novel switch virtualization contract between
the tenant and cloud provider. We envision that “power”-tenants,

e.g. testing teams and developers, will request these “infrastructure-
level” virtual switches in conjunction with bare-metal servers or to
leverage more programmability within the data plane.

We propose to provide each tenant with the following abstrac-
tion of a virtual switch: a virtual switch is a device with N virtual
ports (potentially connected to other devices) of prede�ned speeds;
a virtual CPU and virtual memory with prede�ned speeds and
capacity; and an ASIC that forwards packets (tra�c) at a prede-
�ned backplane speed and that services SDNCTLs-ops with a given
frequency (e.g. 10 “packet-in” SDNCTLs-operations per second).
In this paradigm, tenants are able to run custom agents on these
virtual switches and these custom agents interact with the tenant’s
controller using a network hypervisor (e.g. OpenVirtex)

3 USE-CASES AND DESIGN GOALS
Today, network virtualization is focused on leveraging virtual switches
at the edge [10, 20] or leveraging a controller hypervisor [2, 15]
to virtualize and share the network. Often providing high-layer
abstractions that obscure the network. While these approaches to
virtualizing a network enable tenants to easily provision and man-
age virtual infrastructure, it sti�es the ability of network providers
from leveraging a range of testing techniques [3, 11] and emerging
functionalities [4, 17, 23]. In this section, we start by describing the
di�erent use-cases that motivate a need for lower level hardware
virtualization of network devices.

3.1 Use-cases
• Switch Agent Testing [3, 6, 11, 12]: A popular software engineer-
ing technique is to have multiple teams develop identical versions
of the same switch agent. The idea is that most teams will im-
plement the functionality correctly. Thus if all versions are run
on the same input, then the most popular output is the correct
output. A switch-virtualization platform can be used to provide
each version with the abstraction of sole occupancy while si-
multaneously distributing events to the di�erent versions and
comparing the output from the di�erent versions.
Similarly, the same principles can be used to enable switch agent
A/B Testing [3]: to validate a switch agent before an update.

• Headless Switch Agent Updates [18]: Upgrades to the switch
agent codebase must be followed by a switch agent reboot. Cur-
rently, due to the lack of separation, such events eliminate switch
agent state and requires the switch agent to recreate this state.
To enable, headless switch agent updates – we need to both the
new and the old switch agent simultaneously and prime the state
of the new switch agent before making the switch. A switch-
virtualization platform is a fundamental requirement for such a
system.

4 ARCHITECTURE
Switch-Visor virtualizes SDN switches enabling di�erent tenants
to run local agents on the switch, in an isolated fashion, while
providing performance guarantees over interactions between these
agents and the underlying switch data plane (ASIC). Switch-Visor
provides each tenant with the abstraction of a network of bare
metal physical switches with prede�ned CPU, Memory, and ASIC
resources and enables the tenant to install a custom switch agent.

27

CAN’17, December 12, 2017, Incheon, Republic of Korea Huan Chen and Theophilus Benson

Hypervisor

new packet default: tagging packet
& fwd to offload cluster

Tenant 2

SDNCT
L-Visor

Tenant 1 Tenant 1

OF
Agent OFX InSPired

Mercury

Container
Manager

Local
Event

Offloader

Switch OS

Switch Hardware

Global Event
Offloader

……

Container Container

Offload Cluster

Handler Handler

Figure 2: System Architecture

To achieve this functionality, Switch-Visor (Figure 2) includes
four components. A traditional container manager, e.g., Docker,
for virtualizing CPU/Memory resources and hosting a tenant’s
switching agents. The SDNCTL-Visor which virtualizes the ASIC
isolating di�erent tenants with respect to the ASIC and providing
guarantees on the di�erent SDNCTL performed on the ASIC. The
SDNCTL-Visor also controls scheduling of the di�erent SDNCTLs
and rate-limits these SDNCTLs to ensure that guarantees are met. A
sister component to the SDNCTL-Visor is the Mercury [5] compo-
nent which focuses on TCAM and introduces TCAM management
techniques to ensure performance guarantees. The �nal component,
Event-O�oader, enables the Switch-Visor to make guarantees by
eliminating uncontrollable ASIC-generated interrupts and o�oad-
ing these interrupts to cheaper x86 devices with more powerful
CPUs.

4.1 SDNCTL-Visor
Our main component for virtualizing a switch’s ASIC, the SDNCTL-
Visor, intercepts all SDNCTL messages (red arrows in Figure 3) and
employs a combination of rate limiting and event scheduling to
ensure that performance guarantees are maintained. In our descrip-
tion of SDNCTL-Visor, we assume that an admission control system
is used to ensure that Switch-Visor does not support more tenants
than the switch can handle.

At a high level, SDNCTL-Visor (depicted in Figure 4) intercepts
SDNCTL from the di�erent agents and distributes them into di�er-
ent per-tenant queues. Each queue is associated with a leaky-token
bucket that enables SDNCTL-Visor to control the rate at which
SDNCTL from each queue is processed.

To provide �ne-control over scheduling and rate limiting of SD-
NCTLs, we leverage existing black box models of SDNCTL resource
requirements from Tango [13]. This model generates, for diverse
switches, a mapping of resource consumption for each speci�ed
SDNCTL. SDNCTL-Visor uses this model to perform admission
control.

SDNCTL
-Visor

Local Event
Offloader

Mercury Latency
guarantee

ASIC

OF Agent

Async
SDNCTLs

To Packet
handler

Switch OS

TCAM

Synch
SDNCTLs

M

O

Container
Manager

N�

Insert
default rule

OFX InSPired

Switch-Visor

Default rule 2

Default rule 1

P�

Figure 3: Switch Architecture

Put packet
into queue

Scheduler

Rate λ

Rate μ

Rate ν

Token Bucket

8
8
8

Set token

Rearrange

Cloud DB

Get performance
requirements

OF-Agent

Get
queue Info

OFX

InSPired

Figure 4: Rate Limiter

For scheduling the SDNCTLs, SDNCTL-Visor builds on the ex-
tensive literature on CPU scheduling, such as (weighted) max-min
fairness with di�erent accuracy (e.g., round-robin) [19], weighted
fair queuing [8]. In our design, di�erent SDNCTLs may have di�er-
ent dominant resources, such as �ow-mod requires TCAM resources
but get-status requires CPUs. To achieve multiple resource alloca-
tion, we use Dominant Resource Fairness (DRF) [9] which is a
generalization of the max-min fairness for multiple resources to
calculate the actual rate limits. Moreover, the resource requirements
of di�erent SDNCTLs may vary over time, in view of this, the algo-
rithm must periodically re-evaluate requirements and accordingly
perform resource allocations. Recall, resources utilization depends
on the current state of the hardware and the set of contenting action.
Fortunately, existing switch benchmarking and pro�ling tools [13]
allow us to determine the requirements for each SDNCTL under
di�erent conditions.

4.2 Event-O�loader
While the SDNCTL-Visor controls the tenant-initiated SDNCTL,
it can’t control the hardware generated SDNCTL and thus the
hardware generated SDNCTL can impact Switch-Visor ability to
make performance guarantees. For this class of SDNCTL, we argue

28

Switch-Visor: Towards Infrastructure-Level ... SDN Switches CAN’17, December 12, 2017, Incheon, Republic of Korea

that rather than dealing with them at the switch that we o�oad
them to a cluster of cheaper and more powerful x86 servers. These
o�oad servers can process the SDNCTL or send them to the agents
on the switch or the hypervisor via TCP connections. The o�oad
servers provide Switch-Visor with a fulcrum of control. With these
servers, Switch-Visor is able to: (1) rate limit interactions from
hardware to the switch and (2) provide tenants with an elastic
solution to create hardware generated events. 2

Unlike mobile o�oading, o�oading hardware generated SD-
NCTL requires a novel o�oading method that avoids using local
switch CPU (or memory) resources because using these resource
would generate the exact problem we are trying to avoid. This
novel switch-speci�c o�oading method needs to address several
challenges: (1) coordinating o�oad between the switch and the
o�oad server and exchanging appropriate metadata (2) ensure that
o�oading occurs in an e�cient and e�ective manner.

To address these challenges, we explore a domain-speci�c design.
Speci�cally, we add tags into the packets to transfer information be-
tween the switch and the x86 server: these tags can carry su�cient
data to create the event. For example for “Packet-In”, the tags will
carry switch-ID and in-port We also modify the SDN rules such that
the hardware generated packets are not sent to the switch’s CPU
but rather forwards them along pre-speci�c paths to the x86 server.
Our Event-O�oader modules provide this functionality with three
components:
Global-Event-O�loader: The �rst, the global Event-O�oader
(red solid arrow in Figure 2), that coordinates between the local
Event-O�oader running on the switches and the o�oad servers in
the x86 cluster. The global Event-O�oader assigns each switch with
a speci�c (and unique) tag and distributes a map of < ta�, switch >
to the servers in the clusters.

The global Event-O�oader also calculates and install each path
from each switch to the o�oad cluster, these paths are specially
created to only carry o�oad tra�c to the clusters. Next, we discuss
these paths in more detail.
Local-Event-O�loader: Given the tags and information about a
set of default paths to the o�oad cluster, the Local-Event-O�oader
creates and installs two forwarding rules into its �ow table. The
�rst rule is the lowest priority rule, and it matches all packets that
match no other rule, then adds the preassigned tag to these packets
and sends them along the path to the o�oad cluster. This rule is
used to o�oad a packet and to add information required by the
o�oad server to appropriately perform its o�oad functionality.
The second rule matches any packet with any o�oad Tag, and
forward this along to the cluster. This rule is used to continue the
forwarding of o�oad packets from another switch. To ensure that
o�oading is e�cient, the switches use ECMP to balance o�oad
tra�c across the di�erent prede�ned o�oad paths.
O�load Cluster: The o�oad cluster consists of a set of x86 ma-
chines running containers. Each container runs code to process
the o�oad packets. For example, upon receiving a tagged rouge
packet, the o�oad cluster would serialize the packet into a “packet-
in” event, use the tag to determine the source switch and in-port,

2Hardware generated events are often turned o� because of their impact on the switch
CPU, Switch-Visor eliminates this concern.

and sends this event o� to the to the network hypervisor (shown by
the blue dotted arrow in Figure 2) or the tenant’s controller. Addi-
tionally, the cluster can scale up or down the number of containers
to handle drastic changes in the number of events being o�oaded.

5 PRELIMINARY ANALYSIS
O�oading devices from the switch to an x86 server introduces two
main overheads: �rst, additional latency which prior work [20] has
shown to be negligible because the faster CPU at the x86 servers
makes up for the additional network latency, and second, the Event-
O�oader requires a �eet of x86 servers to host the containers –
we note that the size of the �eet is proportional to the amount a
client is willing to pay. We implemented Switch-Visor in python
and deployed it on a small testbed to understand the overheads
introduced by Event-O�oader.
MethodologyWe tested the Event-O�oader in a rack of 36 servers
connected by a switch with 1 Gbps ethernet links and each server
is running a virtual switch. To evaluate the performance of Event-
O�oader, we conducted two experiments, �rstly we initialized a
number of packet-in events per second from src1 to dst with and
without the running of Event-O�oader, to see what is the CPU
utilization of the virtual switch, the number of packet-in is varied.
The second experiment is that we measured the �rst packet delay
of pin� command from src1 to dst , to see how Event-O�oader will
a�ect the packet delay.
Preliminary Results Figure 5 shows the bene�t and overhead
caused by o�oading the hardware generated SDNCTLs.

�

��

��

��

��

���

� � � � � �� �� �� �� �� ��

�
��
�
���
��
��
��
�
��
�

��������� ���� ������ ����

��� ���������
� ���������

��

��

��

��

��

��

��

��

��

��

��

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
��

������ ���

��� ���������
� ���������

(a) CPU Utilization (b) Packet Delay

Figure 5: Impact of O�loading

Figure 5(a) demonstrates that Event-O�oader signi�cantly re-
duces the CPU utilization of the switch. Moreover, even at high
packet rates, switch CPU is kept minimal. Finally, Event-O�oader
allows the switch to support a higher rate than it traditional would
support.

From Figure 5(b), we observe Event-O�oader introduces 30%
latency (approximately 5ms) and we attribute this latency to our
current implementation in python. We anticipate signi�cant reduc-
tions when we rewrite our Event-O�oader in C++.

6 RELATEDWORKS
Network Virtualization Existing approaches to virtualizing SDN
switches focus on partitioning �ow tables entries and enforcing
strict controls over�ow spaces (the type of �ow tables entries that
tenants can insert) [2, 15]. In this work, we take a more holistic
approach and argue that in addition, to �ow table isolation, switch

29

CAN’17, December 12, 2017, Incheon, Republic of Korea Huan Chen and Theophilus Benson

virtualization should provide performance guarantees across CPU,
Memory, and ASIC. This enables us to truly provide each tenant
with the abstraction of sole ownership over a predictable switch.
Today, compute virtualization broadly falls into one of two cam-
puses: Virtual Machine-based and Container-Based virtualization.
We explore the use of containers to virtualize CPU/Memory and
introduce novel primitives and abstractions to provide control over
ASIC resources
CPU O�loading Several works [10, 20] include approaches to
o�oad asynchronous messages. Scotch [20] moves the packet-in
processing logic from hardware switches to an overlay of virtual
switches to avoid packet-in messages from overloading the switch’s
CPU. Orthogonally, Mazu [10] introduces a proxy to handle packet-
in and packet-out messages. While Scotch and Mazu leverage static
resources for o�oading, Switch-Visor uses cloud resources which
enables Switch-Visor to elastically adjust to load.
Switch Benchmarking [7, 10, 13] measure, analyze, and develop
black box models of switch resource utilization consumption. Our
work builds on the black box models presented in these work [10,
13].

7 CONCLUSION
Today, network virtualization fails to provide infrastructure-level
virtualization of SDN switches instead network virtualization pro-
vides guarantees over the tra�c. In this work, we explore an alter-
nate design space with the controversial argument that the commu-
nity should push towards lower level network virtualization over
control-level virtualization. A level of virtualization that requires
tenants to manage their virtual switches in a manner similar to
IaaS — in essence, infrastructure-level switch virtualization. Specif-
ically, we argue for virtualizing the switch CPU and Memory using
traditional methods (e.g. containers) and present a set of methods
for virtualizing the switch’s ASIC and interactions between the
CPU and ASIC. Our system, Switch-Visor, is the �rst step towards
Infrastructure-level Switching as a Service (ISaaS) virtualization.
Our approach is realizable without any hardware changes making
it immediately applicable to the current generation of deployed
switches.

ACKNOWLEDGMENTS
We thank the anonymous CAN reviewers for their invaluable com-
ments. This work is partially supported by NSF grant CNS-1409426,
National Basic Research Program of China 2013CB329103, NSFC
fund 61671130, 61271165.

REFERENCES
[1] [n. d.]. OpenFlow Switch Speci�cation v1.0.0. http://archive.open�ow.org/

documents/open�ow-spec-v1.0.0.pdf. ([n. d.]).
[2] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru Parulkar,

Elio Salvadori, and Bill Snow. [n. d.]. OpenVirteX: Make your virtual SDNs
programmable. In Proceedings of ACM HotSDN 2014.

[3] Richard Alimi, Ye Wang, and Y. Richard Yang. [n. d.]. Shadow Con�guration As
a Network Management Primitive. In Proceedings of ACM SIGCOMM 2008.

[4] Roberto Bifulco, Julien Boite, Mathieu Bouet, and Fabian Schneider. [n. d.]. Im-
proving sdn with inspired switches. In Proceedings of ACM SOSR 2016.

[5] Huan Chen and Theophilus Benson. [n. d.]. The Case for Making Tight Control
Plane Latency Guarantees in SDN Switches. In Proceedings of ACM SOSR 2017.

[6] Liming Chen and Algirdas Avizienis. 1995. N-version programminc: A fault-
tolerance approach to rellablllty of software operatlon. In Fault-Tolerant Comput-
ing, 1995, Highlights from Twenty-Five Years., Twenty-Fifth International Sympo-
sium on. IEEE, 113.

[7] Andrew R. Curtis, Je�rey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. [n. d.]. DevoFlow: Scaling Flow Management for
High-performance Networks. In Proceedings of ACM SIGCOMM 2011.

[8] Alan Demers, Srinivasan Keshav, and Scott Shenker. [n. d.]. Analysis and simula-
tion of a fair queueing algorithm. In Proceedings of ACM SIGCOMM 1989.

[9] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. [n. d.]. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types. In Proceedings of USENIX NSDI 2011.

[10] Keqiang He, Junaid Khalid, Sourav Das, Aditya Akella, Erran Li Li, and Marina
Thottan. [n. d.]. Mazu: Taming latency in software de�ned networks. University
of Wisconsin-Madison Technical Report, 2014 ([n. d.]).

[11] Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. [n. d.]. Virtually
Eliminating Router Bugs. In Proceedings of ACM CoNEXT 2009.

[12] P. Khanduri. [n. d.]. Di�y: Testing services without writing tests. ([n. d.]).
[13] Aggelos Lazaris, Daniel Tahara, Xin Huang, Erran Li, Andreas Voellmy, Y Richard

Yang, and Minlan Yu. [n. d.]. Tango: Simplifying SDN control with automatic
switch property inference, abstraction, and optimization. In Proceedings of ACM
CoNEXT 2014.

[14] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. [n. d.].
Tales of the Tail: Hardware, OS, and Application-level Sources of Tail Latency. In
Proceedings of ACM SOCC 2014.

[15] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. [n. d.]. Can the Production Network Be the
Testbed?. In Proceedings of USENIX OSDI 2010.

[16] Christian Sieber, Andreas Blenk, Arsany Basta, and Wolfgang Kellerer. [n. d.].
hvbench: An open and scalable SDN network hypervisor benchmark. In Proceed-
ings of IEEE NetSoft 2016.

[17] John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith. [n. d.]. En-
abling practical software-de�ned networking security applications with ofx. In
Proceedings of NDSS 2016.

[18] Laurent Vanbever, Joshua Reich, Theophilus Benson, Nate Foster, and Jennifer
Rexford. [n. d.]. HotSwap: Correct and E�cient Controller Upgrades for Software-
de�ned Networks. In Proceedings of the ACM HotSDN 2013.

[19] Carl A Waldspurger and William E Weihl. [n. d.]. Lottery scheduling: Flexible
proportional-share resource management. In Proceedings of USENIX OSDI 1994.

[20] An Wang, Yang Guo, Fang Hao, TV Lakshman, and Songqing Chen. [n. d.].
Scotch: Elastically scaling up SDN control-plane using vswitch based overlay. In
Proceedings of ACM CoNEXT 2014.

[21] Guohui Wang and T. S. Eugene Ng. [n. d.]. The Impact of Virtualization on Net-
work Performance of Amazon EC2 Data Center. In Proceedings of IEEE INFOCOM
2010.

[22] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. [n. d.]. Bobtail:
Avoiding Long Tails in the Cloud. In Proceedings of USENIX NSDI 2013.

[23] Ji Yang, Zhenyu Zhou, Theophilus Benson, Xiaowei Yang, Xin Wu, and
Chengchen Hu. [n. d.]. FOCUS: Function O�oading from a Controller to Utilize
Switch Power. In Proceedings of IEEE NFV-SDN 2016.

30

