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ABSTRACT
Despite software-defined networking’s proven benefits,
there remains a significant reluctance in adopting it. Among
the issues that hamper SDN’s adoption, two issues stand out:
reliability and fault tolerance. At the heart of these issues
is a set of fate-sharing relationships: the first between the
SDN control applications and controllers, wherein the crash
of the former induces a crash of the latter, thereby affect-
ing the controller’s availability; and, the second between the
SDN-Apps and the network, wherein the failure of the for-
mer violates network safety, e.g., network-loops, or network
availability, e.g., black holes.

In this paper, we argue for a redesign of the controller
architecture centering around a set of abstractions to elim-
inate these fate-sharing relationships and thus improve the
controller’s availability. We present a prototype implemen-
tation of a framework, called LegoSDN, that embodies our
abstractions, and we demonstrate the benefits of our abstrac-
tions by evaluating LegoSDN on an emulated network with
five real SDN-Apps. Our evaluations show that LegoSDN
can recover failed SDN-Apps 3× faster than controller re-
boots while simultaneously preventing policy violations.

1. INTRODUCTION
Software-Defined Networking (SDN) decouples the data-

plane from the control-plane and provides an open API for
programmatic control over the network. A key appeal of
SDN lies in its ability to enable innovative control appli-
cations (SDN-Apps). These SDN-Apps contain sophisti-
cated code to interface with increasingly complicated con-
troller code-bases and to interoperate with complex and, of-
ten, buggy switches [23]. The end-result of these complex-
ities is that SDN-Apps are prone to a variety of bugs (e.g.,
timing bugs [6, 29], or null pointers). The SDN-Apps, fur-
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thermore, are likely to be provided with limited testing by
third party entities—a trend that is expected to become more
prevalent given the recent success of open-source controllers,
e.g., OpenDaylight [27], and the emergence of SDN app
stores, e.g., HP’s SDN App Store [17].

Recent efforts to improve the reliability of SDN-Apps and
availability of the SDN controller have been along three di-
rections: first, diagnosing and pinpointing the root cause
of failures [6, 35]; second, attacking the root cause of fail-
ures by providing better programming abstractions for de-
velopers [5, 29]; and third, developing better fault-recovery
techniques through controller replication [20,22,44]. Of the
three, only the last direction enables the SDN controller to
recover from SDN-App failures in production networks. In
case of controller replication, multiple replicas of the con-
troller are deployed with each replica maintaining a state
machine. Events are input to all the replicas in the same or-
der, thus keeping all state machines identical to one another.
One of the replicas is designated as the leader (or master),
and when the master fails, a different replica can transpar-
ently take over and resume control of the SDN-Apps and
the network. Controller replication, however, does not of-
fer much help, when the crash of the SDN-App is caused by
deterministic bugs.

There is a rich literature on the topic of fault tolerance,
with studies addressing the issue in different contexts and
particularly, distributed systems, operating systems and ap-
plication servers. Direct application of these well-researched
techniques to the problem of making controllers fault-tolerant
to SDN-App failures, nevertheless, is not feasible. Tech-
niques like reboot [4] or replay [41], for instance, cannot
be applied directly to the SDN control plane; certain funda-
mental assumptions made by these techniques do not hold
true in an SDN environment. Both the network and SDN-
Apps, moreover, contain state, and rebooting [4] the SDN-
App (after a crash) will eliminate this state and consequently,
introduce inconsistency issues. Further, if the crash was due
to deterministic bugs, replaying events [30,33,41] to restore
the SDN-App’s state will be stuck in a never-ending crash-
and-reboot loop. In addition, attempts to tackle deterministic
bugs [30, 33] tend to change the application’s environment
and may introduce erroneous output [33].

A key feature of SDNs is the clean, narrow and open ap-
plication programming interface (API) that is used for com-
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munication between the data and control planes. This fea-
ture differentiates SDN’s fault tolerance from traditional OS
fault tolerance wherein little is known about the semantics of
the messages that the application processes. Using the API’s
specification, we can extract the semantics of the API and
understand the intent of each message or event. Further, we
can exploit this knowledge to develop recovery mechanisms
that can make modifications to the SDN-App code, environ-
ment, and/or its input without violating the semantics of the
SDN-App code.

There are a number of challenges in safely recovering
SDN-Apps from failures. First, network state is manipu-
lated and shared by many SDN-Apps; a stateful SDN-App
internally maintains a subset of the network state, which re-
flects its view of the network. Given this replicated state
across stateful SDN-Apps, a key challenge lies in maintain-
ing a consistent network state across the different SDN-Apps
during failure recovery. Second, although, the semantics
of the SDN control messages are well-specified and well-
documented, no protocols exist to exploit this information
for designing a better recovery mechanism. Determining
how to leverage the semantic knowledge of the protocol
in improving recovery mechanisms is also a hard problem.
Third, the monolithic design of current SDN controllers im-
plies that a failure of any one component renders the entire
control plane unavailable [7]. There is a need, consequently,
for a better isolation between the different components.

In this paper, we take a bold step towards developing a
fault-tolerant controller architecture, called LegoSDN, that
explicitly aims to safely recover SDN-Apps from both deter-
ministic and non-deterministic failures. LegoSDN builds on
the abstractions presented in our earlier position paper [7] to
develop a heirarchy of event transformations, and to add sup-
port for transactions that cut across data and control planes.
We present a prototype implementation that isolates the SDN-
Apps from one another and from the controller by running
each within a sandbox; failure of an SDN-App is restricted
to the sandbox in which it is run. The interactions between
the controller and SDN-Apps are carried out via remote pro-
cedure calls (RPC).

LegoSDN tackles the challenge of maintaining consistency
across different SDN-Apps by employing fine-grained trans-
actional semantics spanning both the data and control planes,
and thereby enabling the controller to rollback changes made
by a crashing SDN-App without impacting other (healthy)
SDN-Apps. The transactional semantics, moreover, include
conflict detection and resolution to maintain consistency be-
tween the SDN-Apps.

LegoSDN employs novel domain-specific transforma-
tions that modify crash-inducing events into semantically
equivalent, but syntactically different, events to safely re-
cover a crashed SDN-App. These transformed events are
then replayed to the SDN-App restored from the crash. The
transform-and-replay process continues until the SDN-App
can process the transformed events successfully (without
crashing). The system also provides a framework for search-
ing through the space of equivalent events and automating
this transform-and-replay process.

As a proof-of-concept, we re-architected the FloodLight
controller to support LegoSDN. Using this prototype, we
demonstrate that LegoSDN imposes minimal overheads and
requires no modifications to the SDN-Apps (designed to run
using FloodLight), thus shielding SDN-App developers from
having to spend time learning the complexities of LegoSDN.
Using a synthetic fault injector to crash-test SDN-Apps and
using mininet [24] for emulating a network topology, we
evaluated LegoSDN using five different SDN-Apps by ex-
ploring the time to recovery and by analyzing the implica-
tions of maintaining consistency.

Our contributions can be summarized as follows.

• Cross-Layer Transaction Manager: We propose a
framework to provide transactional semantics across
both control and data planes; this framework allows us
to isolate failures and maintain consistency by rolling
back changes made by failed SDN-Apps without re-
quiring hardware changes to the switches (§4).

• SDN Event Transformer: We present a protocol for
overcoming deterministic failures by extending tradi-
tional log-replay-based techniques to include domain-
specific transformations that preserve the SDN-App se-
mantics (intent and meaning) (§5).

• Implementation and Evaluation: We build a work-
ing prototype of a controller architecture that imple-
ments our primitives in FloodLight.

Roadmap. We begin by describing SDN-App failure sce-
narios and the design goals for a fault-tolerant controller in
§2. We describe the architecture of LegoSDN in §3. We
present our approach for supporting cross-layer transactions
in §4 and for performing semantics-preserving transforma-
tions in §5. §6 presents our prototype implementation in §7.
Related works are examined in §8 and open issues are dis-
cussed in §9. We present concluding remarks in §10.

2. BACKGROUND AND DESIGN
We begin this section with a review of the state of the

SDN ecosystem (§2.1). We motivate our solution by de-
scribing SDN-App failure scenarios (§2.2), by discussing
the implications of bugs in SDN-Apps (§2.3), and some in-
sights behind our approach to ensuring safe recovery (§2.4).
We conclude with a discussion of the key design goals of a
fault-tolerant controller architecture (§2.5).

2.1 State of the SDN Ecosystem
In Table 1, we present a small list of FloodLight SDN-

Apps, describe their purpose, and indicate whether they are
third-party SDN-Apps or SDN-Apps developed by the de-
velopers of the controller. This table reinforces the notion
that the SDN ecosystem embodies an à la carte system,
wherein different portions of the stack are developed by dif-
ferent entities. We expect, furthermore, the diversity at each
layer to only increase as SDN grows in popularity. In fact,
movements such as the OpenDayLight Consortium [27] and



Application Developer Purpose

RouteFlow [34] Third-Party Routing
FortNox Third-Party Security

FlowScale [2] Third-Party Traffic Engineering
CloudNaas Third-Party Cloud Provisioning

SNAC Third-Party Enterprise Provisioning
BigTap [1] FloodLight Security

Stratos [13] Third-party Cloud Provisioning
VTN Third-party Cloud Provisioning

Table 1: Survey of popular SDN-Apps

the SDN-hackathons hosted by SDN Hub [36] are already
promoting such diversity.

Unfortunately, many SDN-Apps lack public support fo-
rums or a public-facing bug trackers. Consequently, we
are unable to quantify the impact of bugs. Luckily, recent
work [6, 29, 35] on debugging SDN-Apps have uncovered a
number of interesting bugs in the SDN-Apps for FloodLight,
Pox, and Nox controllers. A preliminary analysis of the
OpenDayLight bug-repository shows that bugs are present
even in the SDN-Apps that come bundled, by default, with
the controller. While novel abstractions [5] are being devel-
oped to minimize the number of bugs, extensive studies on
software engineering practices indicate that bugs are preva-
lent in most applications and most bugs in production quality
code do not even have fixes [43]. In an SDN network, bugs
in an SDN-App can bring down the entire SDN stack [7,38].

2.2 SDN-App Failure Scenarios
SDN-Apps are designed to be event-driven1 with the im-

plementation comprising event handlers for different net-
work events, e.g., link activation (link-up) or switch failures
(switch-down). Anecdotal evidences [6, 29], unsurprisingly,
suggest that most of the errors occur in these event-handlers.
We focus, hence, on these event handlers.

In this paper, we focus broadly on two types of failures.
The first of these is fail-stop where the SDN-App unexpect-
edly terminates due to invalid memory accesses, e.g., null
pointer dereferences, or due to evaluation of an erroneous
expression, e.g., division by zero. The second is invariant-
violation in which the SDN-App installs a set of OpenFlow
rules that violate a network invariant, e.g., creating a loop or
creating a black hole.

Although techniques exist [20,21,38] to detect and poten-
tially isolate these failures, these techniques cannot safely
recover the SDN-App; in particular, there are very few tools
for recovering SDN-Apps from deterministic failures.

2.3 Implications of SDN-App Failures
Network policies generated by SDN-Apps often affect mul-

tiple devices, requiring many network actions. While these
policies are atomic, the mechanisms for enforcing them are
not. For instance, in Figure 1a, App1 modifies three switches
on the network to setup a path for a flow. App1, however,
may fail midway (Figure 1b) during the route setup opera-
tion resulting in only a partial update of the network; in this

1Traditional control-plane applications, e.g., OSPF,
Spanning-Tree, are similarly event-driven.

App1 App2

Controller

(a) Normal scenario

App1 App2

Controller

(b) Failure scenario

Figure 1: Path setup under different scenarios.

case, not all rules required for the path setup were issued to
the switches before the SDN-App crashed. Such partial up-
dates to the network introduce inconsistency, i.e., an incom-
plete path (Figure 1b), and should be removed in a careful
and consistent manner.

SDN-App failures have implications on both the control
and data planes. Recovery efforts can be simplified by treat-
ing the network, SDN controller and all the SDN-Apps as
one holistic system and creating a snapshot (or checkpoint)
of this holistic system [45]. Rolling back to a prior snapshot
safely removes all actions effected on the network and re-
stores the SDN-Apps and controller to the last known (healthy)
state. But adding support to generate and restore snapshots
of state across the network requires addition of new primi-
tives to the switches. A more feasible alternative is to log all
network events and replay them to the controller (and SDN-
Apps) in the event of a crash [42]. But this approach is ex-
tremely time consuming. The overheads of these recovery
mechanisms renders them impractical in a production net-
work.

We argue that failure-recovery efforts should ensure that
the network state remains consistent with the state of the dif-
ferent SDN-Apps.

2.4 Challenges in Crash Recovery
Anecdotal evidences suggest that the most common fail-

ures are due to a combination of unexpected timing and con-
currency issues [29]. Regardless, these errors are often de-
terministic in nature and simply replaying the events in the
same order will be insufficient. For example, the concur-
rency bugs tackled in OF.CPP [29] are deterministic and re-
quire more advanced techniques than simple reboot [4] or
log-replay [42]. Many of these bugs require some transfor-
mations of the input messages; these can be simple trans-
formations, e.g., reordering, to solve the concurrency related
errors [6, 29], or more complex transformations involving
change or deletion of messages to tackle other issues.

A key challenge in transforming messages is in ensur-
ing that the transformed events maintain protocol equiva-
lence with the original input messages. More concretely,
the transformations performed should retain the semantic
intent of the original messages while adhering to the pro-
tocol specification. Fortunately, OpenFlow events are well-
documented and their semantics are clearly defined in the
OpenFlow specification.

We can extract the intent and meaning of each message
using the OpenFlow specification, and use this information
to create a set list of potential transformations for each event
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Figure 2: Timeline of transactions delimited by checkpoints.

or message. This effort represents a one-time cost that can
be shared across various controllers and SDN-Apps.

2.5 Design Goals
We can summarize our observations as follows: many

failures in SDN-Apps are deterministic in nature, and require
recovery mechanisms that are more sophisticated compared
to checkpoint-restore or reboot (and replay); the semantics
of SDN events (or control messages) are well-known and
can be used to create a list of event-specific transformations
to provide for safe recovery of SDN-Apps, particularly in
case of deterministic faults; safe recovery entails maintain-
ing consistency across both control and data planes, and we
need a set of novel techniques that are faster and safer than
existing approaches. Based on these observations, we iden-
tify the following design goals for a fault-tolerant SDN con-
troller architecture.

• Isolation: The impact of failures should be limited to
the failing SDN-App. The costs and overhead of fail-
ure recovery should be limited to the failed SDN-App
or, in the worst case, the control plane. Isolation of
SDN-Apps promotes high availability and simplifies
failure recovery.

• Safe Recovery: A failed SDN-App should be recov-
ered in a manner that ensures consistent state across the
data and control planes. Ensuring consistency prevents
the recovery efforts from violating network policies.

• Minimal SDN-App Developer Effort: Failure recov-
ery techniques have a steep learning curve and hence,
developers should not be required to make any code
changes to take advantage of a new fault-tolerant archi-
tecture. Ensuring that failure recovery is transparent to
the SDN-Apps removes the barriers to adoption.

• Fast Recovery: Although the control plane is not re-
quired to respond at the granularity of microseconds or
milliseconds, several seconds of downtime [42] can re-
sult in violations of service level agreements (SLAs)2.
Thus, recovery should happen in a timely manner.

3. LegoSDN
LegoSDN is a fault-tolerant controller framework that em-

bodies the design goals presented in the last section. The ar-
chitecture of a LegoSDN controller (Figure 3b) represents a
2SLAs can be violated, for instance, by failing to cre-
ate, within a given time, the required low-latency or high-
throughput network paths.
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Figure 3: Comparison of controller architectures

significant departure from traditional controllers (Figure 3a)
in the following three ways.

Sandboxing. In LegoSDN each SDN-App runs as a sep-
arate process in a sandbox with the controller also running
(without any SDN-Apps) in its own sandbox. LegoSDN has
a component, called AppVisor, that handles the exchange
of SDN events and control messages between the controller
and the SDN-Apps’ sandboxes using remote procedure calls
(RPC). Isolating an SDN-App in a dedicated sandbox allows
LegoSDN to detect fail-stop failures.

Transaction Support. For each event processed by an
SDN-App, LegoSDN keeps track of messages that the SDN-
App generated in response to that event. These pairs of in-
put events and output messages along with a snapshot of the
state of the SDN-App is defined as a cross-layer transaction
(named so, since the transaction cuts across the control and
data planes; refer to §4), and shown in Figure 2. A trans-
action is considered committed with the creation of a suc-
cessful snapshot or checkpoint (Figure 4a) of the concerned
SDN-App. In the event of a failure (Figure 4c), cross-layer
transactions allow LegoSDN both to revert the SDN-App us-
ing the snapshot from the previously committed transaction
and to undo the impact of the output messages, if any, of the
failed SDN-App on the network—in essence reverting the
changes to the network state. Cross-layer transactions offer
an all-or-none semantics for the actions of an SDN-App on
the network; in other words, the SDN-App either success-
fully processes a set of events and effects necessary changes
to the network in response to the events, or it does not pro-
cess the events at all.

Replay. The (cross-layer) transaction manager maintains
a set of replay buffers (Figure 4b), one for every SDN-App,
that hold all input events of the transaction that is currently in
progress. The replay buffer of an SDN-App is cleared when
the transaction associated with the SDN-App is committed.
After restoring an SDN-App from a crash using a prior snap-
shot, the contents of the SDN-App’s replay buffer are used
to bring the SDN-App to the state prior to the crash. The size
of the replay buffers depends on the size of the transaction
and determines the time and complexity of the replay efforts.
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Safe Recovery. LegoSDN includes a component, called
Event Transformer, that assists in recovering from determin-
istic faults. After restoring an SDN-App, rather than replay-
ing the exact messages available in the replay buffer, the
event transformer can transform an event (Figure 4d) to a
different (but equivalent) event that the SDN-App can, per-
haps, process without encountering another fault. The event
transformer cycles through a set of predefined transforma-
tions for each event until it finds the tranformation that al-
lows the recovered SDN-App to make progress.

4. CROSS-LAYER TRANSACTIONS
We define a cross-layer transaction as the state generated

and/or modified in the control and data plane as a result of an
SDN-App processing one or more events. More concretely,
for a set of input events {e1, e2, . . . , eN} processed by an
SDN-App, a cross-layer transaction is the set of variables
{v1, v2, . . . , vn} that changed within the SDN-App and the
set of output messages {o1, o2, . . . , on} sent to the network.
The variables make up the control-plane portion of the trans-
action whereas the output messages to the network com-
prise the data-plane portion of the transaction. The events

Control Message Inverse Control Message

FlowMod (add flow) FlowMod (remove flow)
Change port status Change port status

PacketOut No known inverse

Table 2: State-changing control messages and their inverses.

{e1, e2, . . . , eN} are the messages stored in the replay buffer
until the transaction containing them is committed. Tracking
cross-layer transactions allows LegoSDN to perform a suc-
cessful rollback of the SDN ecosystem to a consistent state
after a failure. In addition, these transactions ensure that the
implications of the failed SDN-App on the shared network
state are not exposed to the other (healthy) SDN-Apps.

Cross-layer transactions require support for the following
primitives:

• Cross-Layer Snapshots: Before an SDN-App begins
a transaction, we have to generate snapshots of the
state of both the SDN-App and the network. Check-
pointing an SDN-App is relatively easy [8] compared
to checkpointing network state since data plane devices
currently lack appropriate primitives to support the op-
eration.

• Synchronized Rollback: In the event of a failure of
an SDN-App, we have to rollback the current (uncom-
mitted) transaction, which implies undoing changes ef-
fected by the SDN-App on the network. Rollback of
changes to the network, unsurprisingly, is quite chal-
lenging. While orthogonal state management tools [22,
39] facilitate tracking of changes to the network, none
provide adequate primitives to support rollback.

• Data Plane Consistency: Since network state may be
shared among SDN-Apps, a naïve rollback of network
state, when an SDN-App fails, may lead to inconsis-
tency issues in other (healthy) SDN-Apps. Hence, we
need support for primitives to detect conflicts and sys-
tematically resolve them.

4.1 Snapshots
In LegoSDN, the controller can easily checkpoint an SDN-

App before triggering one of its event handlers with an input
event or message. Creating checkpoints of the data plane,
as mentioned before, is hard since it requires modifications
to the switch hardware [10, 45]. We argue, however, for the
addition of a state management layer to the controller. The
state management layer, hence referred to as NetLog, mod-
els the data plane (or network) as a transactional system that
supports grouping of multiple actions (entries to be installed
in flow tables of switches) into one atomic operation (or
update). NetLog provides support for atomic updates, and
leverages existing work [32] to support consistent updates.

4.2 Rollbacks
Rollback of changes made to the control plane is a rela-

tively simple and straightforward process, and it can be done
using existing checkpoint-and-restore tools, e.g., CRIU [8].
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Figure 5: Conflicts that may arise during failure recovery.

Undoing changes made to the data plane, however, is com-
plicated since the transactions are maintained by a state-
management layer in LegoSDN rather than in the switches.
Control messages must be generated to undo all changes as-
sociated with the failed transaction. The rollback operation
also results in the loss of soft-state stored in the switch hard-
ware. For instance, while we can undo a flow-delete event
by adding the rule back to the appropriate switch, the soft-
state associated with the flow entry, e.g., timeout and flow
counters, cannot be restored.

To tackle these problems, NetLog leverages the insight
that control messages which modify network state are invert-
ible: for every state altering control message, A, there exists
another control message, B, that rolls back A’s state change.
Table 2 lists a representative sample of state-altering control
messages and their inverses. The key observation is that a
message A and it’s inverse B are of the same type but with
different payloads. For instance, the inverse of a FlowMod
message adding a flow entry is also a FlowMod but with a
different flag that indicates deletion of the entry.

NetLog also tracks and maintains the soft-state in different
switches. Therefore, should NetLog need to restore a flow-
table entry, it can add the entry with the appropriate timeout
value. For counters, it stores the old counter values in a ded-
icated counter-cache and updates, in flight, the counter value
in messages, e.g., statistics reply, (to be delivered to SDN-
Apps) with appropriate values from its counter-cache.

4.3 Maintaining Consistency
The switches in an SDN network are a shared substrate;

different SDN-Apps can access and manipulate the same
flow-table entries on a switch. During a rollback, hence,
changes to the network state may affect other healthy SDN-
Apps. For example, in Figure 5a, a flow-table entry cre-
ated by a failing SDN-App (App2) may be read by a healthy
SDN-App (App1), and removing this flow-table entry during
the rollback of the transaction associated with App2 may im-
pact the healthy SDN-App App1; we refer to this issue as a
read-write conflict (Figure 5a). Orthogonally, in Figure 5b,
the flow-table entry created by the failing SDN-App App2

may be modified, at a later time by the healthy SDN-App
App1; this issue is referred to as a write-write conflict.

These conflicts can be avoided by rolling back all con-
flicting SDN-Apps, but due to the intricate in-network de-
pendencies the strategy can result in a cascade of rollbacks,
leading to a rollback of all SDN-Apps. This strategy violates
several of our design goals.

Original Transformation Type Transformed

link-down Escalate switch-down
flow-removed Escalate link-down

switch-up Toggle switch-down, switch-up

Table 3: Sample of transformation rules.

Write-Read Conflicts: We utilize special control mes-
sages which allows the data plane to inform an SDN-App
that the network state has changed. For example, the “flow
removed” message can be used to inform an SDN-App that
a table entry is removed from the network. When rolling
back a flow-table entry, NetLog sends the inverse message
to the network to undo the changes and, in parallel, sends
the “flow removed” message to all SDN-Apps with a write-
read conflict on this entry. These messages allow the dif-
ferent SDN-Apps to react appropriately to the change in the
network state. Ideally, the SDN-Apps will act in a manner
that resolves all inconsistencies.

Write-Write Conflicts: The changes made by the fail-
ing SDN-App have been overwritten by another SDN-App.
LegoSDN neither sends an inverse message to the network
nor does it try to send messages to the healthy SDN-Apps.
Essentially, LegoSDN supports “last writer wins” semantics.

5. EVENT TRANSFORMATIONS
Upon restoring the SDN-App and the data-plane to a con-

sistent snapshot, the SDN-App must be fed the set of inputs
that it had received between the start of the transactions and
the event that caused the SDN-App to crash. The events
must be replayed to ensure that the SDN-App is aware of all
changes to the network; e.g., arrival of a new flow or a link
failure. In the best case, the replay buffer will contain one
event, and in the worst-case, it will contain N events – where
N is the number of events in a cross-layer transaction.

Traditional checkpoint-replay techniques simply replay
these events in the same order with no modifications. Un-
fortunately, such a strict replay of the events only works
for non-deterministic failures. In case of deterministic fail-
ures, strict replay will result in reproducing the failure. If
LegoSDN relies on such naïve replay mechanisms then the
SDN-App will be stuck in an endless recover-replay loop.

To overcome deterministic faults, the event transformer
determines the smallest set of events in the replay buffer that
causes the SDN-App to crash and changes these events to
ensure that the SDN-App recovers without failures. To do
this, the event transformer includes a predefined set of rules
that specify how to modify a given event (to an SDN-App)
and under which condition, such transformations are valid.

These rules are created based an extensive study of the
OpenFlow specification and switch behavior. By studying
the specification, we are able to determine the meaning and
intent of each event. More importantly, we are able to de-
velop systematic methods for transforming an event M into
a set of events, T = {M1,M2....MN}, such that T conveys
the intent of the original event, M , according to the pro-
tocol specification. In determining valid transformations to
create new events, our goal is not necessarily to explore the
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exact same code-path or ensure that the SDN-App will pro-
duce identical output events. Our goal is to rather find a set
of events, T , that allow the SDN-App to process the intent
of the original event and to respond to this intent, without
crashing again. Currently, LegoSDN supports the following
three transformations, with Table 3 listing a few samples.

• Toggle: Most OpenFlow events express a state change
in a network element, e.g., link-up expresses a state
change in a port. Many events, moreover, have two
states–up/down, on/off, or installed/un-installed. A tog-
gle transformation changes an event M into two events
{M ′,M}, where M ′ is the inverse of the state repre-
sented by M . For example, a link-down is changed to
{link-up, link-down}.

• Escalate: There is a natural hierarchy amongst net-
work elements, e.g., a flow table is a member of a
switch, a link is a member of a switch. This hierar-
chy can be leveraged in designing event transforma-
tions (Figure 6). To this end, an escalate transforma-
tion changes an event M into M ′, where M ′ is the
equivalent state transition in the parent element. For
example, a link-down becomes a switch-down.

• Reorder: When there is more than one event in the
replay buffer, a reorder transformation can reorder the
events prior to replay. When reordering events in the
replay buffer, however, LegoSDN maintains the fol-
lowing invariant: no reordering of messages from the
same switch.

Restoring an SDN-App with event transformers: Af-
ter restoring a crashed SDN-App, there are two scenarios to
consider during replay: the first, the last event handled is the
cause of the crash and transforming this last event, hence,
will allow the SDN-App to recover successfully; the second,
the failure is the culmination of one or more earlier events
(essentially, not the last event). In this work, we focus on the
former and leave discussions on how to extend LegoSDN to
address the latter scenario in §9.

When the last event in the replay buffer is the cause
of the failure, LegoSDN replays all but the last event and
transforms the last event prior to replaying it. If replay
fails, LegoSDN retries with a different transformation. This
transform-and-replay process is repeated until any of the fol-
lowing conditions is met: all transformations are exhausted;
(recovery) timer expired; the SDN-App successfully recov-
ered from the failure.

Ordering of Transformations: To guide the exploration
through the space of transformations, the event transformer
ranks the transformations in terms of potential impact on
the network and favors less disruptive over more disrup-
tive transformations. The event transformer, further, prefers
transformations that result in a smaller set of messages (i.e.,
smaller value for |T |).

Bounding Replay Time with a Recovery Timer: The
time spent in event-replay and transformations depends on
the number of transformations tried and replay attempts both
of which are bounded by the desired level of reactivity. We
bound the recovery time, in our case, based on the time
taken for controller restarts. In practice, we limit the size
of the transaction buffer to the average number of messages
that LegoSDN can successfully replay and transform in the
specified amount of time. While this practice provides low
recovery times, there may be room for further optimizations.

Exposing Transformations to Network Operators: The
act of transforming events compromises an SDN-App’s abil-
ity to implement network policies completely. Unfortunately,
for security related SDN-Apps, network operators may be
unwilling to compromise on network policies. To account
for this, we provide a simple configuration file through which
operators can specify, on a per SDN-App basis, the set of
events, if any, that can be transformed and the set of valid
transformations to consider.

Ultimately, LegoSDN’s goal is to make the SDN-Apps
and not the network operators oblivious to failures. Thus,
while during recovery, LegoSDN can generate a problem
ticket from the captured stack-traces (or core dump), con-
troller logs and the offending event. This ticket can help
network operators to understand and triage the bug.

Limitations: Currently, LegoSDN supports a predefined
set of transformations. The space of potential transforma-
tions, however, is larger than that currently explored. We
envision that a domain-specific language will be provided to
allow developers or network operators to define new trans-
formations.

6. PROTOTYPE
We developed a prototype implementation of LegoSDN3

to illustrate the utility of our architecture. We realized our
prototype by modifying the Floodlight controller to include a
transaction manager and an event transformer. We also made
appropriate changes to support isolation and sand-boxing of
the SDN-Apps from the controller and from each other. Al-
though LegoSDN is designed to work with FloodLight, the
architecture and abstractions can be easily ported to other
modular SDN controllers, such as, OpenDayLight [27] and
ONOS [3]. Next, we discuss the highlights of our prototype.

Sand-boxing SDN-Apps: To sandbox and isolate each
SDN-App, we run each SDN-App in a different JVM. We
eliminate the need to modify or rewrite the SDN-Apps by
instrumenting the sandbox (JVM) and adding java classes to
implement the controller interface. These classes convert all
3Source code of the prototype implementation and docu-
mentation is available at http://legosdn.cs.duke.edu

http://legosdn.cs.duke.edu


local function calls from the SDN-App to the controller into
remote procedure calls over UDP.

At the controller, we create a proxy SDN-App that pro-
cesses these remote procedure calls and converts them back
into function calls to the appropriate methods in the con-
troller. To ensure that the SDN-Apps get all their subscribed
events, the proxy SDN-App registers itself with the con-
troller, on behalf of the SDN-Apps, to receive those events.

Transaction Manager: The transaction manager is im-
plemented within the controller as part of the proxy code
that controls interactions between the SDN-App and the con-
troller. To create the control plane snapshots, we capture a
checkpoint of the SDN-App’s JVM with CRIU [8]. 4

Event-Transformer: A key property of this component
is to perform consistent transformations for each SDN-App.
Floodlight, like most other controllers, caches topology in-
formation within the controller and provides access to this
cache through a number of controller modules. In imple-
menting the event-transformer, we had to ensure that access
to this cached information returned consistent transformed
events regardless of the controller modules used to access
the cache. Since all calls between the SDN-App and the
controller happen via our proxy, we were able to consis-
tently enforce transformations by implementing the event-
transformer within the proxy.

7. EVALUATION
In this section, we evaluate LegoSDN using a number of

realistic SDN-Apps and compare LegoSDN’s performance
with the state-of-the-art approaches, e.g., controller restarts.
We quantify the time spent in various phases of recovery and
highlight opportunities for further improvement. We con-
clude by showcasing the benefits of supporting cross-layer
transactions and the capabilities of event transformations.

7.1 Experimental Setup
In our experiments, we used five different SDN-Apps:

Hub, Learning Switch (L.Switch), Load Balancer (Load-
Bal.), Route Manager (Rt.Flow), and Stateful Firewall.
These SDN-Apps cover both the proactive and reactive de-
velopment paradigms, with L.Switch, Hub, and Stateful
Firewall being reactive and the remaining being proactive
SDN-Apps. The SDN-Apps were written for the vanilla
FloodLight controller and needed no modifications to run on
LegoSDN.

The SDN-Apps Hub and Learning Switch came bundled
with FloodLight [11]. Hub simply floods a packet received
on a switch port over all the remaining ports on the switch.
Learning Switch examines the packet to learn the MAC-
address-port mapping, flooding the packet only when a map-
ping is unknown. While Hub installs no rules on any switch,
Learning Switch installs rules based on the mappings it learns.

4CRIU cannot checkpoint processes with active network
connections and this posed a key challenge for implementing
the RPC calls between the SDN-App and the controller. This
motivated our choice of UDP as the communication channel
for RPCs.

The Route Manager SDN-App computes the shortest path
distance between all pairs of hosts and pre-installs, on each
switch, the route to all reachable hosts on the network. The
Load Balancer is a specialized version of the Router Man-
ager that attempts to evenly balance the number of flows
across different links to a given destination.

The Stateful Firewall SDN-App intercepts TCP packets
between the trusted and untrusted parts of the network and
only allows the packets if the connection was initiated from
the trusted part of the network; it drops any attempt to open
a connection from the untrusted part to the trusted part of
the network. For the purpose of demonstration, we designed
the Stateful Firewall SDN-App to not install any rule; hence,
actual routing of the packet (once it is deemed as allowed by
Stateful Firewall) is done using Hub in our experiments.

We used mininet [24] to emulate a network with the de-
sired topology and Python scripts to emulate the traffic be-
tween hosts as required for different experiments. The ex-
periments were carried out on a small testbed consisting of
two Linux servers running Ubuntu 14.04 LTS and connected
by a 1Gbps link with a latency of 10ms. Each machine had
12 cores with 16GB of memory. All the experiments were
conducted with the controller and isolated SDN-Apps run-
ning on one server, and with mininet and the scripts running
on the other.

To crash SDN-Apps when using LegoSDN, we developed
a fault-injector shim that can be configured to generate a
RuntimeException in response to a specific input. When
launching the SDN-Apps, we can pass configuration param-
eters (via a properties file) to crash one or more SDN-Apps
either deterministically on a specific event, e.g., a port-down
event, or randomly on any input (to emulate non-deterministic
faults). When using the SDN-Apps with the traditional Flood-
Light controller, we use a carefully re-written faulty version
of the SDN-Apps that injected fault in a manner similar to
that of the fault-injector shim. This fault injection approach
allows us to emulate most crash inducing errors except mem-
ory corruptions.

7.2 Recovery Time
To compare LegoSDN against other recovery mechanisms,

we crashed different SDN-Apps, each for 60 times, by gen-
erating faults, and measured the recovery time of each SDN-
App under different recovery mechanisms. We define the
recovery time of an SDN-App as the time between when an
SDN-App (or SDN stack) crashed and when the SDN-App
was ready to process the next input. The SDN-Apps were
crash tested separately with each test comprising only one
SDN-App.

Figure 7a plots the median recovery time of the
SDN-Apps under three different recovery mechanisms:
LegoSDN, controller reboot (Ctrlr. Reboot), and applica-
tion reboot (App. Reboot). By LegoSDN, we refer to the use
of our prototype implementation with a transaction size of
16 input messages or events. Controller reboot implies let-
ting the SDN-App (and the SDN controller stack) crash and
restarting the SDN stack again. Application reboot, or naïve
restarts, refer to restarting of the SDN-App after a crash and
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Figure 7: Comparison of different recovery techniques and analysis of time spent in different recovery functions.

retrying the message again. Application reboot, hence, im-
plicitly assumes that some mechanism exists to run the SDN-
App in a separate OS process address space.

Unsurprisingly, controller reboots are infeasible, since the
time to recover is in the order of seconds, and the network
will be unavailable during this period. Crash of any one
SDN-App also translates to crash of the entire SDN stack,
as all applications are bundled with the controller and run
as a single OS process. Application reboots are at least two
orders of magnitude faster than the other two recovery mech-
anisms, but are ineffective against deterministic bugs (we
elaborate on this point in § 7.3). Controller reboots, in con-
trast, can recover from deterministic faults since the crash
inducing message is dropped or ignored; in fact, messages
that arrive at the controller while recovery is in progress are
also dropped.

LegoSDN is slower compared to application reboots, but
it is more than 3× faster than controller reboots. Similar to
application reboots, the controller is not affected and there
is no loss of network control during recovery in LegoSDN.
Unlike application reboots, however, LegoSDN can recover
from both non-deterministic and deterministic faults (with
support from the event transformer component). The er-
ror bars on top of the bar plots in Figure 7a represent one
standard deviation around the median recovery time. The
standard deviations of recovery times are much larger for
LegoSDN compared to the rest, since some of the recovery
functions that LegoSDN performs, e.g., reading the check-
pointed image of an SDN-App from disk, can easily intro-
duce a lot of variance in recovery time.

The median time spent in the different recovery functions
is shown in Figure 7b. Majority of the recovery time is spent
in restore followed by transform. Restore refers to resurrect-
ing the SDN-App from an earlier checkpoint and transform
implies converting of the crash inducing message to a differ-
ent but equivalent message. LegoSDN uses CRIU for check-
point and restore operations, and the RPC calls between the
Java-based LegoSDN controller and the C-based CRIU ser-
vice introduce some overhead. LegoSDN can benefit either
from performance improvements to CRIU or from a better
interface to the CRIU service. The design of LegoSDN also
makes it easier to switch to other alternatives should they

prove to be faster compared to CRIU. Time spent in replay
seems only to be significant in the case of Route Manager
SDN-App, since a replay of past inputs causes the SDN-
App to recompute shortest paths which takes a considerable
amount of time; replay time is, hence, dependent on the im-
plementation of the SDN-App.

7.3 Event Transformations
While naïve reboot and replay techniques can offer very

low recovery times, they do not work against determinis-
tic faults. LegoSDN, on the other hand, can safely recover
an SDN-App from deterministic faults using event transfor-
mations. To demonstrate the benefits of event transforma-
tions, we modified the Route Manager SDN-App such that
the SDN-App will unconditionally fail on a port-down event.
We used mininet to emulate a network with 8 switches con-
nected in a ring topology: s1 − s2 − s3 − s4 − s5 − s6 −
s8 − s7 − s1, with each switch sx having a host hx attached
to it. The experiment starts a UDP flow from h2 to h8, and
while the flow is in progress brings down the link s1 − s7,
and after a period of 20 s brings it back up.

Initially, the shortest path p1 from h2 to h8 is over the
link s1 − s7 : h2 − s2 − s1 − s7 − s8 − h8. When the
link s1 − s7 is down, however, the shortest path changes to
p2 : h2−s2−s3−s4−s5−s6−s8−h8. The paths p1 and p2
are referred to as primary and secondary paths, respectively,
as shown in Figure 8a. We assigned a 2ms latency to the
link s1 − s7 and 4ms latency to the link s3 − s4 to use the
RTTs observed by the UDP flow in identifying the path of
the flow. The RTTs observed by the UDP flow during the
duration of the experiment are recorded separately for each
recovery mechanism and shown in Figure 8a.

The link s1 − s7 is brought down around the 5 s mark
in Figure 8a generating two port-down events, one for the
port on each switch on either end of the link; this causes
the Route Manager application to crash. The link s1 − s7
is brought back up around the 25 s mark generating port-
up events which the SDN-App can process without fail, as
is evidenced by all three lines switching from Secondary to
Primary path, in the figure, around the 25 s mark.

In case of controller reboot, the recovery takes approxi-
mately 4 s, but on recovery, since the entire stack was re-
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booted, the SDN-App receives updates describing the recent
network topology. Route Manager, naturally, recomputes
the shortest paths and correctly routes the UDP flow from
h2−h8 over the path p2. Not surprisingly, application reboot
cannot recover from the crash until the time when the link
s1 − s7 is brought back up; if the replay is skipped (i.e., the
crash inducing message is dropped), the SDN-App recovers
but remains oblivious to the change in the network topol-
ogy until the next change at the 25 s mark. LegoSDN, com-
pared to the other two mechanisms, recovers quickly (within
250ms) from the crash and immediately re-routes the flows
over the path p2, regardless of the SDN-App’s inability to
process the port-down event.

To recover from the deterministic fault, the event trans-
former transforms the port-down events to switch-down
events, effectively removing switches s1 and s7 from the
topology. The event transformer, hence, presents an altered
view of the network to the SDN-App to help it recover from
the fault. When the link s1 − s7 comes back up, it first ac-
tivates the switches s1 and s7 before delivering the events
related to the new state of the link. Simply mapping mes-
sages from one to another without maintaining a consistent
per-app view of the network, will fail to re-route the flow
back to p1 at the 25 s mark.

7.4 Application State Recovery
Controller and application reboots are also ineffective in

recovering stateful SDN-Apps from non-deterministic fail-
ures. Using the same network topology as described in the
previous section (§ 7.2), but with all links set to have a la-
tency of 1ms, we run two SDN-Apps–Stateful Firewall and
Hub–with the three recovery mechanisms, and use two TCP
flows from the trusted part to the untrusted part of the net-
work. The flows repeatedly open a TCP connection, send
10 packets and close the connection. We carefully induce a
fault after the TCP connection establishment phase of one of
the flows. The fault causes only Stateful Firewall to crash,
and leaves Hub intact; the experiment was setup, however,
not to allow Hub to flood without Stateful Firewall.

We measure the RTT observed from the two TCP flows–
f1 and f2–and plot a portion of the time series of RTTs in

Figure 8b. The flow f2 (from h2 to h3) starts 30 s after the
start of flow f1 (from h1 to h4). Stateful Firewall was con-
figured to treat hosts h1 and h2 as trusted, and hosts h3 and
h4 as untrusted. The RTTs are high since each packet is in-
tercepted by Stateful Firewall and routed to its destination by
Hub (which floods the packet). The fluctuations in RTTs of
the flows when the SDN-Apps are deployed using LegoSDN
are because of additional functions, e.g., checkpointing, per-
formed by LegoSDN. These functions, however, are critical
as the TCP flows continue after the crash only when using
LegoSDN. Without checkpointing of the SDN-Apps’ states
and restoring them after the crash, Stateful Firewall will lose
the connection establishment information and hence, will
drop the TCP packets. The sender and the receiver, how-
ever, are also unaware that they have to re-establish the con-
nection; the sender retransmits assuming packets are getting
lost. The loss of state when recovering Stateful Firewall us-
ing either controller or application reboot prevents the TCP
flows from making any progress after the crash (indicated by
the shaded region) as shown in Figure 8b.

7.5 Cross-layer Transaction Support
We use mininet to emulate a network with 6 switches con-

nected in a ring-like topology: s1−s2−s3−s4−s6−s5−s2,
with switch s1 outside the ring. Switches s1 through s4 each
have one host attached at port-1. We used a slightly modified
version of the route manager application (introduced earlier
in this section) that installs rules proactively to route flows
between hosts h2 through h4 along the path s2 − s3 − s4.
Switch s5 is setup to forward all packets to s6 which in turn
is setup to forward to s4. Initially, the path through s5 and
s6 remains unused and no rules are installed on Switch s1.

Suppose that the path through s5 and s6 contains a mid-
dlebox that inspects the traffic to check for malicious flows.
After approximately 5 s, a new flow is started from h1 to h3.
Switch s1 sends the first packet to the controller which in
turn contacts the SDN-app to setup the route for the flow.
The SDN-app does not trust the flow originating from h1

and intends to route the flow over the alternate path s1 −
s2 − s5 − s6 − s4 − s3 (response from h3 to h1 flows over
the path s3 − s2 − s1). To this end the SDN-app installs
rules on switches s4, s3, s2, s1, s6, in that order. The SDN-



app, however, is programmed to fail in the middle of this
route setup—after setting up s1 but before setting up s6.
When NetLog is enabled changes made to the network are
reverted after a crash and, hence, the untrusted flow makes
no progress. Disabling NetLog, on the other hand, causes
the untrusted flow to proceed (over the path s1 − s2 − s3),
resulting in policy violations (since the flow is not being in-
spected by the middlebox on the path through s5 − s6).

8. RELATED WORKS
SDN Fault Tolerance: The most closely related works [9,

18, 20, 22] focus on recovering from controller failures, typ-
ically, by applying Paxos [28]; there is not much focus on
handling SDN-App failures or deterministics failures, and
these faults can cripple the framework. Specifically, Ra-
vana [20] employs a similar notion of transactions, but, un-
like LegoSDN, Ravana requires switch-side mechanisms and
extensions to the OpenFlow interface to guarantee correct-
ness.

Rosemary [38], like LegoSDN, adds isolation to SDN-
App. LegoSDN, however, improves on Rosemary by main-
taining transparency and by including a better fault tolerance
model—one that can recover from a richer set of failures.

Bugs in SDN Code: Recent work to debug SDNs fo-
cus on detecting bugs [15, 21] or debugging bugs in SDN-
Apps [16, 26, 35] and SDN switches [23, 25]. Building on
these existing approaches, we attack an orthogonal problem,
that of overcoming bugs which result in controller failures or
violation of network invariants. Our approach allows the net-
work to guarantee availability even after bugs trigger SDN-
App failures.

Operating System Fault Tolerance: Our approach builds
on several key operating system principles: isolation [4],
failure oblivious computation [33], and checkpoint-replay [19,
40]. These approaches, however, assume that bugs are non-
deterministic and thus can be fixed by a reboot [4, 19, 40].
To tackle deterministic bugs, LegoSDN extends these ap-
proaches [4, 19, 40] by employing domain specific knowl-
edge to transform failure inducing events into safe events.
Unlike in failure-oblivious computing [33] where transfor-
mations inject random data, in LegoSDN transformations
maintain semantic equivalence and thus ensure safety.

Other SDN controllers: While recent SDN controllers,
e.g., ONOS [3], OpenDayLight [27], have made significant
progress towards addressing controller availability, tolerat-
ing deterministic SDN-App failures is not an objective of
their designs. LegoSDN can be easily extended to such plat-
forms; in case of ONOS, for instance, LegoSDN’s NetLog
can be incorporated into ONOS’s global network view.

On the other hand, approaches like Frenetic [12] and
Pyretic [31] focus on providing a better programming plat-
form for developing SDN-Apps, thus potentially eliminating
bugs. The objectives of such programming platforms is to al-
low developers to write modular applications with ease and
such objectives are orthogonal to that of LegoSDN. These
controllers, nevertheless, neither address isolation of SDN-
App crashes nor offer support for checkpoint and recovery

of SDN-Apps. LegoSDN can, however, provide support
for some of the high-level objectives of these programming
platforms, e.g., avoiding writing of redundant or conflicting
rules, by extending the AppVisor component.

9. DISCUSSION
Next, we discuss several limitations of LegoSDN as well

as a few interesting approaches for extending LegoSDN to
address other types of failures.

Controller Failures: LegoSDN isolates the SDN-Apps
from the controller and runs them in separate processes. The
approach also implies that despite the controller crashing, an
SDN-App can continue unaffected (although the SDN-App
will be unable to interact with the network).

Failures caused by Multiple Events: Although
LegoSDN, currently, focuses on failures induced by the last
event processed, the system can be extended by incorporat-
ing STS [35] to address failures caused by an arbitrary set of
events. We envision that upon detecting a failure, LegoSDN
can run STS on the failed SDN-App to determine the min-
imal set of input events, S, associated with the failure. S
is then placed in the replay buffer, and LegoSDN rolls back
the SDN-App to the last checkpoint before the first message
in S. The transform-and-replay process continues from this
point onwards exactly as described before. We suspect, how-
ever, that a new set of transformations may be required to
improve the speed of replay.

Network Function Virtualization (NFV) While the ap-
proaches in §4 focus on network switches, we believe they
can be extended to include network functions. We can treat
network functions like we treat switches and expand NetLog
to include network-function state by incorporating existing
techniques [14] for managing network function states. Al-
ternatively, we could leverage existing approaches for check-
pointing middleboxes [37].

Limitations of LegoSDN’s Rollback: LegoSDN’s roll
back only impacts network elements and not end hosts.
Hence, packets sent to end hosts cannot be modified as part
of the rollback, and this leaves the end-host stack in an in-
consistent state. Fortunately, unlike in the SDN switches and
controller, multiple layers of failure-recovery are built into
the end-host stack and the stack will adjust to the modified
network. For example, TCP contains mechanisms to deal
with out of order packets and duplicate packets.

Maintain network invariants: In case LegoSDN cannot
successfully recover from a crash (i.e., all transformations
still result in a crash), LegoSDN drops the input event. The
SDN-App at this point can continue or be halted depend-
ing on the SDN-App’s configuration (specified at startup).
Dropping an input (message or event) can lead to a violation
of network invariants, i.e., dropping a switch-down can result
in black holes. We argue that, in general, compromising the
availability of a few flows (as a result of violating network
invariants) is acceptable compared to sacrificing control of
the entire network. On the other hand, if network invariants
cannot ever be violated, a host of policy checkers [21] can
be used to check network invariants; in case the guarantee



fails to hold, LegoSDN reverts to using controller reboots.

10. CONCLUSION
Currently, SDN-Apps are used over controllers in an ad-

hoc fashion, without any isolation or abstractions to con-
trol properties for all SDN-Apps. LegoSDN demonstrates
how one can retrofit this functionality in the existing SDN
stack without any modifications to the controller or SDN-
Apps. We use LegoSDN to provide fault tolerance and ad-
dress the need for a safe and fault-tolerant controller by de-
tecting SDN-App failures in real time and modifying net-
work events to eliminate the crash. We implemented a pro-
totype of LegoSDN based on the popular FloodLight con-
troller platform and show that the performance overhead of
fault tolerance is reasonable.
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