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ABSTRACT
SDN controllers demand tight performance guarantees over the
control plane actions performed by switches. For example, tra�c
engineering techniques that frequently recon�gure the network
require guarantees on the speed of recon�guring the network. Ini-
tial experiments show that poor performance of Ternary Content-
Addressable Memory (TCAM) control actions (e.g., rule insertion)
can in�ate application performance by a factor of 2×! Yet, modern
switches provide no guarantees for these important control plane
actions – inserting, modifying, or deleting rules.

In this paper, we present the design and evaluation of Hermes,
a practical and immediately deployable framework that o�ers a
novel method for partitioning and optimizing switch TCAM to
enable performance guarantees. Hermes builds on recent studies
on switch performance and provides guarantees by trading-o� a
nominal amount of TCAM space for assured performance. We eval-
uated Hermes using large-scale simulations. Our evaluations show
that with less than 5% overheads, Hermes provides 5ms insertion
guarantees that translates into an improvement of application level
metrics by up to 80%. Hermes is more than 50% better than existing
state of the art techniques and provides signi�cant improvement
for traditional networks running BGP.
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1 INTRODUCTION
Software-De�ned Networking o�ers �exibility and programmatic
control over the network. However, this programmatic control re-
quires frequent modi�cations of the network’s forwarding tables
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(TCAM). For example, tra�c engineering SDN control programs,
e.g., Google’s B4 [40] or Microsoft’s SWAN [39], require frequent
network recon�gurations to improve network performance. Simi-
larly, service chaining SDN control programs [22, 35] require fast
recon�guration to ensure network correctness.

Unfortunately, while SDN promises �ne-grained control over
the network, current SDN switches use traditional hardware and
software algorithms that are designed to support legacy protocols,
e.g., BGP, OSPF, or MPLS. 1 These traditional techniques are barely
e�ective for supporting frequent TCAM modi�cations [11] and are
ill-suited for the high TCAM modi�cations demands of emerging
SDN applications [22, 35, 40]. As a result of this mismatch, run-
ning modern SDN control programs on these SDN switches can
signi�cantly degrade the performance of the applications. Our ex-
periments in Section 2, demonstrate that due to ine�ciencies in
the switches, the TCAM installation time can reduce application
performance by a factor of 2×!

In this paper, we de�ne control plane actions as the set of SDN
control events/messages that the SDN controller uses to con�gure
the switch’s TCAM, e.g., OpenFlow’s FlowMod operator used to
insert, delete or modify rules in the forwarding tables.

Existing approaches [37, 43, 51, 62] seek to minimize TCAM
insertion times, mask TCAM insertion latencies, or design software
algorithms to work around these hardware issues. These approaches
provide a best-e�ort attempt to minimize TCAM insertion latency.
Since these approaches attack the symptoms (insertion latency)
and not the root-cause (TCAM behavior) they mitigate and not
eliminate the issues — large variations in switch performance still
exists.

Unfortunately, without providing concrete performance guaran-
tees for control plane actions, modern SDNs are unable to e�ectively
support the growing number of novel use cases — critical infras-
tructures, cellular infrastructures, security systems, and virtual
networks. For example, in 4G and 5G networks, there is a need
to instantiate VoLTE connections within a prede�ned amount of
time. Similarly, for cyber-physical systems [23], there is a need
for networks that make strong performance guarantees. Only by
redesigning switch software and algorithms to explicitly support
frequent control plane actions (with performance guarantees) can
SDN support emerging SDN control programs.

In this paper, we present Hermes, a framework for providing
performance guarantees for control plane actions. Hermes builds on
the observations [37, 42, 43] that control plane actions are expensive
when a �ow table contains a large number of entries.

To this end, Hermes eliminates large tables by carving a mono-
lithic TCAM table into two tables: the �rst, a small table (in size),

1P4 reuses traditional TCAM and provides little control over the TCAM management
techniques that impact control plane action speeds.
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that’s called the shadow table and kept relatively empty. This small
table services all insertion/modi�cation requests, thus from the
perspective of these requests the TCAM is small and mostly empty.
The second, the main table, is a full sized table. As the shadow
table grows in size, Hermes reduces its size by migrating entries
from the shadow table to the main table. By controlling the size
of the shadow table, Hermes provides the lowest average and tail
insertion times of all available systems [43, 51].

The design of Hermes faces three key challenges. First, devel-
oping a framework that provides guarantees without requiring
fundamental changes to the TCAM’s design. To this end, we ex-
amined SDKs for modern Application Speci�c-Integrated Circuits
(ASICs) and observed that we are able to support Hermes with ex-
isting TCAMs (§ 6). Second, simultaneously providing performance
and correctness guarantees. We introduce a prediction algorithm to
maintain invariants over the shadow tables and a TCAM orchestra-
tion algorithm that uses provably correct optimizations to partition
rules and ensure correctness (§ 4 and § 5). Lastly, we design a set
of APIs to enable network operators to request performance guar-
antees and understand the trade-o�s between performance and
TCAM overheads. Hermes tackles this challenge by presenting a
simple API for making requests.

To demonstrate the bene�ts and explore the limitations of Her-
mes, we conduct microbenchmarks and evaluate Hermes using
large-scale simulations with realistic topologies, tra�c traces, and
application workloads from data centers [9] and ISP networks [1,
10, 19]. Our evaluations show that Hermes is able to provide per-
formance guarantee, improve rule installation, improve network
update times and improve application performance. Additionally,
we observe that the bene�ts of Hermes are more pronounced when
the workloads require frequent network updates (modi�cations) or
where RTTs are small (e.g. in the data center). Our evaluations show
that with less than 5% overheads (in TCAM space), Hermes provides
a 5ms insertion guarantee that translates into an improvement of
rule installation time by 80% to 94%.

2 MOTIVATION
In this section, we present the case for Hermes in SDNs (§ 2.2)
and traditional networks (§ 2.3) and discuss the characteristics of
TCAMs that inspire the design of Hermes (§ 2.1).

2.1 TCAM Background and Measurements
TCAM is a �xed size memory structure capable of very fast lookups
for a key with �exible structure [8] – a lookup into a TCAM table
returns an entry that matches the key. To support multiple keys, e.g.,
longest pre�x match (LPM) and VLAN, vendors partition a TCAM
into multiple logically disjoint slices, with each slice con�gured to
support lookups for a speci�c key [6, 12, 20]. Moreover, TCAMs
are designed with proprietary algorithms and hardware to ensure
that lookups in each slice are constant.

Although lookups are constant time operations, TCAM mod-
i�cation actions (e.g., insertions or modi�cations) incur variable
time because of the TCAM hardware which shifts/moves rules. The
TCAM stores entries in a list and each new entry must be inserted
into a speci�c location within the TCAM to preserve correctness
and maintain priorities. Thus to perform an insertion, the TCAM

Pica8 P-3290 Dell 8132F
ASIC Table Occupancy Update/s ASIC Table Occupancy Update/s

108 KB
Firebolt-3

50 1266
54 KB

Trident+

50 970
200 114 250 494
1000 23 500 42
2000 12 750 29
Table 1: Rule Update Rate [42].

may have to move existing entries to make room for the new entry.
The insertion time is a function of the time to perform this move
which is proportional to the number of entries that must be moved
and the cost of moving each entry.

2.1.1 Measuring Control Plane Action Performance. Recent stud-
ies [38, 42, 43] of SDN switches and TCAM performance have
analyzed the performance pro�les of current SDN switches. Here
we summarize their key �ndings and use them to help motivate
Hermes’s design choices.

Insertion time grows linearly with the number of rules:
Measurements show that a switch’s insertion behavior is a function
of several features:

First, the priorities of the rules being inserted impacts the �ow
insertion time [38, 43]; rules with priorities are �ve times slower
than rules without priorities. Furthermore, the order of insertion
is important. For example, in some switches installing rules in
ascending order of priorities is ten-times faster than descending
order.

Second, the number of rules in the �ow tables impacts the �ow
insertion time [42]. For example, with a Dell 8132F switch, inserting
a rule in a �ow table with 250 rules can be more than 10 times faster
than in a �ow table with 500 rules in it. In Table 1, we present
the rule update rate for di�erent �ow table occupancy levels for
di�erent switches.

Third, the performance characteristics vary from switch to switch
and the con�guration of Hermes must be adjusted to account for
these fundamental di�erences [38, 43]. For example, as observed in
Table 1, with 50 entries already in the table, the Pica8 switch can
support approximately 1266 updates per second where are the Dell
switch can support a lower rate of 970 rates per second: more than
23% di�erence in performance.

Deletion is a simple and fast operation: Unlike �ow inser-
tions, �ow deletions exhibit a relatively trivial and fast performance
characteristics because rule deletions remove entries and they do
not always require moving entries around. Speci�cally, rule dele-
tion latency is independent of rule priority [38, 43] and is much
faster than rule insertion [26].

Modi�cations, surprisingly, can be constant: Modi�cations
require changing a rule’s match or actions – for either, modi�ca-
tions are cheap and fast because they do not require moving TCAM
entries. For example, “modifying 5000 entries could be six times
faster than adding new �ows” rules [43]. Alternatively, modi�ca-
tions that alter the priority of a rule may require moving TCAM
entries and are fundamentally similar to deleting the existing entry
and inserting the modi�ed entry.

Takeaways The insertion time is directly proportional to the
number of rules already in the �ow table – we can bound the
insertion time by limiting the number of rules in the �ow table.
Further, there is a clear correlation between the �ow table size and
the max insertion time (Table 1). Finally, while there are many types
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of control plane actions only a few of them need to be revisited to
provide strong performance guarantees. For example, �ow table
insertion, deletion, and modi�cation are all part of the same control
plane action, �ow-mod, yet we only need to explicitly design for
insertions.

2.2 Impact of Control Plane Action Latency on
SDNs

In this section, we analyze the impact of control plane action latency
(and variation) on networked applications (e.g., Map Reduce). To
do this, we developed a �ow-level network simulator, called Varys,
based on existing �ow-level simulators [29, 30] and modi�ed it
to support variable control plane action latencies. Our simulator
emulates a k=16 Fat-Tree topology with 1024 servers and employs
a proactive tra�c engineering application [33] that monitors the
network and periodically recon�gures the network paths to place
�ows on a more e�cient network path — where an e�cient path
is de�ned as a path that minimizes congestion and job completion
times. This proactive application does not use packet-in messages
thus there is no startup latency incurred.

Our simulation modeled several switches based on empirically
derived performance models [42] but due to space restrictions,
we only provide results for the Pica8 P-3290 switch and note that
the other switches have qualitatively similar results. These switch
models allow us to model TCAM performance, both, control plane
actions (rule installation/deletion/modi�cation), data plane forward-
ing (packet matching and forwarding latencies), and TCAM be-
havior (TCAM shifting latency). The details of our simulator and
workloads are presented in Section 8.
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Figure 1: CDF of Increase Ratio of JCT.

Figure 1 presents the impact of TCAM control latency and varia-
tion on Job Completion Times (JCT). We compare switches with no
control plane latency (zero latency and variation) against switches
with realistic control plane latency [42]. We separate short jobs, or
jobs with less than 1 GB, (Figure 1 (a)) from long jobs (Figure 1 (b)).
We observe that, compared to long jobs, short jobs are signi�cantly
impacted because short jobs are unable to ameliorate the added
latency of the TCAM control plane actions: short jobs experience
a 1.5× or 2× increase and long jobs experience a 1.05× or 1.25×
increase in the median case. This trend is particularly alarming as
the short jobs are often latency-sensitive and are arguably the more
important �ows [30].

For reactive applications which send the �rst packet to the con-
troller and thus incur startup latencies, our evaluation in our prior

work [28] showed that the control plane action latency can further
reduce performance by a factor of 5×!

Compared with the alternative approaches, ESPRES [51] and
Tango [43], Hermes provides signi�cant improvements on job com-
pletions times (we elaborate on this in Section 8).

2.3 Impact of Control Plane Actions Latency
on BGP

Next, we evaluate the frequency with which control plane actions
are used within traditional BGP-based networks. To do this, we
examine BGP updates captured by BGPStream [5] and convert
the updates into FIB actions based on BGP’s internal algorithms.
Due to space constraints, we do not show the exact CDF of the
update rates for these BGP routers and the CDF of performance
improvements. We observe that traditional control planes generally
have low update rates except at the tail where updates occur with
high frequency (over 1000 updates per second) and it under these
extreme conditions that traditional routers fail to react quickly
enough because of the slow TCAM behavior. Poor TCAM behavior
under these conditions has motivated the community [11] to call
for proposals such as Hermes.

2.4 Future of SDN Hardware
Given the recent development of SDN-optimized switches, a fair
question is this: “will the recent development of programmable data
planes [4, 24] and switches optimized for SDNs [4, 14] eliminate
variation and tail latency in TCAM control plane actions or obviate
the need for TCAM?” Unfortunately, TCAM control latency (and
variation) arises due to the properties that are fundamental to the
design of TCAM memory. Thus, provided that TCAMs are used,
variable latency will persist.

Due to the importance of the TCAM, emerging programmable
switches, e.g., Barefoot’s To�no Chip [4], and programmable data
plane models, e.g., Banzai [56] or OPP [25], include TCAM tables.
Additionally, the P4 speci�cation [17] provides no primitives for
expressing performance requirements over TCAM control actions
and subsequently, the P4 compiler lacks algorithms for managing
and recon�guring TCAM in a manner that provides performance
guarantees.

While emerging speci�cations fail to address control plane action
latency, there is a growing number of data plane techniques being
developed that use TCAM and SRAM in a clever manner to pro-
vide advanced network functionality [24, 47, 48, 64] in commodity
devices.

In summary, our results further highlight the need for system-
atic support for performance guarantees on control plane action
latency. While existing approaches [41, 43, 45, 51] reduce the im-
pact of TCAM control actions by reordering rules or designing
new hardware algorithms, they fail to provide guarantees and this
limits their applicability. Our work, Hermes, focuses on designing
an e�cient and robust solution that provides these guarantees on
commodity switches.

3 ARCHITECTURE
At a high level, Hermes bounds insertion time by restricting the size
of the �ow table. To do this, Hermes maps a logical TCAM-based
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�ow table into two physical �ow tables: the �rst table, a small table
(the shadow table), that’s kept relatively empty and the second table
(the main table), a large table. All insertions happen in the shadow
table while lookups happen using both tables sequentially; �rst, a
lookup is performed into the shadow table and if no match is found
then another lookup is performed into the main table. Together,
these two tables provide equivalent functionality to a single (logical)
table — Hermes includes a set of provable correct algorithms, based
on ACL-optimizations, that enable Hermes to map rules from a
logical table to two physical tables (the shadow and main tables) in
a manner that simultaneously guarantees functional correctness
(Section 4) and bounds performance (Section 5). During packet
lookups, Hermes maintains the logical abstraction by con�guring
the default table-miss behavior in the shadow table to “forward
to next table”, in Hermes the next table after the shadow table is
always the main table. This default behavior ensures that during
packet lookup, the packet traverses the pipeline from shadow to
main until it reaches a rule that processes it or until it traverses the
entire pipeline. More broadly, as long as a matching rule exists in
at least one of the two tables, the packet will be processed by this
matching rule.

To provide bounds on TCAM insertion times, Hermes bounds the
size of the shadow table and only inserts new rules into this bounded
table. Note, the size of the shadow table bounds the maximum
number of TCAM shifts that are required to insert a rule and, in
turn, bounds the maximum insertion latency.

Controller
OF 

Agent

Hermes 

Agent

Switch 

OS
ASIC

Control Plane 

Actions

Data Plane 

Operations
TCAM Update

Figure 2: Level of Hermes.

Architecture. Hermes’s architecture, Figure 3 (a), consists of
two key components, Gate Keeper and Rule Manager. Hermes runs
as a software agent on the switch intercepting TCAM related calls
between the SDN switching agent (OpenFlow agent) and the switch
ASIC drivers (Figure 2).
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Figure 3: Architecture of Hermes (Single Table).

The Gate Keeper handles �ow-mod actions and inserts rules
into the shadow or main tables, depending on the rules and the
con�guration of Hermes (dashed red arrows in Figure 3). The Gate
Keeper applies a set of predicates to the rule to determine if Hermes

is con�gured to provide performance guarantees – if Hermes is
con�gured then the shadow table is used else the main table is used.
Additionally, the Gate Keeper maintains a token bucket that is
used to ensure that the controller does not send actions faster than
Hermes has agreed to make guarantees for. When the controller
sends actions faster than the guaranteed rate, Hermes uses the main
table to service the additional commands over the approved rate.

The Rule Manager periodically migrates (or copies) the rules
from shadow table to main table (solid blue arrows in Figure 3).
The goal of the Rule Manager is to ensure that rules are migrated
from the shadow table before the occupancy of the shadow table
exceeds its size and as long as the shadow table does not exceed its
size, Hermes will provide its performance guarantees.

The primary challenges in realizing Hermes are:
E�ciency: TCAM tables are precious and scarce switch re-

sources [18], Hermes must be carefully con�gured to ensure that
the size of the shadow table is optimized to simultaneously provide
performance guarantees while minimizing overheads.

Correctness: To ensure that the shadow and main tables, to-
gether, accurately provide identical functionality as a single logical
table, Hermes must ensure that overlapping rules are inserted in
a manner that respects priorities while preserving correctness. To
this end, Hermes uses an e�cient data structure to detect overlap-
ping rules and selectively rewrite these rules to eliminate overlaps.
Our approach is provably e�cient and correct (Section 4).

Guarantees: Performance guarantees are central to Hermes’s
design. To this end, Hermes must maintain relatively empty shadow
tables. Hermes includes a prediction algorithm that anticipates
workload demands and preemptively migrates rules from the shadow
to the main table — in essence defragmenting the TCAM to com-
partmentalize the rules (Section 5).

Practicality: Our current model is designed for switches with a
single TCAM table. Yet, emerging SDN switches are complex and
contain multiple TCAM tables. To this end, we discuss methods for
extending Hermes and demonstrate the feasibility of implementing
Hermes with commodity devices (Section 6).

Generality: Di�erent generations of TCAMs provide di�erent
performance characteristics and applications require di�erent guar-
antees. Hermes must learn and adjust to such heterogeneity. To
this end, we build on existing vendor interfaces for con�guring
TCAMs [20] and introduce an interface (between the network op-
erator and switch) to allow the operators to express guarantees
and understand the overheads associated with these guarantees
(Section 7).

Operational Work�ow. At a high level (Figure 3 (b)), the net-
work operator interacts with Hermes through the Gate Keeper’s
APIs (§ 7) to con�gure Hermes and request performance guarantees
for control plane actions. Hermes uses these requests to determine
the size of the shadow table and to, in turn, con�gure the switch’s
TCAM.

During normal operations, the control plane interacts directly
with Hermes’s agent which includes the Gate Keeper and Rule
Manager functionality required to insert rules into the shadow
table and migrate (or copy) rules into the main table.
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Figure 4: TCAM Correctness Violation.
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Figure 5: Rule Overlap.

4 CORRECTNESS GUARANTEES
Hermes makes the following correctness guarantee:
The two tables maintained by Hermes will behave in an identical
matter as a single monolithic table.

In this section, we describe our model of TCAM behavior and the
algorithms used by Hermes to ensure correctness. When overlap-
ping rules with di�erent priorities are inserted into a TCAM table,
the TCAM guarantees that the actions associated with the matching
rules with the highest priority are applied to the packet. Consider
the example in Figure 4. Two rules are inserted. The �rst rule, a
higher priority rule, which forwards packets to port 1 (depicted in
dark gray) and the second rule, a lower priority rule, which forwards
packets to port 2 (depicted in light gray). In a monolithic TCAM
table, (Figure 4 (a)), a lookup for a packet destined to "192.168.1.5"
will be forwarded to port 1 because of the higher priority rule.

Correctness Violation During Insertion: In a naive imple-
mentation of Hermes, if the initial higher priority rule is migrated
to the main table and the second, lower priority, rule is subsequently
installed into the shadow table (Figure 4 (b)), then a lookup will
return the wrong action (“forward to port 2”). Recall, Hermes exam-
ines the shadow table �rst and then examines the main table if and
only if a table miss occurs in shadow table. The result of Hermes’s
lookup con�icts with the results from the traditional monolithic
table — this is an obvious correctness violation.

When examining the implications of rule overlap, there are three
conditions of interest which are shown in Figure 5: (a) the main
table contains a larger, higher priority rule that wholly subsumes
the new rule – to ensure correctness, the rule should be ignored
and not inserted into the shadow table 2, (b) the main table contains
a smaller higher priority rule that is subsumed by the new rule –
to ensure correctness, the new rule should be partitioned in such a
way that packets will still use the main table for the old rule, and
(c) the main table contains one or more higher priority rules that
overlap with the new rule in one or more locations – to ensure

2This rule is redundant and would not be matched in monolithic table.

Merge
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 ……
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192.168.1.64/26 Port 2

192.168.1.0/26 Port 2

Insert

192.168.1.0/24 Port 2
Shadow Table Shadow Table

Rule is deleted

Figure 6: Ensuring Correctness after Deletion.

Algorithm 1: PartitionNewRule
input :New rule pre�x rnew , existing main table rule pre�x set E
output :Partitioned new pre�x set N . Mapping set M .

1 O = ϕ, ;
2 for pre�x r ∈ E do
3 if Prio(rnew ) < Prio(r ) & DetectOverlap(n, r ) = True then
4 O ← r
5 for pre�x o ∈ O do
6 Partitioned pre�x set P = EliminateOverlap(rnew , o);
7 Merge(N, P);
8 M ← {rnew , N };

9 return N, M

correctness, the new rule should be recursively partitioned 3. Note,
the example in Figure 4 falls into the category depicted in Figure 5
(b).

Correctness Violation During Deletion: Deleting a rule in
the main table can impact correctness because the partitioned rules
rely on the rules within the main tables to remain correct. For
example, in Figure 6 if the rule in the main table is deleted then the
partitioned rules no longer correct: lookups for 192.168.1.0/26 will
not match any rules in either table.

4.1 Preserving and Enforcing Correctness
To enforce correctness, Hermes runs three algorithms, one during
rule insertion to partition rules, another one during rule deletion to
ensure that deletion does not impact correctness, and a last during
modi�cations.

Rule Insertion: During insertion of a new rule, rnew , Hermes
uses Algorithm 1 to examine and, if needed, partition the rule. Al-
gorithm 1 has three high level steps: (i) detecting overlaps between
the new rule, rnew , and all rules, r ∈ E, in the main table using ACL
optimization functions [59] (Algo 1 line #3); (ii) then eliminating
overlaps by iteratively cutting the new rule, rnew , into a set of
partition rules, P , until no overlaps exist between any rule in P and
any of the rules in the main table (Algo 1 line #6); (iii) �nally, the

3(b) and (c) can be transferred to (a) by iteratively cutting and merging the rules
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partitioned rules in P are merged using an optimal algorithm [59]
to minimize the number of rules inserted into the shadow table .
Algorithm 1 focuses on eliminating overlaps between the new rule
and rules in the main table, however, overlaps between the new
rule and rules in the shadow table are okay because we are insert-
ing the new rule into the shadow table, and the underlying TCAM
hardware correctly disambiguates overlapping rules provided that
they are in the same table.

RuleDeletion:During deletion of a rule, rdelete , Hermes checks
to see if the rule is in the shadow or the main table. For rules in
the shadow table, Hermes checks to see if rdelete was partitioned
by Algorithm 1. If rdelete was partitioned, then Hermes deletes all
partitions; however, if rdelete wasn’t partitioned Hermes deletes
rdelete . 4 If rdelete is in the main table, Hermes deletes rdelete and
checks to see if Algorithm 1 created any partitions in the shadow
table due to overlaps with rdelete . If such partitions exists, Hermes
appropriately “un-partitions” these rules by deleting the partition
rules and adding back the original rule (Figure 6). To do this, Hermes
maintains a mapping between the original rules and the partitioned
rules (set M in Algorithm 1).

RuleModi�cation: During modi�cation, if the priorities do not
change, the modi�cation is applied directly to the intended rule(s).
Else, if priorities are being changed, the modi�cation is converted
into two actions: a delete of the original rule and an insertion of a
rule capturing the “modi�cation”.

4.2 Rule Insertion Optimization
In certain situations, inserting into the main table does not trigger
TCAM reordering or incur signi�cant latencies. Speci�cally, when
the new rule being inserted is the lowest priority rules [43]. In these
situations, the Gate Keeper inserts the rule directly into the main
table. This optimization has the additional bene�t of minimizing
the number of partitions because the rules that are more likely to
be fragmented into a large number of partitions are these lower
priority rules. 5

5 PERFORMANCE GUARANTEES
Hermes provides performance guarantees by periodically migrating
rules from the shadow table to the main table to keep the shadow
table empty. Hermes’s Rule Manager use a predictive algorithm
to proactively infer the growth of the shadow table and trigger
the migration of the rules from the shadow to the Main table. The
design of the Rule Manager must tackle several challenges: (1)
When to migrate rules from the shadow table? (§ 5.1) (2) How
should the rules be migrated to maintain consistency? (§ 5.2) (3)
Which guarantees does Hermes maintain during rule migration?
(§ 5.2) Next, we elaborate on these challenges.

5.1 When to migrate rules?
To provide performance guarantees Hermes must migrate entries
from the shadow table before it exceeds its capacity. This requires

4Either the rule or its partitions can exist but never both.
5For example, the rules that will cause numerous partitions (e.g., 0.0.0.0/0 with the
lowest priority which will overlap with all rules in the main Table), Hermes directly
inserts them into the main Table.

an intelligent technique for capturing and predicting the �ow in-
sertion rates. Given such a technique, Hermes can determine when
shadow tables will exceed their thresholds and subsequently trigger
a migration.

There are broadly three alternatives:
• Application-Driven: Modifying the controller interface and

rewriting the SDN control programs (or SDNApps) to explic-
itly indicate their insertion rates to Hermes [43]. With such
hints, Hermes can trigger migration when the hints indicate an
over�ow of the shadow table. This requires rewriting both the
SDNApps and controller platforms.

• Simple-Threshold: Hermes can prede�ne a threshold and trig-
ger migration only after the shadow table’s capacity exceeds this
threshold.

• Predictive: Hermes can employ a predictive algorithm to esti-
mate the size of the shadow tables and pre-emptively trigger mi-
gration if the predicted size indicates an over�ow of the shadow
table.
Hermes’s current design opts for the predictive approach be-

cause it frees the programmer from the burden of rewriting the
application while simultaneously ensuring that Hermes enforces its
performance guarantees. As we will show in Section 8, the predic-
tive approach is a better �t for Hermes than the Simple-Threshold
because it allows Hermes to dynamically adjust to workload de-
mands without incurring huge overheads.

The prediction algorithm takes as input a time series of rule
arrival rates and creates as output future rule arrival rates. We ex-
plore a number of predictive algorithms ranging from Exponentially
Weighted Moving Average (EWMA) [46] and Cubic Spline [34] to
Autoregressive Moving Average (ARMA) [63].

In our empirical evaluation of these prediction algorithms, we
observed prediction error due to dynamic and drastic changes in
the workloads. We adjust to errors in the prediction algorithm
by augmenting our prediction framework with control theoretic
mechanisms for counteracting prediction errors. Speci�cally, we
focus on the following promising approaches:
• Slack: To compensate for predictive errors, we in�ate the pre-

dicted value by a constant factor, e.g., a slack of 40% (in�ates the
prediction by 40%). Given a predicted value of 1000 rules, a slack
value of 40% would result in a predicted value of 1400.

• Deadzone: Alternatively, we can in�ate the predicted shadow
size by a constant value, e.g., 100 rules. Thus, given a predicted
value of 1000 rules, applying deadzone would result in a predicted
value of 1100.
Through extensive evaluations with large-scale production work-

loads and synthetic traces (Section 8), we found Cubic Spline and
Slack to be the most e�ective.

5.2 How to migrate rules?
The Rule Manager performs migration in four steps (Figure 7).
First, rules from the shadow table and the main table are copied
into the Rule Manager. The Rule Manager, then, optimizes the
migration process using TCAM optimization algorithms [43, 62] —
these algorithms speed up the migration by rewriting the rules to
optimize and minimize the number of rules. This reduction in the
number of rules translates into a reduction in the migration time.
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Third, the Rule Manager writes the optimized rules into the main
table. Finally, the shadow table is emptied.

The migration process is designed to ensure that the Rule Man-
ager maintains the following properties:

Correctness During Migration Consistency: During migra-
tion, Hermes explicitly does two things to maintain consistency in
the switch.

First, the Rule Manager does not empty the shadow (step 4) until
after migration is complete (step 3). This ensures that at any point
in time there is at least one rule to process and service packets.
While there may be two identical rules in both tables: one in the
shadow table and one in the regular table. Fortunately, the default
behavior for Hermes is to stop matching after the packet matches
a rule in the shadow table.

Second, during step 3 when “optimized” rules are inserted into
the main TCAM table, this insertion of rules can lead to correctness
violations. For example, in a naive approach Hermes can delete
the old rules before inserting the optimized rules, this ordering of
events can create violations because the add and delete operations
are not atomic [36, 42]. Without atomicity, a packet may arrive
in the transient period between the deletion and insertion. One
method to provide atomicity is to pause packet processing, stall the
switch pipeline, during migration time; however, this impacts the
data plane by slowing down data plane processing throughput and
potentially adding some jitter in processing latencies.

In view of this, Hermes uses an incremental update algorithm
that provides atomicity at the cost of a few additional rule entries:
(i) for each “optimized” rule r , Hermes gets a list of rules in the
main table,O that oi overlaps with r ; (ii) Hermes, then, changes the
priority of r to be one priority higher than all rules inO ; (iii) Hermes
inserts r into the main table and subsequently deletes oi ∈ O , this
ensures that the rule either matches r or one of the rules in O ;

PerformanceGuarantees underAdversarialWorkloads: Pro-
vided the shadow table is emptied and a rule is never inserted when
the shadow table is full, Hermes will be able to provide performance
guarantees.

A challenge arises when rules are inserted faster than Hermes
can empty out the shadow table. For example, if a batch of rules is
inserted and the batch size is larger than the shadow table, then
Hermes will be unable to provide guarantees for a subset of the
rules. To address this issue, the Gate Keeper includes a rate limiter
which performs admission control. Because the shadow table is
�xed in size and capacity, Hermes provides speci�c performance
guarantees as long as the application’s insertion rate is below a

prede�ned limit – a threshold that gives Hermes su�cient time to
optimize and migrate rules. (Section 7)

The maximum insertion arrival rate of control plane actions, λ,
that Hermes can support is a function of the size of the shadow
table, SST (number of rules the shadow can support) and the speed
with which rules can be migrated out of the shadow table, tm , (rules
per second).

λ =
SST
tm

(1)

Speci�cally, if rules are inserted faster than they can be migrated
out, then the shadow table will become full and the Gate Keeper
will be forced to wait for the shadow to be emptied or forced to use
the main table. Both solutions may lead to performance violations.

To account for the fact that rules in the shadow table may be par-
titioned, equation 1 must be adjusted to included the expected num-
ber of partitions for each rule, rp . Including the expected number
of partitions e�ectively reduces the expected maximum supported
insertion arrival rate (equation 2).

λ =
SST

rp ∗ tm
(2)

6 PRACTICALITY: IMPLEMENTATION
FEASIBILITY

Switch hardware places a number of constraints on the design and
implementation of Hermes. In this section, we discuss the design
choices that enable Hermes to account for the practical constraints
of the current and emerging switch hardware.

We have not implemented Hermes in hardware; however, our
discussions with Broadcom engineerings as well as switch vendors
indicate that Hermes can be implemented in the current line of
switches using interfaces readily available in the Broadcom SDK.
Unfortunately, SDK access is required because existing interfaces to
switches, e.g., OFDPA [7] and OpenNSL [16], do not provide control
over the con�guration of TCAM slices. We are in the process of
acquiring an NDA to implement Hermes on white box switches.

Carving TCAM into Slices: Modern and traditional commer-
cial SDN switches provide mechanisms for partitioning TCAM
tables, called TCAM carving or TCAM slicing [3, 13, 15]. For exam-
ple, Cisco [12, 20] subdivides TCAM into 8 prede�ned slices and
provides operators with con�guration commands for specifying
the number of entries in each slice. The Broadcom SDK maps each
slice to a logical group and allows the switch to assign priorities to
the di�erent groups and to target insertion/deletion/modi�cation
operations to a speci�c group. In these devices, the hardware per-
forms parallel looks across all slices (groups) in a TCAM table with
each slice returning at most one match [2, 12]. The TCAM resolves
con�icts across di�erent slices using pre-con�gured priorities.

Implementing Hermes with Slices: To support Hermes, we
can carve the TCAM into two slices or con�gure two slices de-
pending on the switch. Both slices are con�gured with identical
keys, and the shadow slice is con�gured to be signi�cantly smaller
than the main slice; the size of the shadow slice is a function of the
con�gured performance guarantees.
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Supporting Multiple TCAM Tables: Modern switches sup-
port multiple TCAM tables, while Hermes is designed for a switch
with one table. Hermes addresses this evolution by independently
carving each TCAM table to support a shadow and a main table.
This independent decomposition of the di�erent tables enables Her-
mes to provide di�erent guarantees for di�erent tables: a feature
that may be particularly attractive when the di�erent tables are
used for radically di�erent functionality [44, 61]. To preserve the
semantics of the original pipeline, Hermes con�gures each main
table to exhibit the default “miss” behavior of the original table
– either go to the next table, send the packet to the controller, or
drop the packet. Note, Hermes still con�gures the shadow tables to
use the "goto the next table (main table)" behavior during a TCAM
“miss”.

7 NOVEL ABSTRACTIONS
Hermes exposes a simple interface that allows the controller or
network operator to con�gure performance guarantees at the gran-
ularity of individual switches. The core function, CreateTCAMQoS(),
takes as input the switch id of the switch to be con�gured, the
desired performance guarantees, and a predicate de�ning the set
of rules that should get these guarantees. This function returns the
max burst rate (using Equation 2) that Hermes will support – this
max burst rate is used by the Gate Keeper to perform admission con-
trol (Section 3). This function also returns a �le descriptor that can
be later used to delete (DeleteQoS()) or directly modify the shadow
table (ModQoSCon�g() or ModQoSMatch()). Finally, we include a
method, QoSOverheads(), that aids the operators in systematically
exploring the trade-o�s between performance and TCAM over-
heads. Our design of the interface is informed by the hardware
constraints that impact TCAM recon�guration and slicing.

int CreateTCAMQoS ( SwitchID, perf-guarantee, match-predicate );
boolean DeleteQoS(ShadowID)
boolean ModQoSConfig(ShadowID, perf-guarantee)
boolean ModQoSMatch(ShadowID, match-predicate)
double QoSOverheads(SwitchID, perf-guarantee, match-predicate)

8 EVALUATION
Our evaluation of Hermes is driven by the following questions:
What are the application level bene�ts of using Hermes? (§8.2)
How does Hermes compare with state-of-the-art techniques? (§8.3)
Do traditional control planes, e.g. BGP, bene�ts from employing
Hermes? (§8.4) How e�ective are Hermes’ smart and complex migra-
tion algorithms? (§8.5) How sensitive is the performance of Hermes
to various system parameters? (§8.6) What are the overheads of
employing Hermes? (§8.7)

8.1 Experiment Setup
First, we provide a brief overview of Varys, our network simulator
(§ 8.1.1), the metrics (§ 8.1.2) and workloads (§ 8.1.3) used in our
evaluations.

8.1.1 Network Simulator. We developed a �ow level network
simulator in Python in 1738 lines of code. Here we describe the key
aspects of this simulator.

Switch Performance Model: We modeled control plane action
latency by incorporating existing empirical models of switch TCAM
behavior based. Speci�cally, for each switch on the path of a �ow,

the simulator uses the distributions from recent measurements [38,
57] to determine the insertion latencies. Our current simulator is
designed to model switches whose TCAM behavior (speci�cally
control plane actions) is a function of two factors: (1) the occu-
pancy of the �ow table, i.e., the current number of rules in the
�ow table, and (2) the properties of the rule being inserted and the
rules before it. This TCAM behavior covers all dominant TCAM
designs. Our simulator includes models for three common com-
modity switches [42]: Dell PowerConnect 8132F, HP 5406zl, and
Pica8 P-3290. Our simulator can be easily extended to model other
switches by incorporating the empirical models describing their
TCAM patterns. Unless speci�ed, our experiments are run across
all three switch models.

SDN Application (SDNApp): In our simulation, we evaluated a
proactive tra�c engineering SDNApp [33] that periodically recon-
�gures the network by using control plane actions to move con-
gested �ows away from congested links unto links with available
capacity. This SDNApp is impacted by slow control plane actions
because they extend the period of time that a �ow remains on the
congestion path and thus in�ate the �ow’s completion time and
ultimately the job’s completion time.

8.1.2 Metrics. The evaluation uses three major metrics: rule
installation latency (latency), this metric captures the amount of
time it takes a switch to install a given rule into TCAM. Job com-
pletion time (JCT), a metric, speci�c to big data workloads, that
measures the time between the beginning of the job’s �rst �ow and
the end of the job’s last �ow. Flow completion time (FCT), a metric
which captures the duration between when the �rst packet of a
�ow is sent and when the last packet is received. Finally, the rule
installation time (RIT) which captures the time to install rules in a
switch.

8.1.3 Workloads and Topologies. We evaluated Hermes’s per-
formance using six distinct and representative datasets: Facebook,
Abilene, Geant, BGP-Updates, Synthetic-Traces, and Quest. Below we
describe key properties of these datasets.

Facebook [29]: This workload captures Facebook’s large-scale
Map Reduce deployment consisting of 24402 Map Reduce jobs run
over 1 day on a 600-machine cluster. This cluster uses a large clos-
style data center topology, which we emulate using a K=16 fat
tree[21] with 1024 servers and 40 Gbps link speeds.

Abilene [1, 58]: This dataset includes the topology and tra�c ma-
trix from Internet2, a backbone ISP, from March 1st to September
11th, 2004. The tra�c matrix captures tra�c between the ISP’s
ingress and egress nodes. To simulate this workload, we route
tra�c over the topology using a wide-area tra�c engineering tech-
nique [60]. We generate individual �ows from the coarse-grained
tra�c matrix by assuming �ow inter-arrivals follows a Poisson
process and that �ow sizes are partitioned evenly according to the
total data given in the tra�c matrices.

Synthetic workloads: To further understand the bene�ts of Her-
mes, we generated synthetic tra�c matrices over two represen-
tative ISP topologies from the Internet Zoo archive. Speci�cally,
a European research network (Geant [10]) and the Quest topol-
ogy [19]. The tra�c matrices are generated using the tomo-gravity
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model [65]. The �ows and network routes are generated in a similar
matter to the Abilene model above.

MicroBenchTraces: For microbenchmarks, we generated a stream
of rule insertions in a systematic manner, varying the following
three dimensions to understand the performance of Hermes: the
arrival rate (to understand the impact of bursts), overlap rate (to
understand the impact of partitioning), and priorities (to under-
stand the impact of TCAM moving/rearrangement). The overlap
rate is de�ned as the number of rules currently in the main and
shadow tables that the new rule overlaps with. A new rule with
100% overlap rate means that it overlaps with all existing rules (e.g.,
with wildcard *). For these traces, we simulated a simple topology
with just one switch to help us focus on the interactions between
these dimensions, switch TCAM behavior, and Hermes.

BGPTrace: To understand the impact of Hermes on traditional
networks and to evaluate realistic expectations of our partitioning
algorithm. We evaluate BGP updates collected by BGPStream [5]
from four representative high tra�c routers: Equinix in Chicago,
TELXATL in Atlanta, NWAX in Portland, and the University of
Oregon. We preprocessed the BGPStream data by converting the
BGP updates into Forwarding Information Base (FIB) rules that get
inserted into TCAM. This preprocessing exposes only the FIB rules
and not the RIB rules because many RIB updates do not percolate
down to the FIB and it is the FIB rules that are installed into the
TCAM.

8.2 Performance Bene�ts of Hermes
We begin by exploring the low-level performance bene�ts of Her-
mes and then analyzing how these low-level bene�ts impact higher
layer application metrics. In these experiments, we focus on the
following four workloads: Geant, Facebook, Abilene, Quest but only
present results from the two representative workloads: Facebook
and Geant.
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Figure 8: Rule Installation Time.

Rule Level Bene�ts of Hermes: We begin, in Figure 8, by an-
alyzing the rule installation latencies (RITs) for Hermes relative
to traditional switches. In Figure 8, we observe that Hermes im-
proves the median rule installation time by 86%, 94% and 80% across
all switches. Moreover, we observe minor variations in the RIT
provided by Hermes. These minor variations exist because while
Hermes provides an upper bound on performance, Hermes may,
in fact, perform better than this upper bound and thus installation
time may be lower than expected.

ApplicationLevel Bene�ts ofHermes:Next, we explore higher-
level metrics that are predictive of end-user and application per-
ceived performance. Speci�cally, we explore the �ow completion
time (FCT) and the job completion time (JCT).

At a glance, we observe that as we move to higher layer met-
rics, the bene�ts of Hermes are less pronounced but pronounced
nonetheless. At the FCT level (in Figure 9), we observe that with
the Facebook trace Hermes improves the median �ow completion
time by up to 48%, 80% and 43% over the 8132F, the P-3290, and the
5406zl switches respectively, Moreover, we observe that at the JCT
level (in Figure 1), Hermes improves the median by up to 38%, 42%
and 31% respectively.

The application layer bene�ts (FCT and JCT) of Hermes are
lower than RIT level bene�ts because the application layer perfor-
mance is a function of many factors and resources in addition to
the network. Speci�cally, the JCT is a function of rule installation
times, �ow transfer times and compute times whereas the FCT is
a function of rule installation times and �ow transfer times. To
illustrate the importance of Hermes even for such application layer
metrics, in Figure 9(b), we focus on short �ows which allows us
to analyze the impact of Hermes on �ows where the impact of
�ow transfer times and computation times are minimal. From this
�gure, we observe that Hermes provides signi�cant bene�ts with a
95-percentile improvement of around 80%, which is similar to the
RIT level improvements.

8.3 Bene�ts of Hermes over Related Works
Next, we compare Hermes against the most closely related and
impressive approaches, Tango [43] and ESPRES [51], for improving
the latency of TCAM insertion times. Unlike Hermes which makes
fundamental changes to the TCAM’s behavior, Tango, and ESPRES
improve performance by changing the ordering and structure of
the rules being inserted.

We present our results in Figure 10. Our experiments show that
all three approaches signi�cantly improve the rule installation time
over a traditional switch. However, from (Figure 10), we observe
that the performance of Tango and ESPRES varies wildly when
compared with Hermes. Additionally, Hermes signi�cantly outper-
forms Tango and ESPRES by more than 50% in the median case,
a bene�t of fundamentally changing the behavior of the TCAM.
Tango performs similarly to ESPRES and outperforms ESPRES at the
tail because while ESPRES changes rule ordering, Tango changes
both rule ordering and rewrites the rules – this additional degree
of freedom helps at the tail.

To illustrate the rationale behind Hermes’s performance, in Fig-
ure 11 we present a time series demonstrating the rule installation
times for the �rst 1000 rules in our experiment.

An initial observation is that across all algorithms, the insertion
times grow slowly as more rules are added because rule shifting
is performed to maintain correctness. However, after around rule
#200, we start to notice key di�erences between the algorithms. At
this point, the bene�ts of Hermes become apparent.

Figure 11(a), shows that initially Tango and ESPRES behave in
a similar manner but then diverge shortly after rule #500 with
ESPRES’ performance growing worst over time. Further analysis
shows, that Tango and ESPRES initially perform similarly because
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Figure 9: Flow Completion Time.
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Figure 11: Time Series of Rule Installation Time.

they are initially employing the same optimization: reordering
rules. However, over time Tango also starts to take advance of
properties of IP allocation and symmetry in the data center to
aggregate and reduce the rules being inserted. By employing this
additional optimization, Tango is able to outperform ESPRES. The
key distinction between the behavior of Tango and ESPRES on
Facebook compared with the Geant trace is due to the fundamental
di�erences in the structure and IP allocation of data centers and
ISP networks (e.g. Geant).

On the contrary, Hermes can always provide guarantees in both
situations, this property arises because Hermes makes fundamental
changes at the hardware level rather than changing the rules being
inserted into the hardware.

8.4 Traditional Networks and Hermes
Here, we evaluate the e�ectiveness of Hermes (with a 5ms guar-
antee) within a traditional router running BGP and processing the
BGP-updates discussed in Section 8.1. These experiments enable us
to explore the sensitivity of Hermes’s core algorithms to the change

in workload from SDN to BGP. Due to space constraints, we omit
the �gures and summarize the results of these experiments. We
observe that the algorithms behave similarly with BGP as they did
with the SDNApp — with Cubic+Slack providing the best perfor-
mance and with Hermes requiring high slack in�ation (over 80%) to
ensure that there are no performance violations. Similarly, we com-
pare the performance of Hermes in terms of rule installations times
and observe that the bene�ts of employing Hermes are signi�cant
and nontrivial.

8.5 Bene�ts of Smart Migration Techniques
Next, we evaluate the broader impact of having smart migration al-
gorithms by comparing Hermes against a version of Hermes with a
very simple migration algorithm that uses a threshold to determine
migration. This simple version of Hermes is called Hermes-SIMPLE.
The insertion rate is set to 1000 updates/s, and the overlap rate is
100%. In Figure 12, we examine the performance and overheads
of Hermes-SIMPLE under varying threshold values. We observe
in Figure 12 (a) that Hermes-SIMPLE has no violations when the
threshold is 0% meaning that migration is constantly happening
in the background. In Figure 12 (b), we compared Hermes-SIMPLE
with regular Hermes, for a fair comparison, the slack value used
in Hermes is set to 100% since it is the minimal value for zero vi-
olation. We observe that the end result of constantly migrating
is that Hermes-SIMPLE incurs double the overheads of Hermes.
Essentially, the smart algorithms introduced into Hermes provide
strong guarantees at a lower cost (migration overheads) than a
naive approach.
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8.6 Sensitivity Analysis
In this section, we analyze the sensitivity of Hermes to our smart
migration techniques (prediction and correction algorithms) and
the parameters for these techniques and algorithms.

Sensitivity to Prediction Algorithms: For this analysis, we
used the MicroBench Traces with the simpli�ed topology. We evalu-
ate Hermes over the various predictive (EWMA, Cubic Spline, and
ARMA) and corrective (Slack, Deadzone) algorithms presented in
Section 5.1.

We observed that Cubic Spline provided the lowest prediction
error, especially when combined with Slack. We observed that
the combination of Cubic Spline and Slack reduced rule installa-
tion time by 80% – 94% over existing alternatives (EWMA+Slack,
EWMA+Deadzone, Cubic Spline+Deadzone).
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Figure 13: Rule Insertion Latency.

Sensitivity to Parameters: Next, we dig deeper to understand
how our choice of parameters impacts the performance of Hermes.
In Figure 13, we present the result of analyzing the impact of dif-
ferent slack values on Hermes across two distinctly di�erent rule
update rates (200 (a) and 1000 (b)) on a Dell 8132F switch. 6

The higher update rate (Figure 13 (b)) creates more partitions and,
in turn, requires a more aggressive slack value. Whereas for lower
update rates (Figure 13 (a)), the slack does not impact Hermes’s
ability to make guarantees but it does help Hermes provide better
performance.

A slack of 100% is required to appropriately tackle the high
insertion rates (1000 �ows per second) and for lower insertion rates
(200 �ows per second) less drastic slack values are required. This
experiment demonstrates the need to empirically adjust Hermes
to the properties of the network. As part of future work, we will
explore learning techniques to enable Hermes to automatically tune
itself.

Motivated by the above results, Hermes is by default con�gured
to Cubic Spline with a slack in�ation of 100% unless otherwise
speci�ed.

8.7 Overhead
Next, we analyze the overheads of employing Hermes on the switch’s
ASIC, CPU, and memory.

ASIC Storage: The overheads of employing Hermes are directly
proportional to the performance guarantees required and the size of
6We note that these experiments were conducted across all three switches and the
results were qualitatively similar.

the shadow table required to satisfy these guarantees. In Figure 14,
we present the overheads for di�erent performance guarantees. The
�gure demonstrates that while the overheads vary across switches,
the overheads are small and acceptable.
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CPU and Memory: Running Hermes’s insertion and migration
algorithms requires CPU/Memory resources and introduces addi-
tional latencies. Next, in Figure 15, we present the results of running
our algorithms on a physical switch (Edge-Core AS5712). In these
experiments, we varied the arrival rates of the rules inserted and mi-
grated between 100 and 20000 rules per second. For the experiment,
we used the BGPTrace data with the simple topology. The results
show that the CPU and memory utilization grows linearly with the
number of rules being processed by the algorithm demonstrating
the scalability of Hermes core algorithms. We further expect these
overheads to be reduced once the algorithms are implemented in
more e�ective and e�ective languages, e.g., C.

AlgorithmRuntimes: We conclude by evaluating the runtimes
of Hermes’s algorithms. In Figure 15 (b), we observe that runtimes
for the insertion algorithms are relatively constant and grow slowly
over time. This is extremely bene�cial as large runtimes would
directly impact Hermes’s ability to make guarantees. Unlike the
insertion algorithm, we observe that the migration algorithm have
a cubic growth pattern. Fortunately, the migration happens within
the background and doesn’t impact Hermes’s ability to enforce
guarantees. Moreover, recall from Section 8.6 that Hermes explicitly
includes an algorithm to ensure these migration overheads do not
impact performance guarantees.
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8.8 Takeaway
To summarize, Hermes signi�cantly improves the performance
of the network and the applications running atop the network.
The applications which require frequent modi�cations will yield
signi�cantly more bene�ts with Hermes. This is only natural as
Hermes is only involved when the network is being recon�gured
with TCAM control plane actions.

9 RELATEDWORK
Modeling Switch Performance: Prior works [32, 37, 43, 55] have
conducted empirical studies on the factors that impact control plane
action latency. These studies motivate our work and inspire the
design of Hermes.

Improving TCAM Performance: Traditionally, work [31, 53,
66] to improve TCAM performance has focused on improving
TCAM lookup latencies. In this paper, we attack an orthogonal
problem, TCAM modi�cations, which has recently become equally
important because of the increased frequency of TCAM modi�ca-
tions demanded by SDN control applications.

The most closely related work, ShadowSwitch [26], introduces
a software-based table to control TCAM insertion times whereas
Hermes uses a hardware-based table. The use of a hardware-based
table enables Hermes to explore an alternate point in the design
space with a distinctly di�erent set of prediction and migration
algorithms and system design.

To improve TCAM performance, existing approaches either re-
order rules [41, 43, 45, 52] or change the TCAM insertion algo-
rithms [62]. Even though these approaches reduce control plane
action latency, they do not provide any guarantees or assurances.
Hermes addresses exactly this: Hermes provides performance guar-
antees over control plane action latencies. Additionally, our evalu-
ations (§ 8) show that Hermes outperforms state-of-the-art tech-
niques [43, 51] under a variety of workloads.

TCAM Management: While Hermes divides a logical TCAM
into two physical TCAM tables to provide performance guarantees,
others have looked into similar partitioning to provide orthogonal
properties, such as consistent updates [36]. While Hermes focuses
on improving TCAM performance others [49] have explored meth-
ods for improving switch DRAM performance by using SRAM as a
cache.

Log-Structured File Systems: Hermes is in principle similar
to log-structured work in the �le system community, most notably
the log-structured �le system (LSFS) [54] and Log-structured merge
tree [50], which improves the performance of disk IO operations by
writing to faster but smaller disk media and periodically moving
the data to larger but slower media once the data gets too large.
Due to the fundamental di�erences between disks and networks,
the design of Hermes’s insertion and the merge algorithms which
leverage unique properties of the network.

10 DISCUSSION
Other Control Plane Actions: Hermes’s current design focuses
on a subset of SDN control plane actions, namely, rule insertion,
modi�cation, and deletion. As part of ongoing work, we are extend-
ing Hermes to make performance guarantees over other control
plane actions by using a combination of techniques ranging from

o�oading switch’s CPU functionality to developing resource allo-
cation algorithms that rate-limit di�erent events.

Emerging Programmable Data Planes (P4): Our current pro-
totype and design are based on properties of modern merchant
silicon and ASICs. Yet, Hermes should be applicable to the emerg-
ing generation of programmable data planes, e.g., P4 and RMT
chips [27]. We believe that the core design of Hermes is applicable
to these emerging hardware platforms because these platforms use
TCAM-based �ow tables for their �exible matching and while they
may use di�erent TCAM hardware components, Hermes addresses
a property of TCAM that is invariant to underlying hardware com-
ponents. Moreover, we believe that P4 will enable the adoption
of Hermes because P4 provides direct control over the hardware
which will enable the development and deployment of Hermes
without requiring access to proprietary SDKs.

11 CONCLUSION
SDN control programs, e.g. tra�c engineering and service chaining,
require frequent modi�cation of a switch’s TCAM using control
plane actions. Moreover, many of these SDN control programs
require their actions to be completed in a timely manner. Unfortu-
nately, modern SDN switches do not provide concrete performance
guarantees for control plane actions – instead, the switches provide
a best-e�ort service. To support many emerging applications and
scenarios, we must redesign switch software and algorithms to
explicitly support frequent control plane actions.

In this paper, we propose Hermes, a practical and immediately
applicable system which provides strict performance guarantees
for control plane actions by intelligently partitioning and managing
TCAM �ow tables. Hermes provides performance guarantees by
trading-o� a modest amount of TCAM space for enhanced TCAM
performance. Speci�cally, Hermes keeps the occupancy of a small
number of �ow tables �xed to below a threshold to enable bounded
insertion times. We evaluated Hermes using large-scale simulations,
our evaluations show that with less than 5% overheads, Hermes pro-
vides 5 ms insertion guarantees that translates into an improvement
of application level metrics by up to 80%.
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packet processing for OpenFlow. In Proceedings of ACM HotSDN 2013.

[53] V. Ravikumar and R. N. Mahapatra. 2004. TCAM architecture for IP lookup using
pre�x properties. IEEE Micro 24, 2 (2004), 60–69.

[54] M. Rosenblum and J. K. Ousterhout. 1992. The design and implementation of a
log-structured �le system. ACM Transactions on Computer Systems (TOCS) 10, 1
(1992), 26–52.

[55] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. OFLOPS: An open
framework for OpenFlow switch evaluation. In Proceedings of PAM 2012.

[56] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking. Packet transactions: High-level
programming for line-rate switches. In Proceedings of ACM SIGCOMM 2016.

[57] D. Tai, H. Dai, T. Zhang, and B. Liu. On Data Plane Latency and Pseudo-TCP
Congestion in Software-De�ned Networking. In Proceedings of ACM/IEEE ANCS
2016.

[58] P. Tune and M. Roughan. 2013. Internet tra�c matrices: A primer. Recent
Advances in Networking 1 (2013), 1–56.

[59] B. Vamanan, G. Voskuilen, and T. Vijaykumar. E�Cuts: optimizing packet
classi�cation for memory and throughput. In Proceedings of ACM SIGCOMM
2010.

[60] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet. MPLS under the microscope:
Revealing actual transit path diversity. In Proceedings of ACM IMC 2015.

[61] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen. Umon: Flexible and �ne
grained tra�c monitoring in open vswitch. In Proceedings of ACM CoNEXT 2015.

[62] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and C. Hu. RuleTris:
Minimizing Rule Update Latency for TCAM-based SDN Switches. In Proceedings
of IEEE ICDCS 2016.

[63] P. Whitle. 1951. Hypothesis testing in time series analysis. Vol. 4. Almqvist &
Wiksells.

[64] M. Yu, L. Jose, and R. Miao. Software De�ned Tra�c Measurement with OpenS-
ketch.. In Proceedings of USENIX NSDI 2013.

[65] Y. Zhang, M. Roughan, N. Du�eld, and A. Greenberg. Fast accurate compu-
tation of large-scale IP tra�c matrices from link loads. In Proceedings of ACM
SIGMETRICS 2003.

[66] K. Zheng, C. Hu, H. Lu, and B. Liu. 2006. A TCAM-based distributed parallel IP
lookup scheme and performance analysis. IEEE/ACM Transactions on Networking
(TON) 14, 4 (2006), 863–875.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/use-cases/Migration-WG-Use-Cases.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/use-cases/Migration-WG-Use-Cases.pdf
http://goo.gl/wXC0KY
http://noviflow.com/products/noviswitch/
http://opencompute.org/
http://goo.gl/pCF6Hf
https://github.com/Broadcom-Switch/OpenNSL
http://goo.gl/9NN44P
http://www.pica8.com/pica8-deep-dive/sdn-system-performance/
http://www.pica8.com/pica8-deep-dive/sdn-system-performance/
http://goo.gl/k1W4Wg
http://goo.gl/nLziyq

	Abstract
	1 Introduction
	2 Motivation
	2.1 TCAM Background and Measurements
	2.2 Impact of Control Plane Action Latency on SDNs
	2.3 Impact of Control Plane Actions Latency on BGP
	2.4 Future of SDN Hardware

	3 Architecture
	4 Correctness Guarantees
	4.1 Preserving and Enforcing Correctness
	4.2 Rule Insertion Optimization

	5 Performance Guarantees
	5.1 When to migrate rules?
	5.2 How to migrate rules?

	6 Practicality: Implementation Feasibility
	7 Novel Abstractions
	8 Evaluation
	8.1 Experiment Setup
	8.2 Performance Benefits of Hermes
	8.3 Benefits of Hermes over Related Works
	8.4 Traditional Networks and Hermes
	8.5 Benefits of Smart Migration Techniques
	8.6 Sensitivity Analysis
	8.7 Overhead
	8.8 Takeaway

	9 Related Work
	10 Discussion
	11 Conclusion
	References

