
A Call To Arms for Tackling the Unexpected
Implications of SDN Controller Enhancements.

Theophilus Benson
Duke University

ABSTRACT
The last few years have seen a massive and organic transfor-
mation of the Software Defined Networking ecosystem with
the development of enhancements, e.g., Statesman, ESPRES,
PANE, and Athens, to provide better composability, better
utilization of TCAM, consistent network updates, or conges-
tion free updates. The end-result of this organic evolution
is a disconnect between the SDN applications and the data-
plane. A disconnect which can impact an SDN application’s
performance or correctness.

In this paper, we present the first systematic study of the
interactions between enhancements and SDN applications
– we show that an application’s performance can be signifi-
cantly impacted by these enhancements: with the efficiency
of a traffic engineering App reduced by 24.8%. Motivated by
these insights, we argue for a redesign of the SDN controller
centered around mitigating and reducing the impact of these
enhancements. We demonstrate through an initial prototype
and with experiments that our abstractions require minimal
changes and can restore an SDN application’s performance
and efficiency.

CCS CONCEPTS
•Networks→Programmable networks;Networkman-
agement;

KEYWORDS
Software-defined Networking, Composition, Compilers
ACM Reference format:
Theophilus Benson. 2017. A Call To Arms for Tackling the Unex-
pected Implications of SDN Controller Enhancements.. In Proceed-
ings of APNet’17, Hong Kong, China, August 03-04, 2017, 7 pages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APNet’17, August 03-04, 2017, Hong Kong, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5244-4/17/08. . . $15.00
https://doi.org/10.1145/3106989.3107006

https://doi.org/10.1145/3106989.3107006

1 INTRODUCTION
“More computing sins are committed in the name of efficiency

(without necessarily achieving it) .”
—W.A. Wulf.

Software-defined Networking (SDN) aims to transform
and simplify network management by exposing higher level
APIs. With SDN, operators no longer configure networks
through low-level commands but using higher level abstrac-
tions provided by SDN Applications (Apps). The push to
deploy SDNs has exposed several underlying issues in the
design of modern controllers, e.g., the controller’s inability
to perform congestion-free network updates [15].

Amultitude of optimizations, whichwe call enhancements,
have been developed to address these deficiencies and pro-
vide better composition of OpenFlow rules, better utilization
of TCAM, consistent network updates, congestion free up-
dates, etc. A representative list of these enhancements is
provided in Table 1. Most enhancements are hidden from
the controllers and Apps. They transparently intercept SDN
control messages and perform optimizations before applying
the messages to the switches.

The end result of this organic evolution of the SDN ecosys-
tem is a disconnect between the App’s view of the network
and the actual network state: a disconnect between the con-
trol messages (forwarding rules) generated by an App and
the forwarding rules stored in the data-plane which can
impact an App’s performance by as much as 24.8% (§ 3).

Interestingly, we observe that these enhancements are in-
nocuously re-introducing complexity into the network by
creating intricate dependencies and layers of indirections. In

Class of enhancement Example Description

Conflict-Resolvers [5, 27] Enforces resource allocation
to different App

TCAM-Optimizers [10, 16, 26, 30] Minimizes switch memory
(TCAM) utilization

Consistent updates [15, 22, 25] Updates network paths in
a consistent manner

Invariant Checkers [12, 13] Checks to see if a network
invariant holds, e.g., no cycles

App Composition [3, 18, 20] Combines rules
from different Apps

Fault Tolerance Paths [24] Automatically creates backup
paths to overcome link failure

Table 1: Taxonomy of enhancements.

https://doi.org/10.1145/3106989.3107006
https://doi.org/10.1145/3106989.3107006

APNet’17, August 03-04, 2017, Hong Kong, China Theophilus Benson

fact, the indirection between the Apps and the data-plane is
reminiscent of the indirection between the routing tables of
traditional networking protocol and the hardware forward-
ing tables. Unfortunately, despite the growing presence and
importance of these enhancements, there are few system-
atic (or holistic) studies of the implication of introducing
enhancements.
Current work on SDN composition [3, 20] focuses on

safely combining multiple Apps and tackling the complexity
arising from sharing network resources. Instead, we focus on
the enhancements applied to the resulting composed rules.
For example, Pyretic [20] includes two composition opera-
tors for combining Apps’ rules, the resulting combined rules
are then optimized using enhancements, e.g., consistent up-
date enhancements [15, 22, 25]. In this work, we focus on
these enhancements.

In this paper, we take the first step towards understanding
the impact of these enhancements on the SDN ecosystems
and propose primitives and a framework, called Mozart, to
help mitigate and stem this rising complexity. We borrow in-
sights from the compiler community and their toolchains for
orchestrating compiler optimizations. We propose a novel
but simple interface that standardizes the interactions be-
tween the Apps, the controller, and the enhancements thus
enabling us to systematically reason about the impact of en-
hancements. To mitigate the implications of enhancements
on App, we propose a set of SDN-Flags, akin to compiler
flags, that lets Apps specify the class of transformation that
impact efficiency.

In summary, we make the following contributions:
• Systematic Study of Complexity:We present a sys-
tematic study of the implications of applying realistic
enhancements to realistic Apps and show that anApp’s
performance can be reduced by as much as 24.8% (§ 3).
• SDNAbstractions:Wedescribe a set of interfaces and
abstractions for mitigating and reducing the impact of
these enhancements on Apps (§ 4).
• Implementation & Evaluation: We build a work-
ing prototype implementation of Mozart on Flood-
light [23] and demonstrate the benefits of our primi-
tives (§ 5).

2 MOTIVATION
In this section, we describe the fundamental structure of an
App and present several of the simplifying assumptions that
Apps make about the networks.

2.1 The Case for Enhancements
SDN Apps encapsulate control-plane functionality (network
policies) and are designed to be event driven. They interact
with the data-plane by generating SDN control messages,

1 while true do

/* Get Network Input */

2 foreach device in Network do
3 Counters .Append (device .GetStatist ics ())
4 end

/* Control Function */

5 Rules = BinPackinдHeur ist ic (Counters)

/* Send Output to Network */

6 foreach device in Network do
7 device .installRules (Rules)
8 end

9 Sleep100msecs
10 end

Algorithm 1: Pseudocode for Hedera [2].

e.g., OpenFlow messages (forwarding rules). We illustrate
the need for enhancements by examining a canonical data
center traffic engineering App, Hedera [2], and analyzing its
interactions with the network. Hedera, Algorithm 1, aims
to improve data center performance by detecting elephant
flows (large flows) and load balancing them on distinct paths.
Hedera does this in three steps: (1) monitoring the network
and collecting statistics; (2) detecting elephant flows and
calculating new paths to ensure that load is balanced; and,
(3) configuring new paths into the network with OpenFlow
control messages.

In applying these control messages to the network, Apps,
including Hedera, make the following assumptions about
the network:

Infinite Hardware Resources: Apps assume an infinite
amount of device memory (TCAM); However, TCAM space
is limited in existing switches. Most can support 1K rules.
The design choice of abstracting out hardware details and
limitations is a common system design principles (e.g., OS
provide Virtual Memory). However, unlike an operating
system which provides adequate abstractions to support
this, an SDN controller does not provide adequate abstrac-
tions. Thus to overcome this limitation, a class of enhance-
ments [10, 16, 26, 30], TCAM-Optimizers, have been devel-
oped to provide the illusion of infinite memory.
Impact on Apps: These enhancements create optimized-
rules that more efficiently utilize switch TCAM by merg-
ing, moving or splitting the rules generated by the App: es-
sentially transforming an OpenFlow-message into Coarser
Granularity or Finer Granularity messages. Unfortunately,
certain Apps install rules of a certain granularity under the
assumption that these rules can be used to collect the flow’s
metadata at the pre-specified granularity. The implication
of coarser granularity rules is that metadata can only be
collected at that coarser granularity. For Hedera, a direct
implication is that the control function may be unable to
load-balance at a finer-granularity thus impacting Hedera’s
effectiveness (We empirically quantify this in Section 3).

A Call To Arms for Tackling ... SDN Controller Enhancements APNet’17, August 03-04, 2017, Hong Kong, China

Unmodified Actions: Apps assume that the network re-
ceives and faithfully enforces the actions associated with the
rules it installs.
Impact on Apps: In addition to modifying an OpenFlow-
rule’s match by making it coarser or finer, enhancements
may also change the OpenFlow-rule’s actions. In general,
enhancements may transform an action in one of the fol-
lowing ways: (1) changing the network path by altering the
interface associated with the action, (2) changing the reacha-
bility by changing the action, (3) changing QoS disciplines
by changing the queues associated with the action. For Hed-
era, a direct implication of a path change (detour) is that the
large flows, explicitly being load balanced, may be placed
on identical links resulting in congestion. This path change
may counter Hedera’s control logic.
These enhancements are often bundled as a part of the

controller and in a few cases deployed as a proxy service
between the controller and the data-plane. In both situations,
the enhancement and the transformations that they perform
are hidden from the Apps.

3 UNDERSTANDING ENHANCEMENTS
We now present empirical data to quantify the impact of
enhancements on Apps: we focus on the App discussed in § 2
(Hedera) and analyze the reduction in aggregate bandwidth
(efficiency) which allows us to understand the immediate
danger of using enhancements.

Experiment Setup: We conduct our study in Mininet
emulator using a k=4 Fat-Tree topology [1]. Note, while
our initial study focuses on a small topology, we expect
similar results under larger topologies. We investigate the
App and enhancements under both realistic [4] and synthetic
workloads (described in [1]). We performed our tests on a
2.80GHz quad-core Intel Xeon PC with 16GB of memory
running Ubuntu 14.04.

Enhancements:We studied two different and represen-
tative enhancements:

• TCAMOptimizer: an enhancement that aims to maxi-
mize TCAM utilization by minimizing the number of
TCAM entries used (modeled after [16, 26]).
• ConflictResolver: a canonical conflict resolving and re-
source management enhancement (modeled after [27]).

3.1 Implications of Enhancements
In our study, we compare the aggregate network bandwidth
under the following scenarios: None, no traffic engineering
(provides uswith a lower bound on performance);Hedera, the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
O
N
E

H
edera

TC
AM

O
ptim

izer

C
onflictR

esolver

ALL

 0

 25

 50

 75

 100

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
G

b
p
s
)

T
o
ta

l
n
u
m

b
e
r

o
f
T

C
A

M
 e

n
tr

y
 u

s
a
g
e

Bandwidth usage TCAM usage

Figure 1: Aggregated Bandwidth and TCAM usage.
traffic-engineering App is used with no enhancements (pro-
vides us with an upper-bound on performance); TCAMOpti-
mizer, Hedera is run with the TCAMOptimizer; ConflictRe-
solver, Hedera is run with the ConflictResolver; ALL, Hedera
is run with both enhancements.

App Efficiency: In Figure 1, we compare the aggregate
network bandwidth against the number of TCAM entries
used by Hedera. Recall, the goal of the App is to maximize
network bandwidth utilization while that of the TCAMOp-
timizer is to minimize TCAM usage. We observe that ap-
plying the TCAMOptimizer reduces TCAM usage by 57.5%
but at the cost of performance (24.8% reduction in aggregate
bandwidth). This reduction in bandwidth occurs because
TCAMOptimizer substitutes fine-grained rules for coarse-
grained rules which prevents Hedera from identifying ele-
phant flows. Similarly, we observe a decrease in aggregate
bandwidth when ConflictResolver is used because Hedera’s
reaction latency increases thus prolonging periods of con-
gestion and reducing bandwidth for congested flows.

4 RETHINKING CONTROLLER
ARCHITECTURES

The last two sections highlight several interesting problems:
first, modern controllers lack appropriate primitives to sup-
port Apps and second, ad hoc integration of enhancements,
which provide these missing primitives, results in unex-
pected consequences. Existing design choices for addressing
these problems fall into three categories.
First, introducing new abstractions that empower Apps

and enhancements to detect and react to each other (e.g.,
Athens [3]). This approach is prone to oscillations and con-
vergence issues [3]. Furthermore, it unnecessarily burdens
App developers to write code for detection and resolution.
Second, developing new controllers that allow Apps and en-
hancements to directly specify their internal constraints and
objectives; the controller then solves an optimization prob-
lem to automatically arrive at an optimal solution [6]. This

APNet’17, August 03-04, 2017, Hong Kong, China Theophilus Benson

Dimension of Type of Example
Transformation Transformation enhancement

Match Fields Merges rules [16, 26]
Splits/duplicates Rule [25]

Action List Adds actions None
Reorder actions None
deletes actions None

Spatial Changes destination switch [10, 30]
(location) rule is installed on
Temporal Re-orders rules [22]
(ordering) Delays rules [5, 27]

NULL Deletes SDN Message None

Table 2: List of potential transformations.

approach requires App developers to agree on a common
meta-objective on which the controller can optimize and to
transform their internal objectives into this meta-objective.
Finally, enabling developers to write monolithic Apps that
include enhancements, e.g., Niagara [9], which combines
TE with TCAM optimizations; unfortunately, this does not
scale and increases the barrier for developing new Apps or
enhancements. These three alternatives place unnecessary
burdens onApp developers, countering one of themotivating
factors behind SDN: the ease of developing custom Apps.

Instead, we take inspiration from the compiler community
and argue that SDN controllers, enhancements, and Apps
should be redesigned to mirror the interactions between
compilers, compiler optimizations, and the developer. Specif-
ically, the compiler subsumes and controls all optimizers
and uses a set of compiler flags to determine the set of opti-
mizations to perform and how to perform them. The flags
are, in turn, controlled by the developer. For example, a de-
veloper can specify “-01” to turn off all optimizations and
improve compilation speed or “-fno-elide-constructors” to
turn off a particular optimization. Similarly, the controller
should subsume and control, rather than be disjoint from,
the enhancements and the controller should leverage SDN-
Flags specified by the Apps to determine how to apply the
enhancements to the Apps.
Our compiler-inspired approach explores a point in the

spectrum of available design choices, alternatively we could
raise the level of abstraction, by introducing a higher level
language [20, 24, 28] for programming Apps– this interface
shifts the burden from the developer to the runtime which
automatically infers the set of transformations that are al-
lowable. Motivated by our desire to integrate into currently
deployed controllers, e.g., Floodlight, ONOS and OpenDay-
light, we choose the latter approach of enriching the current
abstractions and applying a paradigm intimately familiar
with today’s developers – compiler optimizations.

4.1 Compilers for SDNs
At a high level, a traditional compiler takes in source code
and transforms it into an intermediate representation (a more
general instruction set). In this intermediate form, code is

public in te r face Mozart {
C l a s s T r a n s a c t i o n s {

HashMap <SDNMessage , SDNHints > Bundle ;
A r r a yL i s t <SDNHints > G loba l ;

}

public void Apply (Ar r ayL i s t < T r an s a c t i on s >) ;
}

Figure 2: Interface exposed to Apps by Mozart.

grouped into blocks, and a DAG is created capturing the
control flow between blocks. The compiler applies a set of
local and global optimizations (transformations) to the result-
ing DAG. The local optimizations focus on a block, whereas
global optimizations operate across blocks.
Next, we show how we map concepts within the SDN

ecosystem into the traditional compiler scenarios. We fo-
cus on the individual control messages that make up the
SDN assembly code, a novel abstraction for capturing logical
blocks of messages, a method of inferring control flow (and
dependencies) between blocks, and a novel set of SDN-Flags.

SDN Instruction Set: An SDN controller configures the
network using a set of low-level control messages. These
are akin to low-level assembly code: enhancements trans-
form properties and components of these control messages,
e.g., local enhancements transform message by changing
the match or action attributes, and global enhancements
transform messages by changing their temporal ordering or
spatial location in the network.

Transactional Policy: Unlike a compiler which trans-
lates high level source to low level assemble, the controller
accepts low level commands from Apps and directly installs
them into the network. enhancements, instead, work on
groups or sets of commands.

To efficiently support enhancements, we define a uniform
abstraction on which all enhancements can operate. To do
this, we select the lowest common denominator: a network
path. We define transactional policies: T = {tx,y ,tz,y ...t }. A
transactional policy, tx,y = {m1,m2,m3}, is akin to a “code
block” and is a group of SDN instructions required to config-
ure a network policy between two hosts x and y (or groups
of hosts). 1 Given this definition, an enhancement is a func-
tion, F , that transforms one transactional policy, tx,y , into
an “optimized” transaction policy t ′x,y : t ′x,y = F (tx,y)

SDN Compiler Flags (SDN-Flags): Central to Mozart’s
design is a set of SDN-Flags that allows Mozart to under-
stand and mitigate conflicts between Apps and enhance-
ments. These SDN-Flags parallel traditional compiler flags.
Recall, compiler flags enable the compiler to reason about
how to apply optimizations. We expand on SDN-Flags in
§ 4.2

Transactional Dependencies & Intermediate Repre-
sentation: This paper does not explicitly tackle conflicts

1This path level abstractions echoes recent efforts in SDNs to build
optimization-based and monitoring-focused frameworks using paths

A Call To Arms for Tackling ... SDN Controller Enhancements APNet’17, August 03-04, 2017, Hong Kong, China

Figure 3: Re-Designed SDN Controller.

between enhancements or verification of enhancements. In-
stead, we present a high-level description of ongoing efforts
to do this. Conflict detection and verification requires an in-
termediate representation that abstracts syntactic details and
a notion of dependencies that formalizes conflicts. To this
end, we are working on extending existing work [12, 17] to
infer dependencies and extract intermediate representations
(header spaces). Coupled with dependencies, the intermedi-
ate representation will enable us to reason about conflicts
between enhancements and verify policies.

4.2 Modeling Optimization Flags
SDN-Flags, like compiler flags, are designed to allow devel-
opers (and consequently the Apps) to limit the class of trans-
formations, rather than enhancements, that can be applied to
her App. This indirection frees the SDN App developer from
having to understand the space of all possible enhancements
that may be run in any network.
In modeling SDN-Flags, we aim to support a large vari-

ety of operational networks. Thus, we study the OpenFlow
specification to understand, independent of any specific en-
hancements, the space of possible transformations that can
be performed. In Table 2, we present an exhaustive list of
these transformations and a representative list of enhance-
ments that employ them (when available). Transformations
can be classified along four dimensions: modifications to the
rule’s match field (e.g., merging, duplicating, or splitting a
rule’s match fields); modifications to the rule’s action list
(e.g., changing ports); modifications to the rule’s temporal
property (e.g., reordering or delaying rules); and, modifica-
tions to the rule’s spatial properties (e.g., changing the switch
that a rule is installed in).

Controlling enhancements with SDN-Flags:Next, we
discuss two SDN-Flags that Apps can use to control trans-
formations that violate correctness or efficiency. Specifically,
the transformations in discussed in § 2:
Input-Output dependence {IO}: This SDN-Flag specifies that
the App’s inputs are a function of the rules installed in the
network (the Apps’ output). This SDN-Flag allows the con-
troller to ensure correctness of the Apps by circumventing

public in te r face Ex t en s i on s {
public ArrayL i s t < T r an s a c t i on s > p r o c e s s _ t r a n s a c t i o n
(Ar r ayL i s t < T r an s a c t i on s >) ;
public void i n i t () ;
public void c on f i g u r e (HashTable < S t r i ng , S t r i ng >) ;

}

Figure 4: Interface for enhancements.

enhancements whose transformations lead to coarser granu-
larity rules.
Push-Flag {PF}: This SDN-Flag allows the controller to di-
rectly perform the App’s proposed changes into the network
while simultaneously applying the enhancements to these
actions. When the enhancement returns the optimized (trans-
formed) rules, the controller replaces the App rules with the
optimized version.

4.3 Mozart
In Figure 3, we present Mozart a redesign of the modern con-
troller architecture that applies the compiler-optimization
philosophy to SDN enhancements. Mozart exposes a novel
interface to the Apps which enables Apps to bundle SDN
commands into transactional policies (§ 4.1) and annotate the
transactions with SDN-Flags (§ 4.2). The controller includes
an orchestrator, similar to a compiler toolchain, that orches-
trates enhancements, applies them to Apps, and ensures that
SDN-Flags are respected. In Mozart, enhancements are in-
tegrated into the controller as isolated modules within the
orchestrator: communication is through function calls or
RPCs.

Interfaces: Mozart defines well-specified interfaces for
Apps to interact with the controller and for smoothly inte-
grating the enhancements into the Orchestrator.
The App interface, Figure 2, includes the API call that

Mozart exposes to all Apps: Apply(). Using Apply(), an
App can specify a Transaction, bundle of SDN messages,
to apply to the network rather than individual messages.
Furthermore, Apps may annotate these transactions with
SDN-Flags— either one SDN-Flag for the entire transaction
or a separate SDN-Flag for each message in the transaction.

The enhancement-interface, Figure 4, enables the orches-
trator to manage enhancements and promotes interoperabil-
ity between enhancements. To this end, the interface spec-
ifies a set of functions that each enhancement must imple-
ment. When the orchestrator initializes a new enhancement,
due to a new DAG or modifications to an existing DAG, it
calls the enhancement’s init() function. As network operators
modify the controller’s configurations and alter an enhance-
ment, the orchestrator calls configure() to reconfigure the
enhancement. When an App calls Apply(), the orchestrator
accepts the transaction and passes it through the set of en-
hancements listed in the DAG: the process_transaction()
is called for each enhancement– the output of one

APNet’17, August 03-04, 2017, Hong Kong, China Theophilus Benson

process_transaction() is used as input for the next
process_transaction().

Orchestrator: Runs within the controller and accepts an
operator defined configuration: A linear DAG of enhance-
ments to apply to a specific App. The Orchestrator accepts
a transaction from an App, through the Apply() API call,
determines the DAG for the App, and propages the transac-
tion through the enhancements in the DAG. The output of
the final enhancement (in the DAG) is fed to the Checker
which compares the transformed transactions against the
original transactions to ensure that the transformations are
valid with respect to the pre-specified SDN-Flags.

At a high level, the Checker verifies that no violating trans-
formations as defined by the SDN-Flags specified through
Apply() are applied to the transaction. For example, when
the {IO} SDN-Flag is specified, the Checker verifies that
“merge rule” transformations are not applied – if they are ap-
plied, the Checker reverts the transaction back to its original
state. When, the {PF} SDN-Flag is specified, the Orchestrator
monitors the chain of enhancements and if the set of enhance-
ment takes longer than δ to process the transaction, then
the Orchestrator directly applies the original transaction to
the network and subsequently updates the network with the
optimized (transformed) transaction after the enhancements
are done.

Using Mozart: In Mozart, the network operator specifies
a linear DAG of enhancements to be applied to each App—
the orchestrator uses this DAG to determine orchestration.
The operator also specifies a list of enhancements that can
not be avoided, e.g., a security enhancement should have prior-
ity over SDN-Flags specified by any App. The developer, writes
Apps to leverage Mozart’s interface and employs SDN-Flags
when necessary.

5 PROTOTYPE AND EVALUATION
We developed a prototype implementation of Mozart includ-
ing our interfaces and the orchestrator. Our prototype is built
atop the Floodlight controller in 1326 Lines of Code (LoC).
We changed Hedera to use SDN-Flags: {IO} for OpenFlow
rules to edge switches and {PF} for all rules. We changed
the TCAMOptimizer and the ConflictResolver to provide the
functionality discussed in § 4.3.

Preliminary Results. We observe that applying Mozart
improves bandwidth to within 98% of optimal: thus, improv-
ing Hedera’s performance. Recall, the goal of the App is
to maximize network bandwidth utilization while that of
the TCAMOptimizer is to minimize TCAM usage. Although
Mozart drastically improves Hedera’s performance, we ob-
serve that Mozart reduces the efficiency of the TCAMOpti-
mizer – the TCAMOptimizer only achieves a TCAM savings

of 18.2% (instead of 57%). This trade-off between the effective-
ness of the TCAMOptimization and the App’s performance
occurs because Mozart improves performance by limiting co-
alescing on OpenFlow rules. As part of future work, we will
explore methods for systematically exploring these trade-
offs.

6 RELATEDWORKS
The most closely related works on SDN composition [5, 8, 18,
20] focuses on providing enhancements that promote princi-
pled composition of Apps with different objectives [5, 18, 20]
or Apps running on different controllers [8]. Our work rep-
resents a fundamental departure from existing work in the
composition space, rather than focusing on the Apps, we con-
centrate on the enhancements. Thus allowing us to introduce
a similar level of rigor and understanding to enhancement-
composition as we currently have for App-composition.

Orthogonal approaches at employing compiler techniques
to SDN focus on enabling controllers to compile policies
down to different south-bound APIs [14]; to effectively sup-
port network updates [29]; to compile monitoring specific
functionality [21]; or, to efficiently compile high-level poli-
cies into rules [19]. These approaches are orthogonal, in
that, they do not explicitly tackle enhancements or explore
parallels between SDN and compiler optimizations.

Our abstractions represent a natural extension of Operat-
ing System hints [7, 11] to SDN’s Network Operating System
(controller).

7 CONCLUSION
This paper sheds light on the interactions between enhance-
ments and Apps and, in doing so, highlights several troubling
implications. Motivated by these implications, we argue for
the design of a more powerful interface between the Apps,
the SDN controller, and the enhancements– this interface
allows for a systematic and principled inclusion of enhance-
ments into the SDN ecosystem. Our design and prototype
implementation of Mozart is the first step towards a holis-
tic controller architecture capable of supporting enhance-
ments in a manner that does not compromise the simplicity
promised by SDNs (or the performance, and efficiency of the
Apps). We believe this idea of a holistic controller architec-
ture capable of integrating and composing enhancements
presents a rich field of future research and grow in impor-
tance as SDN deployments continue to grow.

8 ACKNOWLEDGMENTS
We thank Eric Keller, Hyojoon Kim, and the anonymous
reviewers for their invaluable comments.We also thank Chen
Liang for his help with the prototype. This work is supported
by NSF grant CNS-1409426.

A Call To Arms for Tackling ... SDN Controller Enhancements APNet’17, August 03-04, 2017, Hong Kong, China

REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. In SIGCOMM, 2008.
[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.

Hedera: Dynamic Flow Scheduling for Data Center Networks. In NSDI,
2010.

[3] A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner, C. Liang,
and J. C. Mogul. Democratic Resolution of Resource Conflicts Between
SDN Control Programs. In CoNext, 2014.

[4] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In IMC, 2010.

[5] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi.
Participatory Networking: An API for Application Control of SDNs.
In SIGCOMM, 2013.

[6] V. Heorhiadi, M. K. Reiter, and V. Sekar. Simplifying Software-Defined
Network Optimization Using SOL. In NSDI, 2016.

[7] B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble, and
D. Watson. Intentional Networking: Opportunistic Exploitation of
Mobile Network Diversity. In MobiCom, 2010.

[8] X. Jin, J. Gossels, J. Rexford, and D. Walker. CoVisor: A Compositional
Hypervisor for Software-defined Networks. In NSDI, 2015.

[9] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford. Efficient
Traffic Splitting on Commodity Switches. In CoNEXT, 2015.

[10] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "One Big
Switch" Abstraction in Software-defined Networks. In CoNEXT, 2013.

[11] T. Karagiannis, R. Mortier, and A. Rowstron. Network Exception
Handlers: Host-network Control in Enterprise Networks. In SIGCOMM,
2008.

[12] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real Time Network Policy Checking Using Header Space
Analysis. In NSDI, 2013.

[13] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
Verifying Network-wide Invariants in Real Time. In NSDI, 2013.

[14] H. Li, C. Hu, P. Zhang, and L. Xie. Poster: Modular SDN Compiler
Design with Intermediate Representation. In SIGCOMM, 2016.

[15] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz. zUp-
date: Updating Data Center Networks with Zero Loss. In SIGCOMM,

2013.
[16] S. Luo, H. Yu, and L. Li. Practical Flow Table Aggregation in SDN.

Comput. Netw., 92(P1):72–88, Dec. 2015.
[17] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. T. Vechev.

SDNRacer: detecting concurrency violations in software-defined net-
works. In SOSR, 2015.

[18] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J. Mudigonda,
P. Sharma, and Y. Turner. Corybantic: Towards the Modular Composi-
tion of SDN Control Programs. In HotNets, 2013.

[19] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A Compiler and
Run-time System for Network Programming Languages. In POPL,
2012.

[20] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing
Software-defined Networks. In NSDI, 2013.

[21] S. Narayana, M. T. Arashloo, J. Rexford, and D. Walker. Compiling
Path Queries. In NSDI, 2016.

[22] P. Perešíni, M. Kuzniar, M. Canini, and D. Kostić. ESPRES: Easy Sched-
uling and Prioritization for SDN. In ONS, 2014.

[23] Project Floodlight. http://www.projectfloodlight.org/.
[24] M. Reitblatt, M. Canini, A. Guha, and N. Foster. FatTire: Declarative

Fault Tolerance for Software-defined Networks. In HotSDN, 2013.
[25] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Ab-

stractions for Network Update. In SIGCOMM, 2012.
[26] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. L. Pacheco, J. Moulierac,

and G. Urvoy-Keller. Too Many SDN Rules? Compress Them with
MINNIE. In GLOBECOM, 2015.

[27] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin. A
Network-state Management Service. In SIGCOMM, 2014.

[28] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple: Simpli-
fying SDN Programming Using Algorithmic Policies. In SIGCOMM,
2013.

[29] X. Wen, C. Diao, X. Zhao, Y. Chen, L. E. Li, B. Yang, and K. Bu. Com-
piling Minimum Incremental Update for Modular SDN Languages. In
HotSDN, 2014.

[30] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based
networking with DIFANE. In SIGCOMM, 2010.

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Case for Enhancements

	3 Understanding ENHANCEMENTS
	3.1 Implications of Enhancements

	4 Rethinking Controller Architectures
	4.1 Compilers for SDNs
	4.2 Modeling Optimization Flags
	4.3 Mozart

	5 Prototype and Evaluation
	6 Related Works
	7 Conclusion
	8 Acknowledgments
	References

