Object-Oriented Programming in Java

MISM/MSIT 95-712-C

Homework 2

There are 4 exercises in this homework, each 25 points.

For this homework assignment and for all the upcoming homework assignments, follow the commenting and coding convention discussed in the class, unless otherwise specified explicitly. Make sure you follow the minimal class description guideline for all the classes you introduce, except for the test driver classes that contain the main function.

Name your files as specified in each of the exercises below. Put all your java and the compiled class files into a zip file named Homework2.zip and submit it via the Drop Box on the blackboard before the beginning of the class on September 29, 2004. Also, print all your java files with your name and bring them to me at the beginning of the class on September 29, 2004.

1. Write a Java program to experiment String and StringBuffer classes. See their documentation at http://java.sun.com/j2se/1.4.2/docs/api/index.html. Have a class named Homework2_1 with a main function. The main function should expect exactly two command-line arguments. If the number of command-line arguments is not two, the main function should return immediately. Otherwise, it should print out the command-line arguments and continue as follows:

· Create two String objects, say s1 and s2, initializing them with the first and the second command-line arguments. Experiment and print out the results of the following: s1.length(), s1.charAt(i) for all i for String s1, s1.equals(s2), s1.equalsIgnoreCase(s2), s1.compareTo(s2), s1.regionMatches(int toffset, s2, int offset, int len) for some offset and len, s1.regionMatches(boolean ignoreCase, int toffset, s2, int offset, int len) for some offset and len, s1.indexOf(c, i) for some c and i, s1.concat(s2), s1.replace(c1, c2), s1.upperCase(), s1.lowerCase().

· Create two StringBuffer objects, say sbuf1 and sbuf2, initializing them with the first and the second command-line arguments. Experiment and print out the results of the following: sbuf1.length(), sbuf1.delete(int start, int end), sbuf1.deleteCharAt(int index), sbuf1.reverse() methods. Invoke sbuf1.replace() with proper arguments. Call the sbuf1.append().append() methods in a chain of method calls by passing primitive data types and sbuf2 as the parameters. Additionally, introduce a new class named MyClass in the same file but outside of StringTest class. MyClass should define nothing but the toString method that returns “This is my object”. Invoke sbuf1.append() with an object of MyClass. Invoke sbuf1.insert() method just like you did with the append().

2. Define a Student class with instance variables name, id, midterm1, midterm2 and final. Name is a string whereas others are all integers`. Also, add a static variable nextId, which is an integer and statically initialized to 1. Have some overloaded constructors. In each of them, the id should be assigned to the next available id given by nextId. The default constructor should set the name of the student object to “StudentX” where X is the next id. Add a calculateGrade() method which returns a string for the letter grade of the student, like “A”, “B”, “C”, “D” or “F”, based on the overall score. Overall score should be calculated as (30% of midterm1 + 30% of midterm2 + 40% of final). The letter grade should be calculated the same way as in the homework 1 exercises.

Your test class, to be named as Homework2_2, should create 25 student objects with default constructor and invoke the setter methods for midterm1, midterm2 and final with random numbers ranging from 50 to 100 inclusive. After that, it should print the student information via the toString() method. Student information provided by toString() should include name, midterm1, midterm2, final and the letter grade given by the calculateGrade() method.

3. Define a class named ComplexNumber in order to abstract the complex numbers. Complex numbers have a real and an imaginary part, both of which to be represented by double type in your class definition. Define add and subtract methods which both take an object of type ComplexNumber and return the this reference after performing the addition or subtraction. Also, define static add and subtract functions that take two ComplexNumber objects and return a new object. Additionally define the equals method, not to mention the toString() method. Define at least three constructors; a default one, one taking two double parameters for the real and the imaginary parts, another one taking an object of ComplexNumber class as parameter. Have a Homework2_3 class to test each of the methods of the ComplexNumber class and print out the results.

4. Consider the UML conceptual model shown in Figure 1. Write class definitions for each of the concepts.

[image: image1.wmf]+getCost() : int

-upc : String

-quantity : int

-price : int

OrderItem

+addOrderItem() : Boolean

+getTotal() : int

+printOrderItems()

Order

+canAfford() : Boolean

+spendAmount()

-amount : int

Account

1

*

-uses

*

1

Figure 1 Conceptual Model for Exercise 4

Account class has an integer instance variable, amount, to represent the available fund. The canAfford() method takes an integer parameter being a cost of an order item and returns if there is enough fund in the account to afford that. The spendAmount() method takes also an integer parameter being a cost of an order item and deducts the amount by that cost.

Order class uses an object of Account class. It should have a list of OrderItem objects. The addOrderItem() method takes an object of OrderItem as the parameter. It calls the account object to check if there is enough fund to cover the cost of the order item. If so, it invokes the spendAmount() on the account object, stores the order item in a list and returns true. Otherwise, it returns false. The getTotal() method returns the total cost of all order items in the order. The printOrderItems() method prints information about each order item via the toString() method of the OrderItem class.

OrderItem class has a String upc, an integer quantity and an integer price. The getCost() method returns the multiplication of its quantity and price.

Make sure you follow the minimal class definition guidelines for each of these classes as well as the commenting and coding conventions.

Introduce a Homework2_4 class as a test driver. It should execute as follows:

i. Create an Account object with a random amount between 100 to 200 inclusive.

ii. Create an Order object and pass to it the account reference.

iii. Prompt the user to enter the UPC code for the item or “done” to quit. Read the user input. You can do this with JOptionPane as before.

· While the user enter a UPC (anything other than “done”), prompt for and read the quantity. You may assume the user enters a valid input, that is, an integer.

· Generate a random number from 50 to 100 for the price.

· Create an OrderItem object with UPC, quantity and price.

· Invoke the addOrderItem() method on the order reference with the order item just created. If it returns false, it means there is not enough fund in the account, so break the loop.

· Continue the loop until either user enters “done” or account can no longer afford a new order item.

iv. Print out all the order items and the total cost.

_1156847881.vsd

