95713 Lecture Notes

1. GUI Programming with Swing, continued

Reference:

· Chapter 9 of Core Java

· Chapter 14 of Thinking in Java

· Online Java Tutorial at http://java.sun.com/docs/books/tutorial/uiswing/index.html

2.1. Dialog Boxes

Reference: Chapter 9 of Core Java, Chapter 14 of Thinking in Java.

A Dialog is a top-level window with a title and a border that is typically used to take some form of input from the user.

Swing distinguishes between two types of dialog boxes:

· Modal: It doesn't allow the user to select other windows of the application until it disappears.

· Modeless: It allows the user to select other windows of the application.

See Figure 9-34 for class hierarchy.

See OptionDialogTest.java to experiment with options.

See DataExchangeTest.java for exchanging data in and out of a dialog box.

See FileChooserTest.java to experiment with JFileChooser.

2.2. JTree Component

See http://java.sun.com/docs/books/tutorial/uiswing/components/tree.html
2.3. JTable Component

See http://java.sun.com/docs/books/tutorial/uiswing/components/table.html

2.4. JEditorPane Component

See http://java.sun.com/docs/books/tutorial/uiswing/components/text.html
2.5. JTabbedPane Component

See http://java.sun.com/docs/books/tutorial/uiswing/components/tabbedpane.html

2.6. CardLayout Layout Manager

See http://java.sun.com/docs/books/tutorial/uiswing/layout/card.html

2. Applets

Reference: Chapter 10 of Core Java, Chapter 15 of Thinking in Java.

2.7. Applet Basics

See the presentation slides on applets.

See the Applet class hierarchy in Figure 10-1.

See NotHelloWorldApplet.java and the NotHelloWorldApplet.html.

See CalculatorApplet.java and the CalculatorApplet.html.

2.8. Applet Security

Applets cannot do some operations due to security restrictions:

· Applets cannot start executable programs.

· Applets can only phone home.

· Applets cannot read from or write to the local file system.

· Applets cannot read environment variables except few.

· Applet windows carry a warning message.

Security restrictions can be bypassed by signing the applets. Signed applets can run as freely as any other application. We will not study it in this course.

As a reference, see the online Java tutorial on this topic: http://java.sun.com/docs/books/tutorial/jar/sign/intro.html
2.9. Applet Specific Features

Interactions with the browser

Browsers may pass information to the applets. Applets may ask the browser to fetch a multimedia file, to show a message on the status line, or to show a different page.

· Passing Information to Applet

This is done via the param tag of the html file like <param name=”font” value=”Helvetica”/>. The applet code can read this parameter via the getParameter(“font”). getParameter() returns a String.

· Communicating with the browser

showStatus(String) shows a message on the status line of the browser.

Applet may ask the browser to display a URL. This happens through the AppletContext interface.

getAppletContext().showDocument(URL url)

getAppletContext().showDocument(URL url, String target)

See Bookmark.java and Bookmark.html
Multimedia

Applets can easily access the image and audio files from their codebase.

Image cat = getImage(getDocumentBase(), “images/cat.gif”);

AudioClip meow = getAudioClip(getDocumentBase(), “audio/meow.au”);

Play(getDocumentBase(), “audio/meow.au”);

2.10. Writing Programs as both an Applet and an Application

You can write your program to run as an applet and as an application. Here are some specifics:

· Applets don’t execute a main method. They execute init() and start().

· Applets don’t have a main frame window. However, you can open up dialog boxes and other windows/frames.

· The size of applets is given by the html file. Don’t call the setSize(), the setTitle(), the setDefaultCloseOperation(), and the show() methods on applets.

· Applets may get parameters from the browser. Applications may get parameters from the command line.

· Applets may use the browser. Applications don’t have browsers.

You can do the following for simple programs:

public class MyApplet extends JApplet {
 // variable declaration for MyApplet like
 private JButton b; // etc.
 public static void main(String[] args) {

JFrame f = new JFrame();

f.setTitle("Main Frame");

f.setSize(300, 400);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

MyApplet a = new MyApplet();

a.init();

f.getContentPane().add(a);

f.show();
 }
 public void init () {

b = new JButton(“Applet Button”); // create the instances.

add(b);
}

 // other methods.
}

For applets that utilize the browser functionality, you need to provide empty implementation for AppletStub and AppletContext interfaces.

See AppletApplication files.

2.11. Jar Files

Jar format is a better choice than the zip format for packaging Java programs. Applet class files and all the resources (like multimedia files, resource files) can be archived in a jar file. This way, the applets will load much faster.

Have <applet code=”YourApplet.class” archive=”AllYourFiles.jar” width=”100” height=”100”> in your html file.

Use “jar cvf” to create jar file

Use “jar xvf” to extract jar file

You can create a self-running jar archive by including a manifest file. Use “jar cfm”.

Let us see how to do these in eclipse.

2.12. Java Web Start

We will not go over it in this course. See p532 of Core Java

3. Java IO

Reference: Chapter 12 of Core Java, Chapter 12 of Thinking in Java

See the presentation slides on IO.
3.1. Reading From and Writing to URLs

Reading from a URL is easy in Java.

See http://java.sun.com/docs/books/tutorial/networking/urls/readingURL.html about how to read from a URL.

To be able to write to URLs, you need to open a connection.

See http://java.sun.com/docs/books/tutorial/networking/urls/readingWriting.html about how to read from and write to URL connections.

3.2. Random Access Files

With RandomAccessFile class, you can access the file anywhere. Usually, you store fixed size records and use the seek() method to point to a specific record. After that, you can read or write that record.

See RandomFileTest.java
3.3. Object Serialization, Versioning, Persistence

We will not study these in this class. See Chapter 12 of Core Java.

