95713 Lecture Notes

1. Interfaces

Reference: Chapter 6 of Core Java, Chapter of Thinking in Java.

2.1. What are Interfaces?

Interfaces define the set of requirements for classes that want to conform to them. Interfaces don’t have instance fields and methods. All the methods in interfaces are public. Classes implement interfaces by:

· By declaring the class will implement the interface with the implements keyword,

· By supplying the definitions for all methods in the interface.

See EmployeeSortTest.java
2.2. Properties of Interfaces

· You cannot instantiate objects out of interfaces, but you can declare object references.

· You can use instanceof operator to verify if an object implements an interface.

· You can build hierarchy of interfaces.

· You can have constants in interfaces. Variables declared inside interfaces are by default public, final and static.

· Classes may implement multiple interfaces. This allows the classes to inherit from multiple types. An object of such a class is additionally considered to be of types of all the interfaces the class implements.

2.3. Interfaces vs. Abstract Classes

· Abstract classes may have instance fields and methods. Interfaces cannot.

· A class can inherit from only one class but may implement multiple interfaces. Abstract classes exist at the top of inheritance hierarchies as the super classes. Interfaces may be implemented at any level in an inheritance hierarchy.

2.4. Interfaces and Callbacks

In the callback design pattern, you specify the action that should be executed when a particular event occurs and register the action with the source of the event. When the event occurs, actions registered for that event are executed.

See TimerTest.java
2. Inner Classes

Reference: Chapter 6 of Core Java.

An inner class is a class defined inside another class.

2.5. Why Inner Classes

· Objects of inner classes can access members of the class defining it.

· Inner classes may be private.

· Inner classes provide a good abstraction for callback objects and thus are convenient in event driven programming.

· Local inner classes may be defined inside methods making them completely confined inside the method.

See InnerClassTest.java
2.6. Local Inner Classes

Inner classes can be defined inside methods locally. The inner class is only visible within the method definition. The local inner class object can access the final variables defined within the method before the inner class definition in addition to the instance members of the class. Most local inner classes are anonymous.

2.7. Anonymous Inner Classes

If you want to create a single object of a local inner class, you can define the class anonymous, that is, without giving a class name.

Anonymous classes can be defined with a super class constructor or an interface constructor. Super class constructor may take parameters. Interface constructor shall not take any parameter.

See AnonymousInnerClassTest.java
2.8. Static Inner Classes

Objects of the inner classes we have seen above all have a reference to the outer class object. You can define a static inner class just to hide an inner class inside another but not to get instance members of the outer class object.

See StaticInnerClassTest.java
3. Object Cloning

Reference: Chapter 6 of Core Java.

See CloneTest.java
4. Class Design and Coding Principles

Reference: Appendix B of Thinking in Java and slides from Sanjaya Choudhury, Marconi.

Below find some principles. As we get closer to the end of the semester, we will be adding some new items.

· Follow the OOA&D methodology – not yet in this course.

· Learn and Use Design Patterns – see Thinking in Patterns (with Java) at www.BruceEckel.com. Understand the principles that make design patterns work. This way, even if cannot find a design pattern for the problem, you can adopt one.

· Class should provide an abstraction for a single thing. If it is a functional class, it should have one responsibility. Each class should have a cohesive set of services it offers. In a good design, each object does one thing well, but doesn’t try to do too much. This is referred to as High Cohesion.
· Divide the responsibility into multiple classes. What other object does this class use to provide its services? Example - use the model-view design pattern.

· If there are still multiple responsibilities, use separate interfaces. Instead of loading the class with all the methods the clients require, create separate interfaces for each client and implement them. If there are many methods inside a class, try to group them and move them into separate interfaces.

· You module, which consists of several classes, should be open to extension but should be closed to modification. This way, class could satisfy today’s requirements and could be able to adapt to tomorrow’s requirements: Use interfaces and polymorphism. This is a mechanism that helps the client code to be closed for modification and the class hierarchy to be extended with new classes.

· High-level modules should depend of abstract classes or interfaces (better) rather than the concrete classes, e.g. a game controller.

· The interfaces and the implementation should be separated. Clients know and depend only on the interfaces. Use abstract class and more frequently the interface mechanism.

· Separation Principle: Separate business logic from UI, interfaces from implementation, business logic from exception handling.

· Favor composition over inheritance if just the code reuse is aimed. When deciding between inheritance and composition, ask if you need to upcast to the base type. If not, prefer composition to inheritance. When using composition, make sure the references to the objects that your object is composed of are valid, either create them with proper parameters in your object, or obtain the valid object references before using them.

· Use inheritance to model the is-a relation and use it if all inherited methods make sense in the derived class.

· Use fields for variation in value, and method overriding for variation in behavior. That is, if you find a class that uses state variables along with methods that switch behavior based on those variables, you should probably redesign it to express the differences in behavior within subclasses and overridden methods.

· Watch for overloading. A method should not conditionally execute code based on the value of an argument. In this case, you should create two or more overloaded methods instead.

· Use exception hierarchies—preferably derived from specific appropriate classes in the standard Java exception hierarchy. This makes your program robust.
· Don’t use OOP just like you do procedural programming. Watch out for “giant object syndrome.”

· Hidden Implementation: Provide encapsulation, thus facilitate changing the internal implementation while keeping the same interface.
· Use private methods as helpers, or for dividing the functionality into steps, or for repeated functionality within a class.

· Make classes as atomic as possible. Give each class a single, clear purpose—a cohesive service that it provides to other classes. If your classes or your system design grows too complicated, break complex classes into simpler ones. The most obvious indicator of this is sheer size; if a class is big, chances are it’s doing too much and should be broken up.
Clues to suggest redesign of a class are:
1) A complicated switch statement: consider using polymorphism.
2) A large number of methods that cover broadly different types of operations: consider using several classes.
3) A large number of member variables that concern broadly different characteristics: consider using several classes.

· Watch for long argument lists. Method calls then become difficult to write, read, and maintain. Instead, try to move the method to a class where it is (more) appropriate, and/or pass objects in as arguments.
· Watch for switch statements or chained if-else clauses. This is typically an indicator of type-check coding, which means that you are choosing what code to execute based on some kind of type information (the exact type may not be obvious at first). You can usually replace this kind of code with inheritance and polymorphism; a polymorphic method call will perform the type checking for you and allow for more reliable and easier extensibility.
· Follow a “canonical form” when creating a class for general-purpose use. Include definitions for equals(), hashCode(), toString(), clone() (implement Cloneable, or choose some other object copying approach, like serialization), and implement Comparable and Serializable.

· Have getter/setter methods when needed. Keep in mind that not all fields should have getter and setter methods. Use your compiler/editor tool for generate them.

· Place common fields and methods in the super classes where appropriate.

· Follow your company coding convention.
· Use the javadoc comment-documentation syntax to produce your ogram documentation in compliance with your company coding convention. However, the comments should add geniune meaning to the code; comments that only reiterate what the code is clearly expressing are annoying.

· Use automation tools for generating code, comments and unit testing.
· Don’t overuse of final methods for efficiency purposes. Use final only when the program is running, but not fast enough, and your profiler has shown you that a method invocation is the bottleneck.
· Anytime you notice classes that appear to have high coupling with each other, consider the coding and maintenance improvements you might get by using inner classes.
· Don’t fall prey to premature optimization. This way lies madness. In particular, don’t worry about writing (or avoiding) native methods, making some methods final, or tweaking code to be efficient when you are first constructing the system. Your primary goal should be to prove the design. Even if the design requires a certain efficiency, first make it work, then make it fast
· Use the containers in the standard Java library.

· For a program to be robust, each component must be robust. Use all the tools provided by Java—access control, exceptions, type checking, synchronization, and so on—in each class you create. That way you can safely move to the next level of abstraction when building your system.

· Watch for long method definitions. Methods should be brief, functional units that describe and implement a discrete part of a class interface. A method that is long and complicated is difficult and expensive to maintain, and is probably trying to do too much all by itself. If you see such a method, it indicates that, at the least, it should be broken up into multiple methods. It may also suggest the creation of a new class. Small methods will also foster reuse within your class. (Sometimes methods must be large, but they should still do just one thing.)

· Keep things as “private as possible.” Once you publicize an aspect of your library (a method, a class, a field), you can never take it out. If you do, you’ll wreck somebody’s existing code, forcing them to rewrite and redesign. If you publicize only what you must, you can change everything else with impunity, and since designs tend to evolve, this is an important freedom. In this way, implementation changes will have minimal impact on derived classes. Privacy is especially important when dealing with multithreading—only private fields can be protected against un-synchronized use.

· Don’t forget to initialize data. Don’t rely on default initialization, but explictly initialize the variables. For object references, you don’t need to worry about deleting the objects in Java, but, make sure you create the objects appropriately before using them.

· Classes with package access should still have private fields, but it usually makes sense to give the methods of package access rather than making them public.

· Avoid using “magic numbers”—which are numbers hard-wired into code. These are a nightmare if you need to change them, since you never know if “100” means “the array size” or “something else entirely.” Instead, create a constant with a descriptive name and use the constant identifier throughout your program. This makes the program easier to understand and much easier to maintain.

· Inside constructors, do only what is necessary to set the object into the proper state. Actively avoid calling other methods (except for final methods), because those methods can be overridden by someone else to produce unexpected results during construction. Smaller, simpler constructors are less likely to throw exceptions or cause problems.

· When creating constructors, consider exceptions.

· When you are creating a fixed-size container of objects, transfer them to an array, especially if you’re returning this container from a method. This way you get the benefit of the array’s compile-time type checking, and the recipient of the array might not need to cast the objects in the array in order to use them. Note that the base-class of the containers library, java.util.Collection, has two toArray() methods to accomplish this.

· Choose interfaces over abstract classes. If you know something is going to be a base class, your first choice should be to make it an interface, and only if you’re forced to have method definitions or member variables should you change it to an abstract class. An interface talks about what the client wants to do, while a class tends to focus on (or allow) implementation details

· Watch out for accidental overloading. If you attempt to override a base-class method and you don’t quite get the spelling right, you’ll end up adding a new method rather than overriding an existing method. However, this is perfectly legal, so you won’t get any error message from the compiler or run-time system; your code simply won’t work correctly.

· Don’t overuse reflection. Avoid calling Class.newInstance() where possible.
· Package Design Principles: Classes that change together, should belong together. Classes that aren’t used together should not be grouped together. Dependencies among packages should not form cycles.

