Intermediate Java

MISM/MSIT 95-713
Homework 3

Due: Wednesday, September 28, 2005, start of class

There are 2 exercises in this homework, both are 50 points.

Follow the commenting and coding convention, and the minimal class description guideline as discussed in the lectures for all the classes you introduce. You may ignore the guidelines for the test driver classes that contain the main function.

Name your files as specified in each of the exercises below. Generate the Java documentation by running the javadoc utility over all the classes including the ones in the packages. Put all your java, compiled class files and documentation files into a zip file named Homework3.zip and submit it via the Drop Box on the blackboard before the beginning of the class on the due date. Also, print all your .java files with your name and bring them to me at the beginning of the class on the due date. Don’t print nor bring the documentation files.

The skeleton files and executables for both exercises are available in the homework3 directory of http://www.andrew.cmu.edu/user/syucel/95713/homework_solutions webpage.
1. Consider the UML conceptual model Figure 1. You will write class definitions for each of the concepts. Note that this UML conceptual model is a superset of the one in exercise 4 of homework 2. You may use your existing classes or the sample solution provided by the instructor for classes that remain the same in this exercise.

[image: image1.wmf]+printReceipt(in str : String)

ReceiptPrinter

+readCard() : String

+confiscateCard()

+releaseCard()

CardReader

+dispenseCash(in amount : int)

CashDispenser

+takeDepositEnvelope()

DepositUnit

+obtainCustomerPin() : String

+obtainTransaction() : Transaction

+obtainAmount() : double

IOUnit

+verifyPin(in cardNumber : String, in pin : String) : bool

+doWithdraw(in custNumber : String, in amount : int)

+doDeposit(in custNumber : String, in amount : double)

+doQuery(in custNumber : String) : double

+verifyFunds(in cardNumber : String, in amount : double) : bool

-loadAccounts(in filename : String)

BankServer

+handleTransaction()

Atm

1

1

1

1

1

1

1

1

1

1

-communicates with

1

1

+deposit(in amount : double)

+withdraw(in amount : double)

+equals(in obj : Object) : bool

-accountId : String

-customerId : String

-pin : String

-balance : double

Account

1

*

+applyMonthlyInterest()

-interestRate : double

SavingsAccount

+deposit(in amount : double)

-lastDepositDate : Date

-lastDepositAmount : double

CheckingAccount

Figure 1 Inheritance Hierarchy for Exercise 1

Have the following classes in a file called Atm.java under the package edu.cmu.heinz.ij95713.Atm: CashDispenser, DepositUnit, ReceiptPrinter, CardReader, IOUnit and Atm. Note the only Atm class will be public in this file. The interfaces of these classes remain the same. Implementations of some methods change as follows:

· readCard() of CardReader asks for the card number from the user, reads it and returns it.

· handleTransaction() of Atm changes in the following ways:
i. ask the user to enter the pin. Verify the pin via the verify() method of the bank. If the pin is verified, continue with the transaction. Allow user to enter the pin number up to three times. After the three trials, if the user cannot provide the correct pin, confiscate the card and finish the transaction.

ii. Now that BankServer methods will be implemented, handleTransaction should change accordingly. For example, after a deposit, it should print the total amount in the account. Also, before a withdraw, it should verify the availability of funds via the new BankServer method verifyBank().

Have the following classes in a file named BankServer.java under the package edu.cmu.heinz.ij95713.Bank: Account, SavingsAccount, CheckingAccount and BankServer where only BankServer is a public class. You will define Java classes for Account, SavingsAccount and CheckingAccount concepts. applyMonthlyInterest() will calculate the monthly interest and add it to the balance. Note that deposit() method is overridden in the CheckingAccount class. Implement it so that lastDepositDate and lastDepositAmount fields are updated.
The existing public interface of the BankServer class remain the same. You need to introduce private loadAccounts() and public verifyFunds() methods. You should implement the methods as described below:

· loadAccounts() reads a input file that contains the account information and creates the account objects. A sample input file is shown below

S|11111|22221|3333|1000|2.2
C|11112|22222|3333|5000|102.5|2005|8|12|11|32
The first field is either an S for a savings account or a C for a checking account. The remaining fields for savings account are account id, customer id, pin, balance and interest rate. Other fields for checking account are account id, customer id, pin, balance, amount of last deposit, year, month, day, hour and minutes of the last deposit date. loadAccount() should read this file and create account objects. Call this method in the constructor of BankServer with the name of the input file.
· In verifyFunds() method, you will search for the account and if it exists make sure its balance is greater than or equal to the amount. In all of the BankServer methods, use the account number that you read with readCard() method of the IOUnit class as the key for searching the accounts.
· Implement all remaining methods
Have a class Homework3_1 in file Homework3_1.java under the default package. Define a main function for Homework3_1 that creates a bank server object and an Atm object. Call the handleTransaction() method on the Atm object.
2. Consider the UML conceptual model in Figure 2. It abstracts the customer management system of a service provider. Service provider has many customers. Each customer might have a number of accounts. For each customer account, a service can be created for the customer. A service could be Dsl service, dial up service, or web hosting service. Each customer account is paid by either a credit card, by a checking account or by sending a bill to an address. Write Java class definitions for each of the concepts in the diagram.

[image: image2.wmf]+addAccount(in account : CustomerAccount)

+addService(in service : Service)

-id : String

-name : String

-dateOpened : Date

Customer

+getTotalCharge() : double

+submitPayment()

-dateOpened : Date

CustomerAccount

-street : String

-city : String

-state : String

-zip : String

Address

1

1

+start()

+stop()

+suspend()

+resume()

+getCharge() : double abstract

-name : String

-description : String

Service

+getCharge() : double

-monthlyCharge : double

-chargeForOveruse : double

-maxMonthlyDataTransfer : double

-totalTransfer : double

-maxStorage : double

WebHostingService

1

*

+getCharge() : double

-monthlyCharge : double

DialUpService

+getCharge() : double

-monthlyCharge : double

-rate : double

DslService

1

1

+verify() : bool

+submitPayment(in amount : double)

PayWithCreditCard

+verify() : bool

+submitPayment(in amount : double)

«interface»

Billable

-id : String

-expMonth : int

-expYear : int

CreditCard

1

1

implements

+verify() : bool

+submitPayment(in amount : double)

BillToAddress

+verify() : bool

+submitPayment(in amount : double)

-bankName : String

-routingNumber : String

PayWithCheckingAccount

1

1

implements

implements

1

1

1

1

+loadCustomers(in filename : String)

+printCustomerReport()

-name : String

ServiceProvider

1

*

1

1

Figure 2 Conceptual Model for Exercise 2

Service is an abstract class with an abstract method getCharge(). Other methods are concrete methods and are implemented by just printing out a message.
DialUpService, DslService and WebHostingService classes extend the abstract Service class. getCharge() method of the DialUpService and DslService classes will return the monthlyCharge instance variable. getCharge() of WebHostingService will return monthlyCharge + any additional charge due to overuse.

Billable is an interface. This interface represents the objects by which a customer account can be paid. It is implemented by BillToAddress, PayWithCreditCard, PayWithCheckingAccount classes. Implement verify() and submitPayment() methods by just printing out a message for each of these classes.
CustomerAccount has two methods: submitPayment() calls the same named method on the Billable object and getTotalCharge() calls the getCharge() of the service object.

Customer information is stored in a text file. Fields common to all records are customer id, customer name, street, city, state, zip.

The next field is the name of a factory class to create a billable object. You will use reflection to create a factory object. The factory object will then read the additional fields needed to create a billable object and will create one. For PayWithCreditCardFactory, fields are credit card number, expiration month and expiration year. For PayWithCheckingAccountFactory, fields are bank name and routing number. BillToAddressFactory will not read any fields from the text file. All these factory objects will use the customer address for billable objects that require address information. A sample factory implementation will be provided in the skeleton code for you.
The next field is the name of a factory class to create a service object. Additional fields are service name and service description for all services; rate and monthly charge for Dsl service; monthly charge for dial up service; monthly charge, charge for overuse, max monthly transfer and total transfer for web hosting service.
loadCustomers() of ServiceProvider should read the input file and build the customer objects. printCustomerReport() should print out the customer information, customer accounts, billables and services. It should print out the charges for each account.
Have a class Homework3_2 with a main function in Homework3_2.java. In the main function, create a service provider object and invoke the loadCustomers() and printCustomerReport() methods.

_1188400113.vsd

_1188400091.vsd

