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IfF=Pi+ Q]+ RKkis a vector field on & 'and the partial derivatives of
P, Q, and R all exist, then the curl of F is the vector field on i2* defined
by
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If we rewrite Eq. 1 using operator notation. We introduce the vector
differential operator V (“del") as

d
V=i—+ J— + k—
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If we think of V as a vector with components é/éx, é/dy, and d/dz, we can
also consider the formal cross product of V with the vector field F as follow
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Example 1: If F(x, y, 2) = xz i + xyz j — V* K, find curl F.
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Recall that the gradient of a function f of three variables is a vector field on
[ and so we can compute its curl.

The following theorem says that the curl of a gradient vector field is 0.

[3] Theorem 1f f is a function of three variables that has continuous second-order
partial derivatives, then

curl(¥f) =0

Since a conservative vector field is one for which F = Vf, Theorem 3 can bg
rephrased as follows:
If F is conservative, then curl F = 0.

This gives us a way of verifying that a vector field is not conservative.
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Example 2: Show that the vector field# (x. v.z) = xzi + xyzj — y"k is not

conservative. QL VELhY freld fom x|
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The converse of Theorem 3 is not true in general, but the following theore|
says the converse is true if F is defined everywhere. (More generally it is
true if the domain is simply-connected, that is, “has no hole.”)

nons have continuous partial derivatives and curl F = 0, then F is a conservative
vector field.

(4] Theorem If F is a vector field defined on all of B whose component func- ‘
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Example 3: a.)Show that F(x.y,z) = y*z'i + 2ap2"j+ 30’2’k is @

conservative vector field. b.) Find a function / such that F = V/
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The reason for the name cur is that the curl vector is associated with
rotations.

Another occurs when F represents the velocity field in fluid flow. Particles
near (x, y, z) in the fluid tend to rotate about the axis that points in the
direction of curl F(x, y, z), and the length of this curl vector is a measure
of how quickly the particles move around the axis.

curl Fiv, v,z

7

If curl F = 0 at a point P, then the fluid is free from
rotations at P and F is called irrotational at P.

In other words, there is no whirlpool or eddy at P.

If curl F = 0, then a tiny paddle wheel moves with the fluid but doesn't
rotate about its axis.

If curl F # 0, the paddle wheel rotates about its axis.
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IfF=Pi+Qj+ Rkisavector field on &' and dP/dx, 8Q/dy, and dRldz
exist, then the divergence of F is the function of three variables defined
by
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Observe that curl F is a vector field but div F is a scalar field.

In terms of the gradient operator V = (8/ax) i + (8/dy) | + (8/d2) k, the

divergence of F can be written symbolically as the dot product of V and F:

0] divF=V-F

—
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Example 4: If F(x, y, z)=xz i+ xyz ]+ y2 k, find div F. Z/>
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If F is a vector field on B, then curl F is also a vector field on k' ., As
such, we can compute its divergence. The next theorem shows that the
result is 0.

IE' Theorem IfTF = Pi+ Qj + Rkisavector field on B and P, @, and R have
continueus second-order partial derivatives, then

diveurl F =0
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Example 5: Show that the vector field F(x,y.z) = xzi + xyzj — v kcan't be
written as the curl of another vector field, that is, F # curlG
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Again, the reason for the name divergence can be understood in the
context of fluid flow.

If F(x, ¥, 2) is the velocity of a fluid (or gas), then div F(x, y, z) represents
the net rate of change (with respect to time) of the mass of fluid (or gas)
flowing from the point (x, y, ) per unit volume.
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If F(x, ¥, 2) is the velocity of a fluid (or gas), then div F(x, y, z) represents
the net rate of change (with respect to time) of the mass of fluid (or gas)
flowing from the point (x, y, ) per unit volume.

In other words, div F(x, y, z) measures the tendency of the fluid to diverge
from the point (x, v, z).

If div F = 0, then F is said to be incompressible.
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