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1 Reduced Mass Coordinates

In classical mechanics (and quantum) problems involving several particles, it is convenient
to separate the motion of the center of mass from the relative motion of the particles. This
allows the separation of the motion of the group of particles as a whole (the center of
mass motion) from internal motions that can involve mutual potential energies between the
particles. These contributions separate out when the energy of the system is computed, as
is shown below for two particles.

In the figure below, we start with an origin at 0 and masses at R1 and R2. The vector
r = R1 −R2 is the separation between the two masses and we assume that the interaction
potential energy is a function, V (r), of this variable. If Rcm is the center of mass as computed
below, then r1 and r2 are the coordinates of the masses relative to Rcm. Clearly,

R1 = Rcm + r1 (1)

R2 = Rcm + r2 (2)

m1

R1

m2

R2

r

Rcm

0

r1 r2

The center of mass is defined as

Rcm =
m1R1 +m2R2

m1 +m2

. (3)

The positions of individual particles relative to the center of mass can be obtained as
follows (using just two particles):

r1 = R1 −Rcm = R1 −
m1R1 +m2R2

m1 +m2
(4)

=
m1R1 +m2R1 −m1R1 −m2R2

m1 +m2
(5)

=
m2(R1 −R2)

m1 +m2
=

m2

m1 +m2
r. (6)
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Similarly,

r2 = −
m1

m1 +m2
r (7)

Check that these make sense in the limit where one of the masses is much greater than the
other.

The energy is

E =
1

2
m1Ṙ

2
1 +

1

2
m2Ṙ

2
2 + V (r) (8)

but,

1

2
m1Ṙ

2
1 =

1

2
m1(Ṙcm +

m2

m1 +m2
ṙ)2 (9)

=
1

2
m1Ṙ

2
cm +

1

2

m1m
2
2

(m1 +m2)2
ṙ2 +

m1m2

m1 +m2

Ṙcm · ṙ (10)

and
1

2
m2Ṙ

2
2 =

1

2
m2Ṙ

2
cm +

1

2

m2
1m2

(m1 +m2)2
ṙ2 −

m1m2

m1 +m2
Ṙcm · ṙ. (11)

[Check the units!] In the energy, the last terms above sum to zero:

E =
1

2
M Ṙ2

cm +
1

2
µ ṙ2 + V (r) (12)

with the total mass,
M = m1 +m2 (13)

and the reduced mass, µ, given by

µ =
m1m2

m1 +m2

. (14)

[What happens to this calculation when there are multiple particles, mi at Ri? Ans: The dot
product terms should again sum to zero.]

Center-of-mass coordinates take the origin to be located at Rcm, so in these coordinates,
E = 1

2
µṙ2+V (r) which involves only the relative coordinates of the particles. The momentum

associated with the relative coordinate is p = µṙ, so we can also write E = 1
2µ
p2 + V (r).

Some examples follow:

1. The N2 molecule: two equal masses. Here,

Rcm =
1

2
(R1 +R2), r1 = −r2 (15)

and

µ =
1

2
mN , (16)

where mN is the mass of a single nitrogen atom. The center of mass is half way between
the particles. The potential energy describes the binding potential associated with the
chemical bond as a function of the bond length, |r| = r. V (r) is attractive at large r,
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has a minimum at some r0, and becomes repulsive at smaller r. The energy relative
to the center of mass is

E =
1

2µ
p2 + V (r) =

1

mN
p2 + V (r). (17)

In the absence of external forces (or potentials), the center of mass will move with
constant momentum while the atoms rotate and vibrate about the center of mass. In
a gravitational potential, the same force acts on both objects, effectively acting on the
center of mass, so the center of mass follows the usual parabolic path while the atoms
rotate and vibrate as before.

2. The Earth-Sun system: very different masses. Here,

Rcm =
mERE +mSRS

mE +mS
(18)

=
RS + mE

mS
RE

1 +mE/mS
. (19)

The ratio of masses is mE/mS = 6× 1024kg/2× 1030kg = 3× 10−6, so

Rcm = RS + 3× 10−6RE. (20)

If we take RS = 0 as our origin, then Rcm = (3× 10−6) (1.5× 1011)m = 4.5× 105m =
450km. But the sun’s radius is 7×108m, so Rcm/Rsun ∼ 10−3. We find that the center
of mass of the earth-sun system is only one one-thousandth of the sun’s radius from
the center of the sun! The relative coordinate is r = RE −RS ≈ RE −Rcm and we
can think of the earth rotating around the center of the sun.

3. An interacting electron and proton. Since me = mp/1836, µ = 1836m2
e/1837me =

0.9995me. This is less unbalanced than the earth-sun system, we still tend to think of
the electron orbiting the heavy proton. However, with precision optical measurements,
one can easily see this correction to a calculation using me. We therefore use the
reduced mass here.

The quantum mechanical Hamiltonian can now be written as

Ĥ = −
~
2

2µ
∇2 + V (r, θ, φ). (21)

For a spherically symmetric interaction potential, everything we have done with angular
momentum carries through. We simply replace the mass, m, of a single particle with the
reduced mass, µ, for the pair.
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2 The Radial Equation for the Coulomb potential

For angular momentum eigenstates, we can write

Ĥ = −
~
2

2µ

1

r

∂2

∂r2
r +

~
2l(l + 1)

2µr2
+ V (r). (22)

The time independent Schrodinger equation becomes, with separation of variables in the
form ψ(r, θ, φ) = R(r)Y ml

l (θ, φ),

ĤR(r) = ER(r) (23)

since the angle dependent functions Y ml

l (θ, φ) commute with Ĥ and can be canceled. Writing
this out yields,

−
~
2

2µ

1

r

∂2

∂r2
[rR(r)] +

~
2l(l + 1)

2µr2
R(r) + V (r)R(r) = ER(r). (24)

Multiplying through by r and defining u(r) = rR(r) gives

−
~
2

2µ

∂2

∂r2
u(r) +

~
2l(l + 1)

2µr2
u(r) + V (r)u(r) = Eu(r) (25)

or

u′′(r)− l(l + 1)
u(r)

r2
−

2µ

~2
V (r)u(r) = −

2µ

~2
Eu(r) (26)

Now, for the hydrogen atom, we have the Coulomb potential,

V (r) = −
e2

4πǫ0r
, (27)

so 2µ
~2
V (r) = − 2

a0r
, with a0 = ~

24πǫ0/µe
2 = 0.529Å, the radius of the first Bohr orbit. We

also write

k2 =
2µ(−E)

~2
, (28)

but note that, while k is not literally a wavevector, it has the appropriate units and it has
the familiar dependence on the energy. Since we are interested in describing bound states,
the eigenvalues, E, will be less than zero and k will be real. We can write our differential
equation as

u′′ − l(l + 1)
u

r2
+

2

a0

u

r
= k2u. (29)

For large r, the middle terms become small and this reduces to

u′′ = k2u (30)

and we get
u(r) ∝ e−kr (31)

We expect the wavefunctions to decay exponentially to zero at large r where V (r) > E.
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As we did for the harmonic oscillator, we now introduce a new function,

u(r) = v(r)e−kr (32)

and we substitute this into (29) to obtain

v′′(r)− l(l + 1)
v(r)

r2
− 2kv′(r) +

2

a0

v

r
= 0. (33)

Terms involving k2 have conveniently canceled. Keep in mind that the energy is buried in
the parameter k.

At this point, we again resort to a brute force power series expansion for v(r). The lowest
power in the series has to be r to at least the first power since our radial wavefunction is
R(r) = u(r)/r = [v(r)/r]e−kr and this must be finite as r → 0. Just as with the harmonic
oscillator, we will also have to check that the power series leads to the limit R(r) → 0 as
r → ∞; this will again require a finite number of terms and will lead to energy quantization.
We have the following:

v(r) =
∞
∑

p=1

Ap r
p (34)

v′(r) =
∑

1

p Ap r
p−1 (35)

v′′(r) =
∑

2

p(p− 1) Ap r
p−2 =

∑

1

p(p+ 1) Ap+1 r
p−1 (36)

v(r)

r
=

∑

1

Ap r
p−1 (37)

v(r)

r2
=

∑

1

Ap r
p−2 = A1 r

−1 +
∑

2

Ap r
p−2 = A1 r

−1 +
∑

1

Ap+1 r
p−1. (38)

In the last equation, the first term in the sum has been separated out so that the remaining
terms can be written in the same way (same summation limits, same powers of r) as the
previous expressions. On substitution, we have a sum of powers of r; in order for this sum
to be zero for general r, the coefficients of each power must be zero and this leads to

[p(p+ 1)− l(l + 1)] Ap+1 = 2

[

kp−
1

a0

]

Ap (39)

and l(l + 1) A1 = 0. (40)

As in the harmonic oscillator case, we again obtain a recursion relation giving coefficients
in the power series expansion. This time, however, the recursion relation gives coefficients
of successive powers instead of skipping a power.

Zero angular momentum. For the case l = 0 (where Y 0
0 (θ, φ) = constant), A1 is allowed

to be non-zero and the recursion relation (39) gives us the following coefficients in the power
series for v(r). We need to check whether u(r) = v(r)/ekr is well-behaved at large r where
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the high powers of r will dominate. We need to compare the coefficients in v(r) to those in
the expansion of the exponential. For large p we have from (39)

p2Ap+1 = 2kpAp (41)

or
Ap+1

Ap
=

2k

p
, (42)

whereas the exponential is

ekr =
∞
∑

p=0

1

p!
(kr)p (43)

with ratios of coefficients of successive terms being k/p. Thus, v(r) will diverge unless we
terminate the series at some pmax = n by making kn = 1/a0 (see Eq. 39) or

kn =
1

na0
. (44)

n can be any integer from 1 to ∞. Plugging all the constants back in, this yields a condition
on the energy:

En = −~
2k2n
2µ

= − ~2

2µa2
0

1
n2 = − µe4

2(4πǫ0)2~2
1
n2 = −[13.6eV] 1

n2 . (45)

This is precisely the Bohr formula for the energy levels.
We can now re-write the recursion relation with this quantization condition (we keep l

since the same series termination condition has to apply when l 6= 0):

[p(p+ 1)− l(l + 1)] Ap+1 =
2

a0

[ p

n
− 1

]

Ap (46)

and l(l + 1) A1 = 0. (47)

Let’s look at some special cases:
l = 0, n = 1. We can set A1 = 1 and we get Ap>1 = 0 by substituting p = 1 and n = 1

into (46) and noticing that the square bracketed quantity on the left will always be non-zero.
This yields (see Eq. 34), using the notation, Rn,l(r) for the radial function,

R1,0(r) =
v(r)

r
e−k1r = e−r/a0 . (48)

This wavefunction is finite at r = 0 and decays exponentially with increasing r with a decay
length equal to the first Bohr orbit radius or 0.528Å. Furthermore,

ψ(r, θ, φ) = Ne−r/a0 , (49)

where N is a normalization constant, since Y 0
0 = constant.

l = 0, n = 2. Again, we set A1 = 1. The recursion relation (46) with p = 1 and n = 2,
gives A2 = 1

2
2
a0
(−1

2
)A1 = − 1

2a0
. Plugging in p = n = 2 gives zero for A3 and all successive

coefficients so that

R2,0(r) =
r − 0.5r2/a0

r
e−k2r = (1−

1

2

r

a0
) e−r/2a0 (50)
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Again the wavefunction is isotropic (i.e., independent of the angle variables), is finite at the
origin, and decays exponentially – but now with a decay constant of twice the Bohr radius.
The probability function extends farther from the origin than in the n = 1 case and this
corresponds to the reduced binding energy compared to the ground state.

Finite angular momentum. When l > 0, we have to require that A1 = 0 (because of Eq.
47) which at first appears to force all coefficients to be zero. However, when we reach p = l,
where l = 1, 2, 3, ..., the coefficient multiplying Ap+1 (or Al+1) is zero and the recursion
is satisfied for non-zero Al+1. The final catch is to notice that, in order for the series to
terminate, we have to require that n > l since otherwise, the term in square brackets on the
right side of (46) is already greater than zero and will continue to be for increased p. Hence,
these states have the identical quantization condition (identical energy eigenvalues) to those
with l = 0.

l = 1. A1 = 0 but, since the square bracket on the left side of (46) is zero for p = 1, A2

can be non-zero. However, when we plug in p ≥ 2, the left side coefficient is positive and the
right side contains the factor p/n− 1; if n = 1, this is always positive and the expansion will
contain arbitrarily large powers of r. If n > 1, the series terminates when we reach p = n.

For example, if l = 1 and n = 2, the series contains only one term, A2, so

R2,1(r) =
r

a0
e−r/2a0 , (51)

where the 1/a0 is inserted in the pre-factor to keep the dimensions as they are in Rn0(r)
expressions above. The generalization is that the wavefunctions with l > 0 go to zero at
the origin and have the same exponential decay as the l = 0 functions at large r. As n
increases at fixed l, more terms appear in the polynomial pre-factor. Note also that the
radial functions have no dependence on ml, the azimuthal quantum number and the energy
has no dependence on either l or ml. The lack of dependence of the energy on l is unique to
the 1/r form for the potential energy.

See the text, page 139 for a list of wavefunctions with radial and angular variations
included as well as proper normalization.
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The above results for quantum number possibilities are best summarized by grouping
first by the principle quantum number, n, and then listing the allowed values for the angular
momentum: these are called “orbitals” and can be specified as |n, l,ml > as in

| 1, 0, 0 > E1 = −13.6 eV L2 = 0 Lz = 0
| 2, 0, 0 > E2 = −3.4 eV L2 = 0 Lz = 0
| 2, 1,−1 > E2 = −3.4 eV L2 = 2~2 Lz = −~

| 2, 1, 0 > E2 = −3.4 eV L2 = 2~2 Lz = 0
| 2, 1, 1 > E2 = −3.4 eV L2 = 2~2 Lz = ~

| 3, 0, 0 > E3 = −1.51 eV L2 = 0 Lz = 0
| 3, 1,−1 > E3 = −1.51 eV L2 = 2~2 Lz = −~

| 3, 1, 0 > E3 = −1.51 eV L2 = 2~2 Lz = 0
| 3, 1,−1 > E3 = −1.51 eV L2 = 2~2 Lz = ~

| 3, 2,−2 > E3 = −1.51 eV L2 = 6~2 Lz = −2~
| 3, 2,−1 > E3 = −1.51 eV L2 = 6~2 Lz = −~

| 3, 2, 0 > E3 = −1.51 eV L2 = 6~2 Lz = 0
| 3, 2, 1 > E3 = −1.51 eV L2 = 6~2 Lz = ~

| 3, 2, 2 > E3 = −1.51 eV L2 = 6~2 Lz = 2~

At each principle quantum number there are

g(n) =
n−1
∑

l=0

(2l + 1) = n2 (52)

degenerate orbitals. When we add the electron’s spin, we would specify |n, l,ml, ms > or,
better yet, |n, l, j,mj >; in either case we have 2n2 quantum states.1 For one electron atoms,
if l = 0, j = 1

2
, whereas for l > 0, j = l± 1

2
. All one electron atomic (or ionic) states possess

angular momentum and an associated magnetic moment.

1Okay, this isn’t really complete either since the proton has spin, s = 1/2 – here we have to add all three
angular momentum contributions to get a new j quantum number and associated mj and there would be
4n2 states. The scale for nuclear magnetic moments is µn = e~

2mp

∼ µB/1836 so the interaction energies

(the hyperfine interaction) are quite small. For most purposes, there is little distinction (very little energy
difference, very little change in wavefunctions) between the states with differently oriented proton spin –
chemically speaking, these two states can be neglected and we say there are 2n2 states at each n or energy
level.
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