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Wavefunctions and identical particles. For multiple particle wavefunctions, there are
substantial notational complications. For N particles, we need N coordinates, {x} or {r}.
For distinguishable particles, we can specify positions x1, x2, ..., xN and ask questions such
as, what is the probability for a multi-particle configuration in which particle 1 is at po-
sition x1 within dx1, and particle 2 is at position x2 within dx2, etc. We write this as
P (x1, x2, ..., xN)dx1 dx2 ...dxN and the corresponding wavefunction is ψ(x1, x2, ..., xN). In
this notation, you should think of the position in the list of arguments as referring to the
list of particles and the values of the corresponding arguments as giving the appropriate po-
sition value for that particle. That is, the subscripts on the x’s simply denote entries in {x}
whereas the first argument says we are asking about particle 1 being at position x1. In the
above expressions, the subscripts and the positions in the list correspond, so the distinction
seems unnecessary.

If the particles are indistinguishable, we have to re-phrase the probability question as,
what is the probability that there is a particle at position x1 within dx1 and a particle is
at position x2 within dx2, etc. There are N of these coordinates, but they are just a list of
positions, not positions of specific particles. We still write the probability as P (x1, x2, ...xN )
(still the probability density for finding particle 1 position at x1, particle 2 at position x2,
etc) and P (x2, x1, ..., xN ) the corresponding quantity for finding particle 1 at position x2,
particle 2 at x1, etc. If the particles are truly indistinguishable, we must insist that the last
two probabilities are the same: permuting which particle is where cannot give a different
probability. In fact, any random re-ordering of the position variables must give the same
probability.

Multiparticle wavefunctions must obey either

ψ(x1, ..., xi, ..., xj , ..., xN) = ψ(x1, ..., xj , ..., xi, ..., xN ) (1)

or
ψ(x1, ..., xi, ..., xj , ..., xN) = − ψ(x1, ..., xj , ..., xi, ..., xN ) (2)

in order that the probability behave properly. While one could imagine a complex phase
factor, eiθ, as being a more general solution that gives the probability the correct behavior,
performing another exchange on the right side of (1) or (2) has to return the function we
started with, so ei2θ = 1 and θ = 0 or π (+1 or −1) are the only choices.

Product wavefunctions for non-interacting identical particles. For two non-interacting
particles, the Schrodinger equation takes the form
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ψ(x1, x2) + [V (x1) + V (x2)]ψ(x1, x2) = Eψ(x1, x2), (3)

with E being the energy of the two particle system. Operations on ψ involve only one
position variable at a time, so we expect to be able to form solutions as products:

ψ̃n,m(x1, x2) = un(x1) um(x2), (4)
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where un and um are solutions to the one particle equation in potential V (x). The energy is
simply

E = En + Em. (5)

The left side of (4) indicates that we have two particles with one in state n and one in state m
and we are asking about particle 1 being at x1, particle 2 being at x2. The right side implies
that particle 1 is in state n and particle 2 is in state m – this already appears to overstate
our knowledge of the two particle system (unless, in fact, n = m)! Note that exchanging the
position coordinates yields

ψ̃n,m(x2, x1) = un(x2) um(x1). (6)

Equation 6 gives the probability amplitude that particle 1 is in state n and is at coordinate
x2 and particle 2 is in state m and is at coordinate x1. This could equally well be interpreted
as reversing the particles’ state assignments, keeping the coordinates the same.

We noted that the product functions overstate our knowledge and this is reflected in the
two expressions, (4) and (6), which appear equally valid (or invalid) but which do not satisfy
either (1) or (2). As an example, take the potential to be the infinite square well and take
n = 1 and m = 2 (keeping in mind that for n = m the two product functions are identical)
and take x1 = a/2, x2 = 2a/3. Then (4) becomes
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whereas
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This is clearly inconsistent with (1) and (2).
The bottom line is that we have two possible product wavefunctions that correspond

to alternate assignments of particles to states or position coordinates. Both overstate our
knowledge of the system but both are energy eigenfunctions. In any such situation, quantum
mechanics tells us to sum the amplitudes for things we do not know and allow for interference
effects that occur when we square the amplitude to obtain a probability function. This is
directly analogous to the double slit experiment (or any diffraction experiment): we sum the
amplitudes associated with each possible path to obtain the observed interference pattern.
We form two possible linear combinations that satisfy either (1) or (2):

ψn,m(x1, x2) =
1√
2
[un(x1) um(x2)± un(x2) um(x1)] . (9)

The pre-factor maintains the normalization of ψ (assuming the u’s are normalized). This
function explicitly demonstrates our ignorance by including terms associated with each in-
distinguishable assignment combination of particles to states or positions: either the particle
at x1 is in state n or it is the one in state m.

The above simple argument (even if the notation is not so straightforward) yields an
astounding result. The choice of + or − in the linear combination leads to quite different
behavior and experimental observation leads to the conclusion that some types of objects use
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the + and some types use the −! Any particle with half-integer spin (electrons, protons, neu-
trons, quarks, muons, taus, neutrinos,...) uses the − and these particles are called Fermions
(as we will see, they obey the Pauli exclusion principle). Integer spin particles (photons,
pions, Kon’s,... and now the Higgs) use the + and are called Bosons (they do not obey the
Pauli principle). This choice of sign leads to completely different behavior of collections of
particles. Composite objects (nuclei, atoms,...) that have well-defined spin obey the same
rules. For example, 4He, composed of two protons, two neutrons, and two electrons has spin
zero and is a Boson whereas 3He with two protons, one neutron, and two electrons has spin
1/2 and is a Fermion (these statements apply to the ground electronic and nuclear states).

To see that the choice of sign leads to different behavior, let’s ask about the probability
of finding the two non-interacting particles at the same position. We have

ψn,m(x1, x1) =
1√
2
[un(x1) um(x1)± un(x1) um(x1)] . (10)

For Bosons, with the +, we find ψn,m(x1, x1) =
1
√

2
2un(x1) um(x1) which means that Pn,m(x1, x1) =

2|un(x1)|2|um(x1)|2 or twice what we would have expected from the individual one particle
wavefunctions. For Fermions, we find that ψn,m(x1, x1) = Pn,m(x1, x1) = 0! The Fermions
avoid each other whereas Bosons are much friendlier. These “correlations” are present even
though we have assumed no interaction potential between the particles. Also, note that the
probability is still normalized so the enhanced or reduced probability of finding the particles
in the same place must be compensated by the opposite trend for more separated coordinates.

Next, let’s ask about the probability for finding the two particles in the same state. In
this case, we can make a symmetric wavefunction from just the product of single particle
wavefunctions:

ψn,n(x1, x2) = un(x1) un(x2) = un(x2) un(x1). (11)

The two terms we needed in the linear combination wavefunctions are the same, so there is
no need to form that combination. If we try to form an anti-symmetric function by using
the linear combination, we get zero:

ψn,n(x1, x2) =
1√
2
[un(x1) un(x2)− un(x2) un(x1)] = 0. (12)

The conclusion is that we simply cannot form such a wavefunction – this is the “strong
statement” of the Pauli exclusion principle. It is the basis for the statement that no two
Fermions can occupy the same quantum state.

The distinction in the above behaviors can hardly be more dramatic or more important.
It is due to the anti-symmetric nature of Fermion wavefunctions that nature has to put
electrons into different quantum states in multi-electron atoms. This leads directly to the
structure of the Periodic Table and all the properties of atoms, molecules, solids, etc. Bosons,
on the other hand, have ground states in which all the particles go to the same single
particle ground state – this is Bose condensation, a subject of great current interest (due
to the recently developed ability to cool collections of atoms in magnetic and optical traps
to extremely low temperatures and thus to achieve condensation). This condensation is
responsible for superfluidity in liquid 4He (not seen in 3He where the only difference is
buried down inside the nucleus) and for superconductivity where electron pairs form spin
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zero, Bosonic states (“Cooper pairs”) that condense. There is recent evidence that 3He can
have a similar pairing and condensation phenomenon at extremely low temperatures.

Try to imagine what the world would be like if electrons were bosons – all it would take
is to reverse a single minus sign!

Inclusion of spin states. We found above that spin is critically important, but the nota-
tion used there did not explicitly include spin degrees of freedom. Here, we assume that the
spin degrees of freedom are independent of the spatial variables (for example, there are no
spatially varying magnetic fields, including no interactions between magnetic moments) and
that spin up and spin down states have the same energy (i.e., there is no magnetic field at all
and we neglect interactions between magnetic moments). In this case, the variables separate
and we can write total wavefunctions as products of space and spin parts, for example,

ψ(x1, x2, ↑, ↑) = un(x1)um(x2)| ↑> | ↑>

or

ψ(x1, x2, ↑, ↑) =
1√
2
[un(x1)um(x2)± un(x2)um(x1)]|S,mS >

where, in this case, the spin states are described in terms of total spin angular momentum
and its z component.

It is shown in Chapter 8 (p. 182, 183) that the total spins states can be written in terms
of the individual spin’s up and downs states:

|S,mS >= |1, 1 > ⇔ | ↑, ↑> (13)

|S,mS >= |1, 0 > ⇔ 1√
2
[ | ↑, ↓> + | ↓, ↑> ] (14)

|S,mS >= |1,−1 > ⇔ | ↓, ↓> (15)

and

|S,mS >= |0, 0 > ⇔ 1√
2
[ | ↑, ↓> − | ↓, ↑ ]. (16)

The three spin S = 1 states are all symmetric under exchange of particles whereas the single
spin S = 0 state is antisymmetric. Since the total wavefunction is a product of spin and
space parts and it is the exchange symmetry of the total wavefunction that matters, we see
that, for two Fermions, if the spin is in the singlet, S = 0 state, then the space part must
be symmetric under exchange. The symmetric space part allows the possibility that both
particles can be in the same orbital (i.e., having the same orbital quantum numbers – the
space part here will be a simple product) or they can be in different orbitals (represented
by the linear combination of orbital functions, summed with a + sign). For the two s = 1/2
Fermions in the triplet of S = 1 states, the space function must be antisymmetric which
requires a linear combination summed with the − sign (and this disallows the particles from
being in the same state). Among other things, this explains why the He atom in its ground
state has its two electrons in the S = 0 configuration: the anti-symmetric spin function
allows both electrons to be in the n = 1, l = 0, ml = 0 orbital which clearly minimizes the
dominant Coulomb energy.
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