Problem 6.10 Harmonic oscillator solution using raising and lowering operators.

The operators given in the problem statement are in terms of displacement x but can
be transformed into a simpler form in terms of the dimensionless parameter s = x/z where
Ty = %: calling the dimensioned operator a, we can write
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and similarly for a_ with a + sign instead of the —. So, we define the dimensionless operators,
at as
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This means that energies are being measured in units of %hwo.
In terms of dimensionless quantities, the Schrodinger equation for the harmonic oscillator
is written as
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where A is the dimensionless eigenvalue from which the energy is obtained: E, = )\%hwo.

The Hamiltonian operator is then H = — % o+ 2
(a) Show that [H,ay] = Lhwoas (note that this is of the form of the commutator
considered in problem 6.9).
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The middle two commutators are zero and we only have to evaluate the first and
last:
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So,
[H,ay] = —2% + 25 = £2ay (10)



Using the result from problem 6.9, we can now expect that ay will raise or
lower the eigenvalue (in this case, the dimensionless quantity, A) by 2. Since £ =
%hwo)\, this corresponds to changing the energy by +hwy. And, of course, using
a+ on an eigenfunction, ,(s) will give the corresponding new eigenfunction,
Yn+1(s) (recall that n is defined through A = 2n + 1, so changing A by 2 changes
n by 1).

(b) Show that ¢ = a1 is an energy eigenfunction with eigenvalue E =+ hwy if ¢ is an
eigenfunction with eigenvalue F.

This follows from problem 6.9. In dimensionless terms, we want to show that
eigenvalue A shifts by 2 by applying a..

From part (a), we have [H, a4]y = £2a.1) = £2¢ and
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as we want.

(¢) Show that aja_ = H — 1 (in dimensioned units, the 1’ would be 1hwy).
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(d) If g(s) is the ground state wavefunction, then a_1(s) = 0. What is the ground
state energy eigenvalue?

aya—tho = (H — 1)th = 0, (16)
so, Hyy = 1)y and Ay = 1. This means that the ground state energy is £y = %hwo.

(e) a_ty(s) = 0 is a differential equation for ¥y(s); what is the ground state wavefunc-
tion?

The differential equation is



or
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This is a first order differential equation with the solution
Wo(s) = Ae™*/? (19)

as we found previously by solving a significantly more complicated second order
differential equation. The solution can be verified by substitution.

Once we have the ground state, we can obtain all others by successive applications of

ay. For example,
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Note that we even get the Hermite polynomials in the standard form with 2" as the coefficient

of the highest power term, s”, in each.



