Problem 6.10 Harmonic oscillator solution using raising and lowering operators.
The operators given in the problem statement are in terms of displacement x but can be transformed into a simpler form in terms of the dimensionless parameter $s=x / x_{0}$ where $x_{0}=\frac{\hbar^{1 / 2}}{(K m)^{1 / 4}}$: calling the dimensioned operator \tilde{a}_{+}we can write

$$
\begin{align*}
\tilde{a}_{+} & =\sqrt{\frac{K}{2}} x-\frac{\hbar}{\sqrt{2 m}} \frac{\partial}{\partial x} \tag{1}\\
& =\sqrt{\frac{\hbar}{2}}\left(\frac{K}{m}\right)^{1 / 4} s-\sqrt{\frac{\hbar}{2}}\left(\frac{K}{m}\right)^{1 / 4} \frac{\partial}{\partial s} \tag{2}\\
& =\left(\frac{1}{2} \hbar \omega_{0}\right)^{1 / 2}\left[s-\frac{\partial}{\partial s}\right], \tag{3}
\end{align*}
$$

and similarly for \tilde{a}_{-}with a + sign instead of the - . So, we define the dimensionless operators, $a_{ \pm}$as

$$
\begin{equation*}
a_{ \pm}=s \mp \frac{\partial}{\partial s} . \tag{4}
\end{equation*}
$$

This means that energies are being measured in units of $\frac{1}{2} \hbar \omega_{0}$.
In terms of dimensionless quantities, the Schrodinger equation for the harmonic oscillator is written as

$$
\begin{equation*}
-\frac{\partial^{2} \psi(s)}{\partial s^{2}}+s^{2} \psi(s)=\lambda \psi(s) \tag{5}
\end{equation*}
$$

where λ is the dimensionless eigenvalue from which the energy is obtained: $E_{n}=\lambda \frac{1}{2} \hbar \omega_{0}$. The Hamiltonian operator is then $H=-\frac{\partial^{2}}{\partial s^{2}}+s^{2}$.
(a) Show that $\left[H, a_{ \pm}\right]= \pm \hbar \omega_{0} a_{ \pm}$(note that this is of the form of the commutator considered in problem 6.9).

$$
\begin{align*}
{\left[H, a_{ \pm}\right] } & =\left[\left(-\frac{\partial^{2}}{\partial s^{2}}+s^{2}\right),\left(s \mp \frac{\partial}{\partial s}\right)\right] \tag{6}\\
& =-\left[\frac{\partial^{2}}{\partial s^{2}}, s\right]-\left[\frac{\partial^{2}}{\partial s^{2}}, \mp \frac{\partial}{\partial s}\right]+\left[s^{2}, s\right] \mp\left[s^{2}, \frac{\partial}{\partial s}\right] . \tag{7}
\end{align*}
$$

The middle two commutators are zero and we only have to evaluate the first and last:

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial s^{2}}, s\right] \psi=\frac{\partial^{2}}{\partial s^{2}}(s \psi(s))-s \frac{\partial^{2} \psi}{\partial s^{2}}=2 \frac{\partial \psi}{\partial s} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left[s^{2}, \frac{\partial}{\partial s}\right] \psi=s^{2} \frac{\partial \psi}{\partial s}-\frac{\partial}{\partial s}\left(s^{2} \psi\right)\right)=-2 s \psi \tag{9}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left[H, a_{ \pm}\right]=-2 \frac{\partial}{\partial s} \pm 2 s= \pm 2 a_{ \pm} \tag{10}
\end{equation*}
$$

Using the result from problem 6.9, we can now expect that $a_{ \pm}$will raise or lower the eigenvalue (in this case, the dimensionless quantity, λ) by 2 . Since $E=$ $\frac{1}{2} \hbar \omega_{0} \lambda$, this corresponds to changing the energy by $\pm \hbar \omega_{0}$. And, of course, using $a_{ \pm}$on an eigenfunction, $\psi_{n}(s)$ will give the corresponding new eigenfunction, $\psi_{n \pm 1}(s)$ (recall that n is defined through $\lambda=2 n+1$, so changing λ by 2 changes n by 1).
(b) Show that $\phi=a_{ \pm} \psi$ is an energy eigenfunction with eigenvalue $E \pm \hbar \omega_{0}$ if ψ is an eigenfunction with eigenvalue E.

This follows from problem 6.9. In dimensionless terms, we want to show that eigenvalue λ shifts by 2 by applying $a_{ \pm}$.

From part (a), we have $\left[H, a_{ \pm}\right] \psi= \pm 2 a_{ \pm} \psi= \pm 2 \phi$ and

$$
\begin{equation*}
H \phi=H a_{ \pm} \psi= \pm 2 \phi+a_{ \pm} H \psi= \pm 2 \phi+a_{ \pm} E \psi= \pm 2 \phi+E \phi=(E \pm 2) \phi \tag{11}
\end{equation*}
$$

as we want.
(c) Show that $a_{+} a_{-}=H-1$ (in dimensioned units, the ' 1 ' would be $\frac{1}{2} \hbar \omega_{0}$).

$$
\begin{align*}
a_{+} a_{-} \psi & =\left[s-\frac{\partial}{\partial s}\right]\left[s+\frac{\partial}{\partial s}\right] \psi \tag{12}\\
& =\left[s-\frac{\partial}{\partial s}\right]\left(s \psi+\frac{\partial \psi}{\partial s}\right) \tag{13}\\
& =s^{2} \psi+s \frac{\partial \psi}{\partial s}-s \frac{\partial \psi}{\partial s}-\psi-\frac{\partial^{2} \psi}{\partial s^{2}} \tag{14}\\
& =-\frac{\partial^{2} \psi}{\partial s^{2}}+s^{2} \psi-\psi \tag{15}
\end{align*}
$$

so, $a_{+} a_{-}=-\frac{\partial^{2}}{\partial s^{2}}+s^{2}-1=H-1$.
(d) If $\psi_{0}(s)$ is the ground state wavefunction, then $a_{-} \psi_{0}(s)=0$. What is the ground state energy eigenvalue?

$$
\begin{equation*}
a_{+} a_{-} \psi_{0}=(H-1) \psi_{0}=0 \tag{16}
\end{equation*}
$$

so, $H \psi_{0}=\psi_{0}$ and $\lambda_{0}=1$. This means that the ground state energy is $E_{0}=\frac{1}{2} \hbar \omega_{0}$.
(e) $a_{-} \psi_{0}(s)=0$ is a differential equation for $\psi_{0}(s)$; what is the ground state wavefunction?

The differential equation is

$$
\begin{equation*}
a_{-} \psi_{0}=\left(s+\frac{\partial}{\partial s}\right) \psi_{0}=0 \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial \psi_{0}}{\partial s}=-s \psi_{0} \tag{18}
\end{equation*}
$$

This is a first order differential equation with the solution

$$
\begin{equation*}
\psi_{0}(s)=A e^{-s^{2} / 2} \tag{19}
\end{equation*}
$$

as we found previously by solving a significantly more complicated second order differential equation. The solution can be verified by substitution.

Once we have the ground state, we can obtain all others by successive applications of a_{+}. For example,

$$
\begin{align*}
\psi_{1}(s) & =a_{+} \psi_{0}(s)=\left(s-\frac{\partial}{\partial s}\right) \psi_{0}(s)=2 s \psi_{0}(s)=2 s e^{-s^{2} / 2} \tag{20}\\
\psi_{2}(s) & =a_{+} \psi_{1}(s)=\left(s-\frac{\partial}{\partial s}\right) 2 s e^{-s^{2} / 2} \tag{21}\\
& =\left(2 s^{2}+2 s^{2}-2\right) e^{-s^{2} / 2}=\left(4 s^{2}-2\right) e^{-s^{2} / 2} \tag{22}
\end{align*}
$$

Note that we even get the Hermite polynomials in the standard form with 2^{n} as the coefficient of the highest power term, s^{n}, in each.

