
Problem 6.10 Harmonic oscillator solution using raising and lowering operators.
The operators given in the problem statement are in terms of displacement x but can

be transformed into a simpler form in terms of the dimensionless parameter s = x/x0 where

x0 = h̄1/2
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and similarly for ã− with a + sign instead of the −. So, we define the dimensionless operators,
a± as

a± = s∓
∂

∂s
. (4)

This means that energies are being measured in units of 1
2
h̄ω0.

In terms of dimensionless quantities, the Schrodinger equation for the harmonic oscillator
is written as

−
∂2ψ(s)

∂s2
+ s2ψ(s) = λψ(s), (5)

where λ is the dimensionless eigenvalue from which the energy is obtained: En = λ1
2
h̄ω0.

The Hamiltonian operator is then H = − ∂2

∂s2 + s2.
(a) Show that [H, a±] = ±h̄ω0a± (note that this is of the form of the commutator

considered in problem 6.9).
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The middle two commutators are zero and we only have to evaluate the first and
last:
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So,

[H, a±] = −2
∂

∂s
± 2s = ±2a± (10)
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Using the result from problem 6.9, we can now expect that a± will raise or
lower the eigenvalue (in this case, the dimensionless quantity, λ) by 2. Since E =
1
2
h̄ω0λ, this corresponds to changing the energy by ±h̄ω0. And, of course, using
a± on an eigenfunction, ψn(s) will give the corresponding new eigenfunction,
ψn±1(s) (recall that n is defined through λ = 2n+ 1, so changing λ by 2 changes
n by 1).

(b) Show that φ = a±ψ is an energy eigenfunction with eigenvalue E ± h̄ω0 if ψ is an
eigenfunction with eigenvalue E.

This follows from problem 6.9. In dimensionless terms, we want to show that
eigenvalue λ shifts by 2 by applying a±.

From part (a), we have [H, a±]ψ = ±2a±ψ = ±2φ and

Hφ = Ha±ψ = ±2φ+ a±Hψ = ±2φ+ a±Eψ = ±2φ+ Eφ = (E ± 2)φ (11)

as we want.

(c) Show that a+a− = H − 1 (in dimensioned units, the ’1’ would be 1
2
h̄ω0).
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so, a+a− = − ∂2

∂s2 + s2 − 1 = H − 1.

(d) If ψ0(s) is the ground state wavefunction, then a−ψ0(s) = 0. What is the ground
state energy eigenvalue?

a+a−ψ0 = (H − 1)ψ0 = 0, (16)

so, Hψ0 = ψ0 and λ0 = 1. This means that the ground state energy is E0 = 1
2
h̄ω0.

(e) a−ψ0(s) = 0 is a differential equation for ψ0(s); what is the ground state wavefunc-
tion?

The differential equation is

a−ψ0 =

(
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or
∂ψ0

∂s
= −sψ0. (18)

This is a first order differential equation with the solution

ψ0(s) = Ae−s2/2 (19)

as we found previously by solving a significantly more complicated second order
differential equation. The solution can be verified by substitution.

Once we have the ground state, we can obtain all others by successive applications of
a+. For example,

ψ1(s) = a+ψ0(s) =

(
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)

ψ0(s) = 2sψ0(s) = 2se−s2/2 (20)

ψ2(s) = a+ψ1(s) =

(
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2se−s2/2 (21)

= (2s2 + 2s2 − 2)e−s2/2 = (4s2 − 2)e−s2/2 (22)

Note that we even get the Hermite polynomials in the standard form with 2n as the coefficient
of the highest power term, sn, in each.
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