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Preliminaries

1. First, note that for the infinite square well (which we just completed), we placed the
well in the region 0 < x < L, but the physics of the situation would be the same
regardless of where we put it. Pictures of the wavefunctions would look identical, the
energies would be the same, the standard deviations, ∆x and ∆p would be the same
(of course, < x > and < x2 > would be different).
It is often convenient to put x = 0 at the symmetry point of a potential energy function.
Then, in our case, the well extends −L/2 < x < L/2. We then can “phase shift” the
sinusoidal wavefunctions to write

ψn(x) =

√

2

L

{

cos knx, n odd
sin knx, n even

with kn = π
a
n, as before. These functions do exactly what the simple, sin knx functions

did previously (students should verify that the same shapes are obtained and the
boundary conditions are satisfied). One advantage here is that these functions clearly
show a symmetry property: Since V (x) = V (−x), we expect that P (x) = P (−x) and
this requires (for real wavefunctions) that

ψn(x) = ±ψn(−x).

The cosine functions are symmetric while the sines are antisymmetric about x = 0.
This parity property of the wavefunctions can be impose whenever the potential energy
is symmetric about the origin. This observation can save considerable algebra in future
work!

2. For the infinite square well, we solved the time independent equation in the region
where V (x) was analytic (inside the well, not including the infinite walls) and then
applied a physically intuitive boundary condition: the probability of finding the particle
at a point with infinite potential energy should be zero. This boundary condition gave
rise to the discrete spectrum of energies and associated wavefunctions for the trapped
particle’s stationary states.

3. For a finite square well (pictured below), the situation is not so clear.
4. We will again solve the time independent equation in regions where V (x) is analytic

(in this case, again constant) and will again have to impose boundary conditions that
mathematically match up the solutions so that they have the correct behavior at the
steps. This will again give rise to a discrete set of energy eigenvalues for bound particles.

5. We will find that “following the math” in this way leads to some very non-intuitive be-
havior! But this strange, non-classical behavior is verified in real systems and gives rise
to, for example, the scanning tunneling microscope and alpha decay of some radioactive
nuclei.

6. To get started, let’s think about the solutions to the Schrodinger equation in the
presence of a constant potential energy, V0, and consider two possible situations: E >
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V0 (which makes sense classically) and E < V0 (which does not make sense classically
since we normally think that K = E − V0 and this condition would correspond to a
negative kinetic energy...but we proceed).

7. Solving the Schrodinger equation for the wavefunction curvature, ψ′′(x) = d2ψ/dx2,
we have

ψ′′ = −
2m

~2
(E − V0) ψ(x).

In the classically allowed case, E > V0 (positive kinetic energy), we see that the sign of
the curvature is opposite to that of the wavefunction – this leads to oscillatory behavior
(sketch a few cases for yourself). On the other hand, where E < V0 (negative kinetic
energy?), which is a case never encountered in a classical system, the wavefunction
and the curvature have the same sign which implies that the function curves away
from the x-axis and will tend to diverge in general if the relevant region where this
happens extends to infinity in x. This is what happens in the finite square well for
bound states; we have E < V0 for bound states, where V0 is the barrier height, so in
the regions |x| > a/2, the potential energy is higher than the total energy. Note that
in the region |x| < a/2, the potential energy is zero and we expect oscillatory behavior
just like in the infinite well case. We will have to impose a boundary condition on our
solutions that requires the wavefunction to remain finite; the only way to do this is to
have lim|x|→∞ ψ(x) = 0. This requirement should be clear since we cannot find that
the probability for finding the particle in a classically disallowed region is large.

8. The situation at x = ±a/2: Given the curvature arguments above, it is clear that the
curvature undergoes a discontinuity at x = ±a/2. In order for this to happen, the
curvature must be defined and this requires that the function and first derivative must
be continuous. We therefore require that, for example at x = +a/2,

ψII(a/2) = ψIII(a/2)

and that
dψII

dx

∣

∣

∣

∣

x=a/2

=
dψIII

dx

∣

∣

∣

∣

x=a/2

With a similar statement at x = −a/2 (but if we apply the parity property to the
wavefunction, one procedure is sufficient to impose the condition in both cases).
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The solution. Consider a particle of mass m in a finite depth potential well as shown
below; we wish to consider bound states for which E < V0.

V (x)

V0

−a/2 a/2
x

E
I II III

By using the symmetry of the potential energy, we can write the wavefunction as

ψI(x) = ±Aeαx, x < −a/2 (1)

ψII(x) = B cos kx or C sin kx, −a/2 < x < a/2 (2)

ψIII(x) = Ae−αx, x > a/2 (3)

where in the first equation, we use the + to go with the cosine and the − with the sine and

α2 =
2m

~2
(V0 − E) (4)

k2 =
2m

~2
E. (5)

We’ve already imposed the boundary condition that the wavefunction must remain finite at
all x: only the appropriate exponential terms are included in the outside regions.

Even functions: We apply the boundary conditions at x = +a/2 and x = −a/2 to obtain
four equations:

Ae−αa/2 = B cos ka/2 (6)

αAe−αa/2 = +Bk sin ka/2 (7)

Ae−αa/2 = B cos ka/2 (8)

αAe−αa/2 = +Bk sin ka/2. (9)

Because of our use of symmetry, the conditions at x = ±a/2 are the same – we don’t
really need both. In addition, we only have two unknown coefficients, so four independent
equations wouldn’t make sense anyway.

The two boundary conditions, say, (6) and (7), can be regarded as two homogeneous
equations in A and B. In order to have a solution other than A = B = 0, we require the
determinant of the coefficients to be zero. This puts a constraint on α and k – i.e., on the
energy, E. Only special values of E will allow solutions.
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One can either compute the determinant or solve each equation for A/B. Doing the
latter leads to

A

B
= eαa/2 cos ka/2 =

k

α
eαa/2 sin ka/2. (10)

or, using the second equality,
k tan ka/2 = α (11)

which we write as
ξ tan ξ = η, (12)

with ξ = ka/2 and η = αa/2. For a given potential energy with given V0 and a, (11) or (12)
express the condition on E required for a solution of the Schrodinger equation satisfying the
“smoothness” boundary conditions.

Odd functions. The boundary conditions here are

Ae−αa/2 = −C sin ka/2 (13)

αAe−αa/2 = Ck cos ka/2, (14)

which can be solved as before for A/C to yield

−k cot ka/2 = α (15)

−ξ cot ξ = η. (16)

Graphical solutions. Equations 12 and 16 must be solved numerically. Here is a graphical
approach. The first thing to do before getting into numerics is to simplify the equations by
putting them into dimensionless variable forms. Doing this algebra up front will be rewarded
by having simple forms in the plots that are more transparent to interpret.

First, we scale the energy to units of V0 by defining ǫ = E/V0. For bound states,

0 ≤ ǫ ≤ 1. Note that ξ = ka/2 =
√

2m
~2
E a/2 =

√

ma2

2~2
E; we let ǫ0 =

ma2

2~2
V0, so that we get

ξ = (ǫ0ǫ)
1/2 by multiplying and dividing by V0. Similarly, we can write η = [ǫ0(1 − ǫ)]1/2.

For even functions, we need to solve

(ǫ0ǫ)
1/2 tan[(ǫ0ǫ)

1/2] = [ǫ0(1− ǫ)]1/2 (17)

and for odd functions,

− (ǫ0ǫ)
1/2 cot[(ǫ0ǫ)

1/2] = [ǫ0(1− ǫ)]1/2. (18)

The factor of ǫ
1/2
0

can be canceled and we have for even functions,

ǫ1/2 tan[(ǫ0ǫ)
1/2] = (1− ǫ)1/2 (19)

and for odd functions,
− ǫ1/2 cot[(ǫ0ǫ)

1/2] = (1− ǫ)1/2. (20)

ǫ0 depends on the shape of the well: the depth, V0, and the width, a, through the product,
V0a

2. This parameter sets the “strength” of the well and the number of bound states. As
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ǫ0 increases, the trig functions go through more and more cycles as ǫ goes from 0 to 1; this
leads to more and more solutions to the above equations and hence more and more bound
states.

The plots on the following page show, for selected values of ǫ0, the graphical solution of
equations (19) and (20). The horizontal axis is ǫ = E/V0, the scaled energy which extends
from 0 (the bottom of the well) to 1 (the top of the well). The vertical axes show the left and
right sides of the equations with the right side (which is the same for even and odd cases) in
blue and the left side of (19) in green and the left side of (20) in red. Wherever the left and
right sides are equal (i.e., the curves cross), the boundary conditions on the wavefunction
are satisfied and we have a solution to the time independent Schrodinger equation.

As ǫ0 increases, the tangent and cotangent functions vary more rapidly with ǫ and so-
lutions move to lower energy while at the same time, new solutions pop into existence near
the top of the energy scale. Again, note that at least one solution exists for any ǫ0 – this
only occurs in the one dimensional case.

Questions: You should be able to sketch the first few wavefunctions: if we label the
solutions with n = 1, 2, 3, ..., how many zero crossings exist for each? What happens to the
exponential decay length outside of ±a/2 as we go up in n? What would a wavefunction
with E slightly larger than V0 look like?

If instead of a graphical solution you want to solve the problem on numerically, how
would you search for solutions? How would you know when you have obtained all solutions
for a particular value of ǫ0?
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ǫ0 =
ma2
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